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ABSTRACT

This thesis describes a method for mapping unknown large scale static environ-
ments using a hybrid of topological and metric representations. A global map is
formed from a set of local maps for sub-regions of the environments. Each local map
contains quantitative environment information used to define a local reference frame.
These maps are referred to as islands of reliability because they are associated with
the sub-regions whose local structure is best matched to the sensors we are using.
The connectivity of these islands is represented topologically. The key mapping prob-
lem we consider is where to place the islands of reliability and to what extent they
should cover the environment. This is accomplished by defining the placement crite-
ria in terms of the task to be satisfied and the uncertainties of the mapping agent.
Islands are distributed about the environment at areas suitable for extracting metric
information relevant to a localization task.

0



RÉSUMÉ

Cette thèse décrit une méthode pour cartographier une inconnu large échelle sta-
tique environnement en utilisant une hybrid de topologique et métrique représentation.
Une carte globale est crées à partir des cartes local pour des sous-région de l’environnement.
Chacune des ces cartes locales détiennent de l’information quantitative, utilisée pour
définir un cadrage de référence local. Elles sont référées à des iles de fiabilité puisqu’elles
fournissent de l’information métrique très précise de l’environnement. Ces iles sont
disposés par une structure topologique qui inclus les descriptions de leurs conjonc-
tions. Nous considérons que notre problème clef dans la cartographie est: où placer
les iles de fiabilité et à quel étendue elles devraient couvrir l’environnement. Ceci
est accomplie en définissant le critère de placement selon les termes des taches des
iles de fiabilité qui sont destinées à satisfère et les incertitudes des cartographes. Les
iles sont distribuées vers l’environnement dans des régions approprié pour extraire de
l’information pertinente pour une tache de localisation.
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CHAPTER 1

Introduction

This thesis presents an approach to mapping initially-unknown large scale static
environments in the context of autonomous mobile robotics. We examine the problem
of deriving a suitable representation for such environments that accounts for the
uncertainties of a real mobile robot. Due to the nature of the problem, the model
used for the representation is a dual topological-metric model. Our approach allows a
mobile robot to autonomously construct a map while taking into account its sensory
and odometric limitations.

1.1. Motivation

Most autonomous mobile robots are required to have some ability to remember
and represent their surroundings. The ability to do so extends the capabilities of
these agents, specifically when interacting with the surroundings in accordance to
certain tasks. Some preprogrammed agents are limited to a predefined environment
representation that is permanently embedded in their programming. More complex
autonomous agents can dynamically construct representations by sensory data ac-
quisition. Humans, for example, can explore unknown environments and represent
sensory information in both symbolic or topological terms as well as quantitatively [2].
On the other hand, a standard assembly line robot has a limited representation of
the environment along with a set of instructions that focus on a single task. In any
event, maps are an important component when interactions with the environment
are required. They form guidelines as to what and how commands are executed.

The actual execution of commands poses an important issue when dealing with
real mobile robots. The basic approach to perform an action is to control the mechan-
ical components of the robot while maintaining internal pose estimates. However, for
real robots, their internal estimate of their position in space is prone to large errors.
Generally, an estimate is generated by knowledge of the robot’s own internal actions,
tracking what motions have been executed. Position estimates based on this type
of internalized modelling is knows as dead reckoning. Measurements of successive
actions are compounded and any errors within the measurements are accumulated
rapidly. For example, when a wheeled robot is used, its wheels tend to slip over the
terrain while driving. This is increasingly amplified on a rough terrain (one covered
with bumps and cracks). Over large scales, this results in a significant discrepancy
between the internal position estimate and real position.

When a robot’s internal position estimate is significantly offset from the true
position, interactions with the environment can result in undesirable side-effects. To
avoid this, the position estimate must be re-calibrated before the robot can continue
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the ongoing task. For an autonomous agent, this can be accomplished by extracting
environment information and comparing it to an internal map. As such, the robot can
determine its position in the reference map (localize) and update the dead reckoning
estimate.

This leads to the conclusion that, for many tasks, a mobile robot system requires
some ability to acquire data of the surroundings, even when it is operated in a known
environment where a map is available [2]. While in certain cases it may suffice
to provide predefined instructions that are blindly executed (such as the assembly
line robot). It may not be possible to attain an acceptable level of accuracy upon
the execution of instructions, especially when dealing with large scale regions where
accumulated robot errors are amplified. Sensory feedback may be necessary to re-
calibrate and update the robot’s position within some internal map.

This map based position update raises two key issues that need to be dealt with.
Firstly, the position estimate is subject to the uncertainty of the sensing system.
Imperfect sensors pose limitations on what environment features can be sensed ac-
curately. Secondly, even with perfect sensors, attempting to match sensory and map
data at areas where the map provides insufficient constraint may drastically offset the
robot’s pose, even more so than the dead reckoning estimate. (Although there are
techniques using Kalman filters, discussed later, that use both dead reckoning and
data matching estimates to output a new estimate rather than only relying on one
of them.) Due to regions containing structural ambiguities, the utility of the internal
map is not necessarily uniform.

Another important consideration in this regard is to determine how the a priori
map was generated in the first place. Do we consider the map as unreliable data or
is it an accurate architect’s drawing that was fed into the robot? It may seem that
an architect’s drawing might be an ideal map, however, a representation such as this
does not necessarily match the types of measurements acquired by robotic sensors [2].
For consistency, the representation of the environment should be constructed using
the same sensory system and modelling method that is used during localization. The
map should be built as the robot sees the world. Furthermore, an architect’s drawing
requires a priori knowledge of the environment and is not available in unknown
areas. Therefore, it is the autonomous robot itself that must explore and map the
environment.

This illustrates some of the issues in properly acquiring maps. In particular, it is
preferable that the robot itself maps the environment as it is sensed, rather than to
read in a manually generated representation. Since the robot is not perfect, we must
develop a method such that the robot can build and use an accurate and concise
environment representation despite its uncertainties. Furthermore, the importance
of maps is outlined in terms of their utility for extracting a position estimate. The
two issues that we will deal with in using maps for localization are the uncertainties
in sensing information and the identification of regions that lead to ambiguities.

Using maps for localization is just a particular instance of their application. In
general, maps are required in order to accomplish many other actions. However, it
is difficult to produce general purpose maps since different problems require different
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environment representation so that they can be solved efficiently. Environment infor-
mation is usually modelled in context to a specific task. Thus, we put an emphasis
on differentiating between generic maps and task specific maps. This separation is
necessary since in this work we must locally characterize the utility of a map. This
allows us to build our topological-metric model as a composition of several task based
maps. Thus, when we send the robot to explore and map the environment, we must
define the configuration of the map to satisfy some goal rather than executing a
generic data collection algorithm.

In this thesis, we consider building a map with a navigation task in mind. The
representation and configuration of the map is modelled in consideration of this task,
taking into account the physical limitations of the agent utilising and constructing
the map. We note that two main limitations of a real robot are:

• odometric errors
• imperfect sensors

Not only do we build a map such that the robot can deal with these limitations later,
we must also deal with these limitations while constructing the map itself.

A common misconception is that a one can eliminate these limitations by perfect-
ing both the mechanical and the sensing systems of the robot. This tends to be an
infeasible solution since there will always be different environment structures that can
exploit some unaccounted limitation. Furthermore, this view of perfect mechanical
and sensing systems is not justified by human or animal behaviour. Instead we con-
sider adapting to such limitations by intelligently interacting with the environment,
examining where these limitations are amplified and where they are minimized.

1.2. Background

1.2.1. Topological Maps. Topological mapping is a method of qualitatively de-
scribing the environment. Standard representation for this is in the form of a graph,
providing an efficient way of symbolically connecting features in space i.e., neigh-
bourhood relations between landmarks. Representing environments in this fashion
simplifies certain computations by switching to the topological framework [3] where
a good foundation exists. Difficult problems may be dealt with by well established
search algorithms and graph traversal algorithms along with heuristics. Furthermore,
a high level environment description forms a convenient way of storing information,
consuming less storage space than a full metric description.

Current topological models of the environment include using visibility graphs to
efficiently describe free space [4, 5]. Rao, Iyengar and deSaussure [5] propose algo-
rithms to navigate an unknown polygonal environment by dynamically constructing
the visibility graph using sensors capable of detecting edges and corners of obsta-
cles. The global navigation algorithm consists of incrementally constructing the
visibility graph while following a local navigation algorithm. Other work in topo-
logical maps deal with the problems of detection and identification of nodes to form
a graph [6, 7, 8]. In that work, maps are built without metric information; only a
topological hierarchy of nodes specifying neighbourhood relations amongst features.
Each node in the map is detected by a set of non-unique signatures. Using a collection
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of these nodes, an extended signature is constructed to uniquely identify the nodes
and avoid ambiguities. Mataric [9] identifies nodes by an environment property that
is predefined by the designer along with a compass heading for additional reference.
Graph exploration strategies using markers [10] are described by traversing a graph
and placing markers at nodes. The markers identify previously visited nodes and de-
tect topological cycles. Even shape recognition problems [11] are also formulated in a
topological mapping framework. In most of these cases, once the topological represen-
tation is defined, complex computational tasks can be formulated using graph-based
methods

Although current work in topological maps is theoretically sound, most limit the
ability to metrically represent important environment structure. A purely topological
representation does not include metric information, all measurements are symbolic.
Thus, a robot will not be able to extract metric information when needed (for instance
where position re-calibration is required). It is not clear that robots can only rely on
symbolic information. Furthermore, topological maps alone are difficult to learn and
maintain, particularly when their configuration is ambiguous [3]. The problem of
defining an unambiguous graph without using a metric representation is not a trivial
one.

1.2.2. Metric Maps. In order to perform accurate positioning, Dudek and Macken-
zie [1] construct sonar-based maps where explicit models are built out of sonar reading
distribution in space. The maps are used to determine robot pose by fitting new sen-
sor data to the model. This is accomplished using a weighted voting of correction
vectors; computing vector differences between observed data points and target model
in the map. Holenstein et. al. [12] also build model based maps using ultrasonic data
coupled with a localization procedure. During localization, new sensory readings are
compared to the model map using clustering. Curran and Kyriakopoulos [13] con-
struct metric maps from range data, complementing their localization algorithm that
uses an Extended Kalman Filter to combine dead reckoning, ultrasonic and infrared
sensor data. Dudek and Zhang [14] use a vision system to model the environment
and extract positioning information. The model consists of extracting appropriate
features from images and correlating them to pose. Position calibration is attained by
training a neural network, which allows accurate interpolation through the feature-
pose space. Krotkov [15] also uses a vision system to determine pose by establishing
correspondence between observed landmarks and map landmarks. The approach
uses objects commonly found in indoor environments as landmarks (in particular,
vertically oriented parts of fixed objects such as doors, desks and wall junctions).

While these traditional metric methods can determine a pose estimate without the
need of having artificial beacons placed about the environment, they use a priori maps
that are usually built using a single coordinate frame. Although such maps provide
accurate local correspondence, accumulated errors tend to warp the representation
over larger scale areas. Data measurements taken far apart are susceptible to large
errors. Using such erroneous relations may mislead position estimation computations.
These methods lack the ability to model large scale environments without distortion,
especially in unstructured regions and rough terrains.
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To compensate for the limitation of accumulated error, there are mapping tech-
niques where semi-continuous localization is used. Leonard and Durrant-Whyte [16]
and Lu and Milios [17] employ such methods. The work provides a self consistent
description of the environment by using a Kalman Filter and registration techniques
to compare predicted and perceived data while updating a map.

These methods, like many others, can lead to two key problems if used indis-
criminately. Firstly, time and energy may be wasted in attempting to accurately
map regions irrelevant to the tasks of interest. Secondly, they may attempt to detect
landmarks and establish a reference coordinate frame in regions where the local struc-
ture is ambiguous or unreliable. Consider a long white hallway, where information
gathered is irrelevant for a localization task. If pose estimation is to be extracted in
such an area, it may result in an erroneous and misleading solution. Furthermore,
metric relations between two rooms at each end of the hallway cannot be accurately
determined, nor are they important. Thus, attempting to construct a single absolute
reference coordinate system can be problematic [18].

1.2.3. Topological-Metric Maps. It is not always beneficial to keep metric
relations over large scales (since the relation are usually erroneous). A better al-
ternative might be to provide topological or qualitative relations over such extents,
while storing metric relations over local areas. Prior work in cognitive science sug-
gests humans use a set of local reference frames topologically connected to model large
scale environment. Yeap [19] shows that a module of the Cognitive Mapping Process
can be represented with a Relative Absolute (R-A) model. The model consists of a
global representation (referred to as Relative Space Representation, or RSR) which
is qualitative composition of a sequence of local representations {S(1), S(2),...} called
Absolute Space Representations or ASRs. That is, the global map can be considered
as a set of clear and accurate patches of local information linked topologically by
fuzzy, semi-unknown areas (Figure 1).

This is easily exemplified by a person travelling down a street. While walking on
the uninteresting sidewalk, the person’s attention is often diverted from the environ-
ment (reallocated to other thoughts); the description of the environment is vague.
When reaching a point of interest or distinction, such as an intersection, the per-
son redirects his attention to the environment in order to accurately localize to the
sidewalk edge, check the street names, signals etc. At this point, the environment’s
precise structure is re-acquired. Thus, the Human cognitive map can be conceptual-
ized in both qualitative and quantitative components, the quantitative components
are the local patches of interest (ASRs), used for computational purposes, while the
global hierarchy organization of the patches is the qualitative term (RSR). Further-
more, the ASR configuration is dependent on the humans’ experiences and goals. For
example, if the person walking on the sidewalk was a painter with a goal to paint the
sidewalk, what is normally an uninteresting sidewalk becomes a part of the ASR.

Work by Nehmzow [20] suggests that foundations of robust robot navigation
are based on using landmarks, canonical paths and topological models. Examples of
animal behaviour justify this view. It was shown that animals use as set of landmarks
such as prominent trees, rocks etc., as well as reference landmarks such as sun, stars
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Figure 1. Global map composed of a set of local maps. Circles rep-
resent metrically accurate local maps. Edges represent qualitative in-
formation.

and magnetic senses to navigate. Furthermore, constant, well defined paths were
preferred even if it means longer travel distances.

Kuipers and Byun [21] develop a robot mapping and exploration strategy com-
posed of both qualitative and quantitative components. Their method considers
distinctiveness measures in terms of certain pre-defined sensory criteria that can be
maximized. The map is composed of a set of edges (distinct paths) defined by 2-D
distinctiveness measure criteria, and a set of nodes (distinct places) defined by 1-D
distinctiveness measure criteria. In their work, a robot explores an environment by
following control strategies that maximize the 2-D criteria. This forms well defined
paths about the environment and constitute the edges of the topological map. During
the exploration, the robot gathers sensory information for the metric map while also
looking for distinctive regions to include as nodes in the topological map. Once in
the neighbourhood of such a region, a hill climbing routine is executed to maximize
the 1-D distinctiveness measure criteria and reach a distinct point.

A rehearsal procedure uses geometric information gathered along the nodes to
distinguish new places from old ones. This is done by first assuming the new node is
an existing node. Then searching the graph up to a certain depth to determine if the
assumption is valid. The paper [21] , however, only indicates tentative guidelines to
construct the sensory criteria. Inappropriate sensory criteria can result in non-unique
solutions, the placement of edges and nodes may not be clearly defined. Furthermore,
metric information is gathered in global correspondence, therefore accumulated dead
reckoning error may distort true metric relations resulting in an erroneous map.

Thrun produces hybrid topological-metric maps, similar to those of Kuipers and
Byun using a subset of the Voronoi diagram computed from the metric map to define
the topological components [3]. First, the metric grid-based model of the environ-
ment is built by interpreting sensory data with an artificial neural network. This
maps the data into the probabilities of the occupancy. Bayes’ rule is used for inte-
grating multiple interpretations over time. Then, critical points that minimize local
clearance of the occupancy grid are used to obtain critical lines that partition free
space into disjoint regions. The partitioning is mapped to a graph. By combining
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both topological and metric representations in this fashion, accurate/consistent and
efficient maps are constructed for navigation. Although, the metric component itself
is subject to large scale odometry errors and the topological points are distributed
arbitrarily (they may be very numerous).

1.3. Outline

The work described in this thesis is motivated by the way humans depict the
environment as described in [19]. The model we use consists of a hybrid topological-
metric representation configured for a given task. We present this thesis as follows:
chapter 2 discusses the approach we take to build a map and the necessary modules.
In chapter 3, we discuss the topological-metric model and its configuration. Chapter 4
describes the models used to represent the nodes in the topological map and chapter 5
defines the spatial configuration of nodes. Chapter 6 gives some experimental results
and a discussion. We then expand on future work in and conclude in chapter 7.
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CHAPTER 2

Approach

Providing a concise description of large scale environments proves to be a difficult
problem in the mobile robotics field. Generally, a robot explores an environment
gathering data (at each sampling position) using a single sensory system. During the
exploration, the collected data is matched with internal odometric position measure-
ments, typically using a single coordinate frame. This describes the raw map. This
raw map is then encoded in accordance to predefined modelling specifications. Stan-
dard approaches of world modelling include fitting primitives or applying operators
to collected data. These approaches are often encountered in vision where super-
ellipsoid or other parametric models are used to represent sensory input [22, 14, 23].
Other work in data modelling includes forming models for sonar readings taking into
account the intrinsic characteristics of the sensor [24, 1, 25]. Once the raw map
is modelled, the final environment representation is stored to be used when neces-
sary. This mapping architecture has several drawbacks when dealing with real world
interactions.

Using a single sensory modality is often not adequate to provide an acceptable
description of the environment. Many situations arise where certain sensory systems
are preferred over others, where one sensory system reveals no information while
another can extract useful features. Previous work in data fusion examines how to
match up noisy data from several sensing system to form a consistent map [26, 27,
13, 28, 29]. Hackett and Shah [26] provide a survey of papers related to sensor
fusion and categorize them. They looked at a number of methods of sensor fusion
that use simple set intersections, heuristic rules, non-linear least squares fits and
maximum likely-hood estimates. Other work [29] builds an architecture for fusing
sensory systems (range finder, camera and sonar) to autonomously drive a vehicle.
The work exploits sensor modality differences to produce complementary rather than
competing perceptual processes. The ability to fuse data or to automatically select
the best sensory system at a given location is a useful asset. Incorporating this within
the mapping architecture improves the utility of the map.

A global reference frame or large scale data correlation poses several problems
when mapping a real environment. While a single metric coordinate system is a
natural way to map space and is effective over small areas, over large extents of space
it becomes problematic. In particular, over large regions of space incremental position
errors can accrue to cause large errors in the global coordinate system. Correlating
sensory data with erroneous dead reckoning measurements skews the representation.
This can occur even when beacons or landmarks are used to reduce odometry error.
Further, this type of error can cause inconsistencies in a map when updating is
performed, since updated information may be put in the wrong place. In many
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cases, it is sufficient to create local coordinate frames only in selected regions, where
odometry error must be minimized. Kuipers, for example, considers this problem in
the context of building topological maps and proposes using rehearsal procedures to
identify nodes, eliminating the effect of odometric errors [21].

In this work, we are interested in mapping using a collection of local coordinate
frames organized topologically [30]. Data collected in separate coordinate frames
can be treated as independent local maps, each corresponding to a specific sensory
system and modelling method. This allows to select the best sensing system at a
given location. Furthermore, all metric relations are consistent with the real world
since they are gathered in local areas, avoiding large scale errors. Each frame is
considered as a separate local metric map. The global hierarchal organization of
these local maps comprises the large scale map (figure 1).

Where and how should we attempt to create a local metric map so that it will
be accurate and effective? To answer this, we must first determine what each node
represents, what computational procedure will be executed at each local map. We
consider how to evaluate the local environment with respect to an arbitrary local-
ization procedure. Candidate locations can be found where local metric maps are
generated specifically for localization. Hence, the mapping criteria are based upon
the best locations suitable for localization. However, this mapping framework remains
generic in that it can be used to construct maps where other tasks are involved. Lo-
calization based nodes were chosen since they form an example of an ubiquitous and
challenging task of using maps. Furthermore, we will see later that they are essential
components for building a navigation map.

In this work, we employ two localization methods illustrating the use of two
drastically different classes of approach. We show that for each method, we can
develop techniques that predict how appropriate a given region is for localization
(and hence for metric mapping). These techniques are incorporated within a mapping
architecture to produce a hybrid of topological and metric representations.

We propose a mapping architecture as follows: A robot explores the environment
using some exploration strategy. While exploring, region selection criteria are eval-
uated for each sensor modality to determine whether the robot should build a local
map at the current location. Once the criteria are satisfied, the robot begins to gen-
erate the local map of the region using the best sensory modality. During this phase,
the robot also continues to evaluate the region to confirm its original decision. If the
criteria are continually satisfied and the local map is complete, the robot stores and
connects it within the global map. The robot then continues the next iteration.

The following lists the problems that are encountered in our mapping architecture:

• Environment exploration
• Region Selection
• Local map generation
• Topological connections

Although some of these problems are interrelated, to an extent, each one can be
treated independently. We can build separate modules to find solutions to these
problems where the complexity of the algorithms within each module can be treated

Proof version: January 18, 1999 16



Islands of Reliability for Hybrid Topological-Metric Mapping

independently. However, a compatible data model between certain modules is re-
quired. For example, the robot may be manually driven in the exploration step or it
may use an existing exploration and control strategy to autonomously drive (such as
[31, 32, 33, 34, 35]). However, there must be a compatible record of the exploration
procedures executed such that the nodes may be connected together appropriately
during the topological connection phase. Similarly, if the robot attempts to build a
local map using a certain sensing system, the region selection algorithm must under-
stand the information model used such that it can evaluate the environment properly.
The specific modelling methods used to represent the local maps are assumed to exist
in advance.

The main focus of this thesis is on region selection. The robot must autonomously
determine whether an area is appropriate for metric mapping. It will be seen that
this decision, the configuration of the map and what information flow is required
within the above listed modules is based on the task the map is intended for along
with the limitations of the agent constructing/traversing the map. The flow chart in
figure 1 shows the architecture of our system.

Proof version: January 18, 1999 17



Islands of Reliability for Hybrid Topological-Metric Mapping

Global Map
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Figure 1. A global map composed of connected local maps (left) and
a flow chart of the map construction algorithm (right). The robot
explores until the selection criteria are activated. At that point, the
robot builds a local map while intermittently confirming that the cri-
teria evaluation is still positive. Once the local map is complete, it is
linked to the hierarchy of local maps previously constructed.
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CHAPTER 3

Islands of Reliability and Topology

In this work, the environment is represented by a set of accurate local maps.
Each local map is built using its own local coordinate frame and modelling method.
In theory, any sensory system and modelling method can be used to create a local
map. Hence, it is possible to have a set of local maps where each map consists of
information gathered with a different sensory system and modelled with a different
modelling method. The local maps are assumed to be accurate i.e., they contain data
or modelled data that is in accurate correspondence to the real world. These local
maps are referred to as islands of reliability. When the robot lies in the vicinity
of an island, it has the potential to perform local computational tasks involving real
world data and stored data with accurate results. The environment is represented
by a set of these islands, where each island forms an independent computational
component of the global map.

The islands of reliability are organized in a topological structure. They constitute
nodes of a topological model of the world, i.e., a graph [21, 36, 37]. Nodes are con-
nected together by edges of the graph that include descriptions of their connectivity.
An important note in describing the connectivity is to do so without use of a priori
metric data of areas outside the nodes, otherwise it would not be consistent with our
model. We define the global map, formed by the islands of reliability, as follows:

M = {V,E}
V = {v0, v1, ..., vi}
vi = {L, T}
E = {e1, e2, ..., ei}
ei = {vivj, S, w}

(3.1)

M is the global map, it consists of a set of nodes V and a set of edges E. A node
vi corresponds to a local metric map L and the sensing/modelling type T used to
build the local map. An edge ei corresponds to two connecting nodes vivj, a set of
instructions S describing the connection and a weight w. Each edge carries a weight
that may be related to the corresponding instruction set S or to some properties
of the target node. This describes the environment by a set of clear and accurate
patches of information that are organized topologically.

Consider a robot that lies at a node. As such, the environment structure is
acquired in the form of a local map L of type T . When the robot veers away from
the node, following an edge ei, the environment is unknown until it reaches the
next node where environment structure is re-acquired. The robot must exit a node
following and edge. If it does not, it will no longer remain within the domain of the
map and may not find it’s way to the next node. This mechanism is similar to that of
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static attention focus where the robot only diverts attention to certain environment
features while ignoring others. The features are unchangeable landmarks that can be
used to perform metric operations.

By using separate local reference frames, we avoid the need to perform large-scale
error integration. Metric data is gathered only within restricted regions. At each
of these areas, data is mapped in an arbitrary way, forming independent local maps
(islands of reliability). The global map consists of a set of these local maps distributed
about the environment, selecting interesting regions for metric mapping and ignoring
others. (The robot does not wast time mapping uninteresting areas.) Ignoring the
uninteresting areas causes voids in the global map. However, providing procedures
that describe the connectivity between adjacent nodes (within the voids) eliminates
the need of an a priori metric map. These links may preclude any metric relations
between the nodes. Nevertheless, it is not necessary to maintain these relations since
over large scales they are erroneous due to accumulated error.

3.1. Task Based Distinctiveness Measure

The key issues in constructing the topological-metric representation described by
equation 3.1 are selecting where to place the nodes and how to connect them. That is,
we would like to determine where good candidate locations for local reference frames
lie and record the topological connection of these locations. Once the regions and
their topology are determined, the map is formed by both the metric data gathered
at the regions and the descriptions that relate these regions. This topological-metric
model, in the form of equation 3.1, decomposes the environment into qualitative and
quantitative components. In order to determine these components, the purpose of
the map must first be defined.

The model’s configuration is dependent on the task it facilitates. Without knowl-
edge of what goal the map is intended for, an appropriate configuration cannot be
determined. Once the task is defined, the task itself can be examined and decom-
posed into qualitative and quantitative components. The quantitative components
describe computations involving a priori metric data and real world data, while the
qualitative components are high level instructions not requiring a priori metric data
of environment features. These components define the configuration of the map. The
mapping procedure can then be accomplished in 2 steps: 1) Areas relevant to the
computational components are metrically mapped, generating the islands of relia-
bility (V in equation 3.1), 2) The islands are connected together by including high
level instructions that are defined by the qualitative components of the task (E in
equation 3.1). The connecting instructions are subject to the model’s a priori knowl-
edge constraint; they are expected to be executed without the need of a priori metric
information outside of nodes.

By defining the topological-metric configuration with relevance to a task, we form
a general framework to construct the model. This approach is necessary since when
looking for interesting landmarks to insert as nodes, we must first define what in-
teresting means [38]. We define interesting areas as areas that provide information
that satisfy the computational components of the given task. As such, the task can
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be executed by traversing the graph, applying the metric computations at the nodes
and following the instructions at the edges.

This task based approach has analogies to models of human cognition [19]. Just
as the ASR configuration is dependent on a person’s goals (section 1.2), the node and
edge configuration of our model is dependent on the robot’s goals. For example, if the
robot is to paint hallways, then the map is configured to facilitate that task. Nodes
are placed at the hallways, such that the robot can accomplish the computational
painting tasks. The hallways become areas of interest, or distinction in the map.
Edges between the nodes may describe the painting order, the nearest neighbour
hallway, the complexity of the painting area, what color to paint the next node,
etc.. This map is a painters map as perceived by the robot. It stores and relates
information according to a hallway painting task.

Different topological-metric configurations exist for different tasks, each with the
corresponding node placement and node connectivity. Ongoing work in our lab [39]
similarly produces a task-specific environment representation. In that work, the goal
at hand is to present a suitable configuration for a human observer. Therefore, the
nodal distribution is based on psychophysics, what catches a human’s attention in
the environment.

This illustrates that the topological-metric model described is a general one and
can be used for many different mapping goals. So long as the map is tagged with
a task, we can decompose the environment at areas computationally relevant to
the task and at uninteresting areas. Were those areas lie can be determined by a
distinctiveness measure. We define a general form of the distinctiveness measure as
follows:

Definition: The distinctiveness measure R for a computational task T at an
area A is measure of how well the structure at area A allow the accomplishment of
the computational task T .

Given a computational task, we can evaluate areas of the environment to predict
if the computation can be accomplished properly. Areas that show success are la-
belled with a high distinctiveness measure and areas that fail are labelled with a low
distinctiveness measure. R can be described as a laciency measure of the environment
that transforms explicit features to quantitative measures based on the usefulness of
data.

3.2. Navigation Map

The constraints for the spatial distribution of the islands of reliability (nodes)
are determined by the computational task they facilitate. In this case, the map
we intend to build is a navigation map. In order to properly and safely navigate,
we should have the ability to localize [12]. That is, when an entity traversing the
environment infers it is lost, it should have the ability to compare sensory information
with stored map data in order to localize; to determine where it lies in the a priori
map. Updating the position estimate relative to environment features provides a
safer way to navigate than by dead reckoning. This fundamental computational
task defines the islands of reliability as localization based maps. Consequently, the
computational component for the navigation task, involving a priori information
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and real world information, is localization. Hence, islands are placed at areas that
provide good localization information. Calculating the distinctiveness measure for
the localization task provides the constraints necessary for a beneficial distribution
of the islands.

It is possible to form the islands of reliability using different sensory systems and
modelling methods. Furthermore, there exists many different localization techniques,
each with their own strengths and weaknesses. Therefore, the formulation of the dis-
tinctiveness measure R depends on the actual localization scheme and island models.
However, general guidelines can be provided in order to evaluate the environment
and select distinctive regions. The general form of the distinctiveness measure R for
localization can be described as the following:

RLoc ∝
f(I,∆I)(1 +

∑
j λjQj)

(1 +
∑

j λj)
(3.2)

where I represents the reliability and strength of the response of a sensing technique
and ∆I represents the amount of spatial change of that response (which may be
expressed as spatial constraint). f() is some function monotonically proportional to
both I and ∆I. Qj is a quality measure specific to the properties of the localization
technique and λj is a corresponding weight. That is, to successfully perform localiza-
tion, there must be sufficient reliable information I subject to spatial variation ∆I
along all degrees of freedom. The addition of ad-hoc quality measures Qj , specific
to the technique, can improve region selection. However, most of the emphasis is on
searching for areas with enough reliable information subject to spatial change (low
structural ambiguity). A good choice for f() is one of the form I ∗∆I, taken along
the dimension that results in the minimum value. As such, R is large if both I and
∆I are large in all degrees of freedom.

Note that it is not suffice to evaluate R using a single one of these two elements, I
or ∆I, both are necessary for localization. For example, if the evaluation is based only
on I, areas with reliable features in the form of a pattern, say a fence or wallpaper,
would show a high measure. However, localization at those areas is ambiguous (∆I
is zero at the corresponding scale) and a node at those positions would not satisfy
the localization task. Similarly, if the evaluation was based only on ∆I, then features
with good spatial variance may show large ∆I, but the features themselves may not
be reliable sources of information. Therefore, we combine the strength of features
along with their spatial variance. Islands placed at areas with a high distinctiveness
measure render local maps with enough relevant features for accurate positioning
(avoids placing them in ambiguous areas such as a long white hallway). An important
note about these two elements is that they reflect the two discussed limitations of a
real robot; uncertainty in sensing and positioning.

To complete the topological-metric model, it is not suffice to present the environ-
ment only by local maps. As mentioned earlier, the local maps form nodes of the
topological model that are linked together by edges. The edges are an important
component, providing instruction to follow between adjacent nodes. The types of
instructions required to accomplish our task are navigation ones. The map should
provide the ability to navigate from one island to another. Hence, the edges must
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include descriptions that allow reliable navigation between connecting nodes, without
use of an a priori metric map. In this regard, the edge of a source node to a target
node entail a set of control strategies that navigate the robot from a given position
in the source frame to an estimated position in the target frame [21]. The idea of
using such canonical paths is justified by animal behaviour [20]. These instructions
may navigate a robot from one node to another, but exactly where in the node the
robot may end up is undetermined.

Due to accumulated error, accurate robot positioning is not available when execut-
ing an edge’s navigation instructions. We cannot assume that the robot would follow
the instruction exactly, without errors. Furthermore, in accordance with our model,
no environment data is gathered between nodes and no reference frame is given. It is
not possible for computational position updates using environment features. All po-
sition estimates are based on internal measurements, such as dead reckoning. Thus,
any attempt to extract a position estimate is subject to a degradation of accuracy
as the robot diverts further away from the node. However, an error bound can be
estimated among neighbouring nodes such that the robot’s position can be bounded
within an error radius. The robot can blindly reach somewhere inside a node (within
a bound). Once the robot reaches the node, its position can be calculated more
accurately using the corresponding computational metric map dedicated for such a
task.

This further relates the node and link distribution to the dead reckoning error.
To confidently navigate from node to node, the links should not be too long. The
error radius should remain small, coinciding with the connecting island of reliability.
The robot must avoid getting too lost in a link where it cannot find its way to the
next island. When required, position calibration can always be done by reaching the
connecting islands. Hence, the size of the islands are proportional to the accumulated
error. Furthermore, we enforce a lower bound on the error radius. The lower bound
prevents nodes from being unnecessarily close to each other when the qualitative
control strategies suffice to navigate. Attempts to build nodes are only invoked once
the robot infers its has crossed the lower error bound.

Assuming consistency of dead reckoning error for an exploring robot, we can define
the node placement criteria as follows:

ε > Emin
and

max(Ri
Ti

) > Emin
ε

(3.3)

where ε is the estimated accumulated error, Emin is the predefined lower error bound,
Ri is the distinctiveness measure for model type i and Ti is the predefined acceptable
distinctiveness measure threshold for sensing type i. When the exploring robot infers
that it is lost (once the estimated accumulated error has crossed the lower bound
error) the robot attempts to build an island of reliability using the available sensors.
If the best distinctiveness measure Ri normalized by the corresponding acceptance
threshold Ti is large enough, the island is inserted to the map. Otherwise, the robot
continues exploring, searching for a good area. Note that the more lost the robot is
the more willing it is to accept a potential island.
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The size of the region mapped is related to the error the robot accumulated:

vradius > ε (3.4)

However, the islands should not grow too large such that they remain locally consis-
tent.

In summary, the navigation task is decomposed into qualitative and quantitative
(computational) components. The qualitative components consist of navigation in-
structions that inform the robot where to go, what path to follow. The quantitative
components are the islands of reliability that allow the robot to reposition itself.
The environment is mapped according to these components to form the topological-
metric model. The configuration is constrained by the distinctiveness measure for
localization and the accumulated error.
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CHAPTER 4

Local Map Perception

This section discusses the methods used for representing the islands of reliabil-
ity. The methods rely on dead reckoning information for pose-data correspondence,
therefore they are only locally consistent and hence are referred to as local maps. The
modelling techniques are developed in order to satisfy the corresponding localization
techniques which will also be discussed here. For a more complete description refer
to [1] and [14]. We will briefly examine some of the details of these techniques since
they describe the local map perception and the distinctiveness measure correspond
to their encoding.

4.1. Sonar Based Environmental Model

In order to perform localization, a model is constructed of how sensory data
varies as a function of the robot’s position. The model resembles the layout of the
environment but is not a veridical map describing the layout of real objects. That
is, it describes the range sensor inputs as opposed to actual 2-D or 3-D occupancy.
The model is built by fitting primitives to sensory data. Line segment primitives are
considered efficient in modelling a collection of observations of the environment. Their
utility is appropriate given the characteristics of simple threshold-based sonar sensing
where even a small structure will produce collinear measurements. (Although, RCD
modelling may form a better representation but are computationally intense when
fitting to data.)

The line fitting method is done in several steps. First, a spatial clustering algo-
rithm is employed to determine groups of neighbouring points that correspond to a
potential line segment. Then, by using a line fitting procedure, a fitted line segment
is used to model each cluster. Finally, a split and merge routine is applied to further
segment and merge the lines at each cluster for a more proper fit. The final result is
a map composed out of line segments that may be used for localization. A sample
map is shown in figure 1.

4.2. Sonar Based Pose estimation

The pose estimation problem is formulated as an optimization problem in terms of
the extent the map explains observed measurements. There are two phases involved
in position calibration: 1) Classification of Data Points and 2) Weighted Voting of
Correction Vectors. In the first phase, each measurement is associated to a line
segment in the model using a clustering algorithm. This allows to determine the
Correction Vector relative to the line segment in the second phase. An important note
is that only the perpendicular error of points are used to determine their Correction
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Figure 1. An environment modelled by line segment fits [1]. A robot
explored the environment, following the dotted path, to build the line
segment model.

Vector. It is a one-dimensional position constraint provided by each measurement
along the normal of the associated line segment. This lack of constraint manifests
itself as what is called the long hallway effect, where observation of the position of a
line segment gives only information along its normal. Multiple measurements from
non-parallel line segments are essential to constrain the problem in both dimensions.
The second phase is that of a non-uniform weighting of Correction Vectors. Each
point is given a weight in relation to the distance it lies from the associated line
segment. The weighting factor is defined as a sigmoid function:

w(d) = 1−
dm

dm + cm
(4.5)

Where d is the distance from the line segment, m and c are constants. Points near
their line segment are weighted more than those that are far since far ones are prob-
ably outliers. The overall Correction Vector V is calculated as:

V =

∑
iw(‖vi‖)vi∑
iw(‖vi‖)

(4.6)

where vi is the perpendicular error vector for point i. The position estimate is resolved
after several iterations of translating about the Correction Vector. Ideally, the mea-
surements would be distributed equally in association to lines of both dimensions.
This would allow a position estimate in both dimensions with similar confidence.
Figure 2 illustrates the localization scheme.
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Figure 2. Localization by iterating about the Correction Vector con-
sisting of a weighted sum of the error vectors.

4.3. Image Based Environmental Modelling

Building a description of the environment’s structures using vision is known to be
a difficult problem. Generally, parameter or CAD type modelling of the environment
from a set of images entails solving the inverse problem defined by the surface ge-
ometry and reflectance. The method considered here differs in that is uses images in
creating its own implicit model optimized for localization. It avoids the difficult prob-
lems of computing a 3D model and forms a perception of structures by statistically
encoding image features as a function of pose.

For a camera mounted on a mobile robot, the dependency of the image and the
pose q = (x, y) is related by some function:

i = Φ(q) (4.7)

where i is an N-dimensional vector of pixels. In order to solve the problem of com-
puting the camera position we must invert the function:

q = Φ−1(i) (4.8)

However, computing the inverse directly on images is computationally impractical.
Φ in itself is not necessarily one-to-one and an inverse may not exist. To produce a
computationally tractable solution the images are modelled by a set of M features:

G(i) = {g1(i), g2(i), ..., gM(i)} (4.9)

This produces a lower dimensional space that relates the features and the pose with
a mapping:

f(q) = G(i) (4.10)

At each sampling position, the robot takes a snapshot of the environment. Fea-
tures are then extracted and correlated with the odometric readings, encoding the
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environment representation in terms of a feature space. Given a new image, it is now
computationally tractable to determine its features G(inew) and interpolate through
the a priori feature space to extract a pose estimate. Thus, lowering the dimension-
ality of the problem allows us to solve it more efficiently.

Measurement features were derived from statistical properties of edge images (us-
ing the Canny-Deriche operator) to minimize the effects of illumination variation.
The perceptual structure associated with a position in space consists of the following
class of measurements:

• First and second moments of the edge distributions
• Mean edge orientation
• Densities of parallel lines at four orientations

These features compromise the first central moments of the edge distribution in space
and are the natural choices for efficient encoding.

4.4. Vision Based Pose Estimation

Since it is inefficient to sample the environment at every possible location and
sensory data is often noisy, it is important to have the ability of robustly interpolating
within the feature space. For local areas this can be done by a linear interpolator:

q =
| G(i)−G(i1) | (q2 − q1)

| G(i2)−G(i1) |
+ q1 (4.11)

Empirical results showed that the linear interpolator is only applicable to very
restricted regions. In large regions or more complex areas, the linear interpolator fails.
In practice, a three layer back propagation neural network is used. The network
takes training examples and assigns appropriate weights to each network node by
minimizing training set errors. When a new feature set is used as input to the
network, the pose can be revealed by taking a linear combination of the output units.

Generally, if the feature space is smooth, the interpolator would output good
results. On the other hand, if the feature space consisted of many gaps and discon-
tinuities, interpolation between these gaps may produce inaccurate results. We have
a trade off between practical sampling resolution versus accuracy of the interpolator.
The sampling demand is determined by the complexity of the environment, choosing
a sampling resolution for the most complex environment (worst case scenario) can
be impractical. Although, environment structure may also amplify discontinuities no
matter the sampling resolution.
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CHAPTER 5

Local Map Distinctiveness Measure Criteria

When human observers are exploring new territories, their notion of the environ-
ment can be described by a set of distinct landmarks. Once they veer off from the
last known landmark, they set out to find the next distinct feature to be recorded
in the cognitive map. What is distinct to human observers is associated with their
goals and perception. Similarly, we seek out the best (most distinct) parts of the
environment corresponding to the robot’s perception (which also corresponds to a
task). The task at hand is (x,y) position estimation and the perception models con-
sidered are the sonar and vision systems (described in the previous section). The
distinctiveness measure is derived accordingly. We derive methods to predict where
the robot can extract pose information for the (x,y) coordinates based on the general
guidelines of equation 3.2. The robot orientation Θ is not considered since only in
rare cases (the presence of circular symmetry) will the robot be able to localize its
(x,y) coordinates but not the rotation Θ. That is, in most cases, the distinctiveness
measure for localization over (x,y) is the same as that for localization over (x,y,Θ).

5.1. Measure Criteria for the Sonar System

A good distinctiveness measure for the sonar based localization and modelling
technique is one that assigns high values at areas well constrained (∆I) by near
line segments of significant length (I). That is, a local map with enough constraining
information reflects a region where the robot can localize, while near line segments are
more reliable than distant ones, providing more dense sensory feedback. Furthermore,
it is desirable that the line model shows similar orthogonal constraints along both
degrees of freedom. This results in equal localization confidence along the dimensions,
keeping the error bound round. In the extreme case, a map constituting of parallel
lines would result in ambiguities along one dimension and will not provide enough
information to adapt the full potential of the localization method.

For the line model method, the distinctiveness measure R at a point p = (x, y)
over a square neighbourhood (2ε)2 can be calculated as:

R(p, ε) = N(p, ε)

∫ y+ε

y−ε

∫ x+ε

x−ε

f(p)(1 +Q(p))

2
δxδy (5.12)

where,

f(p) = Min[f⊥(p), f‖(p)] (5.13)
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N(p, ε) =
1∫ y+ε

y−ε

∫ x+ε

x−ε δxδy
(5.14)

Q is a quality measure of the localization scheme. The functions f‖ and f⊥ depict
the amount of reliable information I and spatial change of information ∆I along two
orthogonal directions. The smaller of the two represents f() in equation 3.2, choosing
the weaker dimension as a worst case scenario. We integrate over a rectangular area
defined by ε and normalize.

The next and most important step is to define f‖, f⊥ and Q. For these, we must
first derive I and ∆I in terms of the line model. In general cases, the reliability
of information I is proportional to the distance of a sensed signal. Distant lines
provide sparse and less reliable information due to a weaker, degraded sensory signal.
Furthermore, a line segment provides strong constraining information ∆I only along
its normal. That is, an orthogonal position change with respect to the line guarantees
a sensory measurement change. We define ∆I to be the orthogonal component of a
sensed line segment.

For each line segment, we integrate the strength I and the orthogonal constraint
∆I to determine the vector influence along the normal to the line. We compute the
vector influence for each visible line segment (in the form of I ∗∆I) by:

Vi(p) = N̂i

∫
Θ

W (ppi) ∗ (N̂i • p̂pi)δΘ (5.15)

V i is the orthogonal vector influence for line segment i seen by point p and Ni is the
unit normal of line segment i. Θ sweeps the visible viewing directions from the point
to the line segment. Only angles within a reflectance threshold are taken in to account
in order to simulate specular reflection of real range signals. pi is the intersection
point of line segment i and a line emitted from point p along the viewing direction Θ.
The constraining relation for Vi is in essence a projection of the vectors formed from
point p to line segment points onto the normal of the line segment (shown in figure
1). W (..) expresses the reduced probability of observing an object as a function of
distance. W is described by an exponential decay function:

W (v) = e−k‖v‖ (5.16)

k is the decay constant that is determined by the range of sensor confidence.
Once the vector influence is computed for all visible line segments, we choose a

reference vector and determine the total number of components parallel and perpen-
dicular to it. These components determine the magnitude of constraint and reliability
along two orthogonal directions and are calculated as:

f‖(p) =
∑
i lines

| V̂ref(p) •Vi(p) | (5.17)

f⊥(p) =
∑
i lines

‖V̂ref(p)×Vi(p)‖ (5.18)

A good choice for the reference vector is that of largest magnitude, since it de-
termines the dominating constraint. A poor choice may lead to inaccurate results.
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Normal

Line Segment

PPi

Pi

P

θ

Robot

Figure 1. Sweep over each line segment to determine the overall con-
straint and reliability. Scanning resolution can be continuous or match
that of the real sensors.

Consider a long line segment of slope 1 relative to a basis composed of a minute
line segment. The only constraint parallel to the long line segment is the projection
from the minute line segment. However, the computed parallel and perpendicular
constraints are almost equal (since the slope is 1) resulting in a high distinctiveness
measure. This is undesirable and to avoid it the dominating vector should always be
the reference basis.

The functions f⊥ and f‖ describe the total strength and constraint of all the
line segments visible from point p. However, the numerical value of these functions
does not provide a decision threshold. To distinguish good valued from bad ones, we
re-map fi (i being ‖ or ⊥) using a sigmoid filter as:

fi =
fmi

cm + fmi
(5.19)

The cutoff threshold c and the decay rate m can be found empirically. This allows
us to empirically control the meaning of the numerical results. It provides a measure
ranging from 0-1 where values above .5 can be considered acceptable for localization.

The extra quality measure is implemented by evaluating the equality of the above
terms along both directions. This determines whether the localization confidence is
equal along the two degrees of freedom. We compute a quality measure Q as:

Q(p) =

{
f⊥(p)
f‖(p)

if f‖ > f⊥
f‖(p)

f⊥(p)
otherwise

(5.20)

Q ranges from 0 to 1 where 1 represents equal orthonormal constraints and 0 repre-
sents that only one direction forms a constraint.
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5.2. Measure Criteria for the Vision System

In terms of the vision based localization technique, good regions are denoted by 3
properties of the feature space: a non-zero, non-constant and smooth feature space.
Feature values that are low or close to zero are indistinguishable to noise and don’t
provide consistent reliability due to lack of environment information. (indicated
by a small value of I in equation 3.2). A flat feature space would result in not
enough spatial variance of features, leading to positioning ambiguities (indicated by
a small value of ∆I in equation 3.2). A highly discontinuous space would reduce the
interpolatory accuracy for position estimation due to lack of sampling information.
Furthermore, equality of localization confidence along both degrees of freedom is
desirable to keep the error bound circular.

For the vision system, the distinctiveness measure R at point p = (x, y) about a
viewing window (2ε)2 can be calculated as:

R(p, ε) = N(p, ε)

∫ y+ε

y−ε

∫ x+ε

x−ε

f(p)(1 +Q1(p) +Q2(p))

3
δxδy (5.21)

where,

f(p) = Min(fx(p), fy(p)) (5.22)

and,

N(p, ε) =
1∫ y+ε

y−ε

∫ x+ε

x−ε

(5.23)

Q1 is the quality measure for equal orthogonal constraints, Q2 is the smoothness of
the feature space and f(p) represents I ∗∆I of equation 3.2.

For a feature i in the normalized feature space G, we can determine f at a point
p along a direction j (j being x or y) as:

fj,i(p) =| Gi(p) ∗
δGi(p)

δj
| (5.24)

Figures 2(a) to 2(d) show some sample scenes and their feature values. It can be seen
that the simple and noisy scene has many locations with small feature values that
do not vary much. The details about the features used can be found in the work by
Dudek and Zhang [14].

To properly evaluate the value of distinctiveness measure, for all the features we
average the values fj,i to form fj and map the result through a filter. We then need
to reduce the weight of areas with low slopes and weak features while accepting larger
slopes and stronger features. A sigmoid is used for this mapping:

fj =
fmj

cm + fmj
(5.25)

We compute Q1(p) as:

Q1(p) =

{
fx(p)
fy(p)

if fy(p) > fx(p)
fy(p)
fx(p)

otherwise
(5.26)
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where a result of 0 implies unequal constraints and a result of 1 shows uniform
constraint. We then derive the feature space smoothness measure as:

Q2(p) =| ∇2G(p) | (5.27)

Further, a function is used to map Q2. This would increase weight to areas with low
values of ∇2G (smooth ones) and reduce areas with large value of∇2G (discontinuous
ones). Again the sigmoid in another form can be used:

Q2 = 1−
Qm

2

cm +Qm
2

(5.28)

All parameters are determined empirically (see appendix).
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(a)

(b)

(c)

(d)

Figure 2. 2(a) shows the features of the sample image and 2(b) shows
the features of an image taken at a slight offset using the same scene.
2(c) shows the features of another sample image (less visually interest-
ing than the first) and 2(d) is the same scene taken at a small offset. It
can be seen how the feature values are low and do not vary for the less
interesting scene while the more interesting scene shows good features
with significant variation.
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CHAPTER 6

Results and Discussion

In this chapter, we evaluate the the distinctiveness criteria by comparing them to
the localization error. A good distinctiveness measure should assign large values at
areas with low error and low values at high error locations. Comparing the position
estimate confidence with the distinctiveness measure allows us to confirm or reject
our ability to predict where important data lies and where data should not be trusted.
We further proceed in discussing the results of building the topological-metric map
using the mapping criteria (equation 3.3).

6.1. Sonar System

For the sonar method, a line segment model was manually constructed providing
the simulated environment shown in figure 2. The distinctiveness measure for this
sample environment is plotted in figure 3(a). These results were obtained as follows:
First, at each sampling point in the map, complex simulated sonar readings were
extracted using a robot controller/simulator developed in our labs. Then, the dis-
tinctiveness measure operator (equation 5.12) was applied on the data to output the
plot. We can see how the long hallways show low measures while regions that are well
constrained along both dimensions (such as intersections and bounding areas) show
high measures. Furthermore, areas distant from line segments are of lower measure
due to the exponential decay (the decay constant k was set to 1/200 cm to simulate
a large scale region). The sigmoid constants were empirically set using a minimum
acceptable measure threshold as follows: an area with at least one line segment with
minimum length of 50cm seen no further than 1/2kcm along it’s mid-line is consid-
ered acceptable. If there are no other visible lines and the seen line segment is smaller
and further away, the measure will lie below the sigmoid cutoff. The neighbouring
area ε of the operator was set to zero (such that measures consist of only a single
point rather than an accumulation of a neighbourhood) and the reflectance threshold
set to 30◦.

The next step is to determine whether the robot can localize itself at the locations
associated with a large value of the distinctiveness measure. Figure 3(b) shows a plot
of the localization confidence for the sample map. The data for this plot was gener-
ated using the same robot controller/simulator and the sonar localization/modelling
software. At each sampling position, simulated sonar data was collected, thereafter
employing a position offset by a random δ ranging 10-15 cm along four directions.
The localization technique was then executed to output a position estimate. The
error was calculated as the difference between the initial position to the estimated
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one, taking the average of the errors from the four directions. Confidence is sim-
ply c − error where c is some constant. Similar to the value the exponential decay
constant was set to in the above, the sonar confidence range was set 200 cm for con-
sistency of scale (k=200). The reflectance threshold for the simulated sonar data was
also similar to the previously set one.

When comparing the two plots (3(a) and 3(b)), we can seen how the confidence
plot is consistent with the distinctiveness measure. Regions where the distinctiveness
measure was high tends to be those with high localization confidence. Likewise,
Valleys where there was insufficient constraints and the localization confidence is
low are also those where the distinctiveness measure returns low values. When the
robot was far from the walls, simulated sonar data was of lower accuracy causing the
localization confidence to drop, similar to the distinctiveness measure. This match
between the plots confirms our ability to appropriately evaluate the environment in
relation to the sonar based localization method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

residual

N

Figure 1. Residual plot for figure 3(a) and 3(b), there are N data
points with differences greater than residual.

Figure 1 shows the residual plot between the distinctiveness measure and local-
ization confidence. The plot displays the accumulated difference between both data
sets normalized to one and provides a quantitative comparison between the plots. It
shows how many data points have differences greater than the residual axis i.e., the
N axis is the number of data points that have a difference of at least the residual
axis value. It can be seen that there are not many data points with residual greater
than 0.5 (about 20 % of the data).

6.2. Vision System

In order to test the distinctiveness measure for the vision system, a real sample
environment was constructed. It consisted of 3 types of regions: one with substantial
constraints (visually interesting), one with limited constraints (little visual interest)
and one with no constraints (not visually interesting), show in figure 4(a). Snapshots
of the scene were generated using a pan and tilt camera. The experiment was set
up to capture an image, extract the features and pan the camera by .5◦ for the next
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Figure 2. A simulated environment with hallways, intersections and
bounding regions.

iteration. An 18-D feature space was built using 17 features corresponding to each
pan position. The total scene extent had a viewing field of 30◦ at a distance of 1m.

The distinctiveness measure (equation 5.21) was employed at each point using a
window size ε of 10◦. Every axis (for a total of 18, 16 features, x and y) of the feature
space were normalized to 1 within each window to allow consistent thresholding. The
sigmoid function (equation 5.25 parameters were empirically set such that the cutoff
c was 1/

√
2 and rate m was 3 for a slow transition (cubic sigmoid). That is, features

with intensity (I) of 1 and a variation (∆I) slope greater than 1
√

2 are acceptable.
For the other sigmoid (equation ?? for the smoothness constraint) the cutoff c was set
to .17 (a maximum of 10◦ slope change) and the cutoff rate m was 3 (cubic sigmoid).
The distinctiveness measure for this configuration is shown in figure 4(b). As we
move from left to right, it can be seen how the measure is large at the beginning,
where the image is visually complex. Then it immediately begins to drop due to the
operator capturing the plain white area. The distinctiveness measure remains low
within this region and begins to rise when the features at the end are within viewing
range.

Although the distinctiveness measure seems to describe what is visually interest-
ing to us as observers, we again must determine if it predicts whether the robot can
localize at those areas. Thus, we compute the localization errors by examining the
training confidence of the feature space interpolator (the neural network). Where
the training confidence is low, localization confidence is also low due to the inability
to properly interpolate. If the training confidence is high then so is the localization
confidence. For this, we used the previously collected data from each window to
separately train the three layer back propagation neural network interpolator. The
neural network consisted of 17 input units, for the features, 6 hidden units and 5 out-
put units for the pose. (The pose is decomposed into 5 components for the output
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Figure 3. Sonar based distinctiveness measure 3(a) and localization
confidence 3(b) for the simulated environment 2.

units that can later be linearly combined to re-compose the pose.) Training was done
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using a neural network software package Xerion that was developed at University of
Toronto. The training confidence for each window is shown in figure 4(c).

The distinctiveness measure and training confidence show similarities over the
sample scene. The distinctiveness measure is high at areas that were interpreted
interesting and low at non-interesting areas. The training confidence shows a similar
pattern. This validates our ability to predict where areas of the environment provide
enough localization information for the vision system. A plot of the residual difference
between the localization confidence and the distinctiveness measure is shown in figure
5.

One significant difference for both methods is where the localization confidence
exhibits sharp drops while the distinctiveness measure undergoes smooth decays.
This is due to the localization techniques that are only accurate within a region
of convergence. Once the robot moves beyond that region the solution becomes
completely incorrect; there is a narrow mid-ground. The analytic distinctiveness
measure, on the other hand, is a smooth continuous function. This attest some of
the variational inconsistencies between the plots.

Keeping this in mind, a mapping threshold can be determined by the intersection
point of the distinctiveness measure and the confidence cutoff region. Areas where
the measure is less than the threshold are not reliable and should not be mapped but
areas displaying larger measures are good candidates. Furthermore, the empirical
parameters can be determined more accurately by forming an optimization criterion
to minimizing the residual plot. Searching the parameter space to minimize the
difference between distinctiveness measure and localization confidence can improve
results.

6.3. Mapping with Line Segment Model

The goal of this experiment is to explore an environment and follow the mapping
criteria (equation 3.3) to build a hybrid topological-metric representation (equation
3.1). A large scale simulated environment was built using the robot controller and
simulator. A simulated robot explored this environment using a pre-defined set of
control strategies extracted from a simple hall following procedure [35]. (Although,
more complex and autonomous exploration strategies may be used.) The robot was
initiated at a starting node and followed the control strategies, while keeping an es-
timated (x,y) accumulated error. Once the robot inferred it was lost, it attempted
to build a line segment model: i.e., an island of reliability using the sonar system.
For simplicity, we did not include the vision system for this experiment. Each island
was built using a simple node building routine. It consisted of collecting sonar data
at four corners of a region within the minimum visibility range (closest object seen)
while attempting to constrain the size of the node to cover a square area of 4(ε+ δ)2

We only map within the visibility range since the mapping algorithm does not include
collision avoidance. (More advanced node building routines can easily be incorpo-
rated to the structure.) While collecting data, the robot intermittently calculates
the distinctiveness measure to validate the region. If the region is acceptable, the
new node is added to the map, including a link to the previous node and the control
strategies that were followed.
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Figure 6(a) shows the simulated environment and the exploration path and figure
6(b) shows the hybrid topological-metric map. As shown, the robot built nodes
at well constrained areas that provide good localization information. Areas such
as hallways were not included in the map since they lack in information along one
degree of freedom. Note that the robot almost missed an intersection at the top of
the map (the last node). This is due to the specular properties of sonar data that
were incorporated to the measure and is consistent with localization confidence.

Figure 6(b) shows the line segment models within the nodes of the hybrid topological-
metric model. Each node represents a separate local map with its own co-ordinate
system, no global reference is used. The spatial arrangement of nodes in the figure
are only set for clarity. Links between the nodes in the figure describe the topology
and include a compilation of the control strategies used in the exploration step. The
exploratory control strategies were compiled in the appropriate reference frame to
form the navigation instructions used between neighbouring nodes. They are listed
in table 1. Note that if the robot is exploring a cyclical environment, a procedure
such as that in [21] may be used to identify new nodes from old ones.

Link Control Strategies

0 Fwrd 660
1 Fwrd 78, Rot 90, Fwrd 360
2 Rot 190, Fwrd 682
3 Rot 190, Fwrd 40, Rot -100, Fwrd 340
4 Rot 90, Fwrd 20, Rot -90, Fwrd 650

Table 1. Control strategies for inter-node navigation

Each control strategy is initiated at coordinates (x, y,Θ) = (0, 0, 0) in the corre-
sponding reference frame. Therefore, to navigate from node to node, the robot must
first localize at (0, 0, 0) then follow the control instructions. These control strategies
form a simplistic way to navigate the environment. Although they are not purely
qualitative controls, they do form instructions that navigate the robot from one node
to the next without the need of a priori data gathered at the links. Furthermore,
they can be replaced by purely qualitative controls strategies such as Follow wall to
next node (or such as those listed in [21]). Here, sensory criteria can be defined to
execute these purely qualitative instructions. For example, the robot can execute a
wall following procedure, intermittently comparing sensory data and node data to
see if it has reached the next node.

Since rotational error was not included in this simulation, all coordinate frames
were parallel. If rotational error is included, then each node would be slightly rotated,
the control strategies would vary accordingly and the accumulated error would grow
more rapidly. However, the distinctiveness measure used did not include a criterion
for rotational degree of freedom. On the rare occasions, it is possible to choose a
bad area for angle estimation using the current distinctiveness measure (such as the
centre of a round room). Figurer 7(a) and 7(b) shows a topological map of a real
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environment. The robot was set to extract the first 3 nodes of the hallways near
our laboratory. It is easy to see how the robot only recorded local areas that are
well constrained and ignored the long hallways. The links are bidirectional since the
control strategies can be inverted. Again they originate at (x, y,Θ) = (0, 0, 0) in each
local reference frame. Table 2 shows the links.

Link Control Strategies

0 Fwrd 125, Rot 270, Fwrd 652
1 Rot 270, Fwrd 28, Rot 90, Fwrd 832

Table 2. Control strategies for inter-node navigation
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Figure 4. Vision based distinctiveness measure 4(b) and localization
confidence 4(c) for a real environment 4(a) with real object, room di-
vider (shading is difficult to observe) and background clutter.
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Figure 5. Residual plot for figure 4(b) and 4(c), there are N data
points with differences greater than residual.
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(a)

(b)

Figure 6. Simulated map and the exploration path 6(a) and the
topological-metric map 6(b). Large dots in the exploration path show
where the robot attempted to place an island but immediately failed
due to low measure. The full star like paths show where the robot had
successfully completed to build an island. The partial star like paths
show an attempt that partially built a node but was dismissed due to
later discovery of low distinctiveness measure.
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(a)

(b)

Figure 7. A map of a real environment 7(a) and the topological-
metric map 7(b). The dots in the topological map show the origin of
the local frame.
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CHAPTER 7

Conclusion

This thesis describes an important step in the creation of large scale maps that
combine both metric and topological knowledge. The main idea was to build a
global map by connecting several local metric maps together. We formed a mapping
criteria that configured the distribution and connectivity of the local metric maps.
Specifically, we describe how the locations of individual localization regions or islands
of reliability can be selected. Our general concept is illustrated using two specific yet
very different types of localization procedure: a sonar system and a vision system.
The distinctiveness measure showed consistency with localization confidence, making
it a good measure of the utility of environment information for localization. We
further examined the mapping criteria using the sonar system with a simulated and
a real environment. The results showed that the nodes were connected appropriately
and placed at areas where their utility is established. The thesis was put in context
to high level mapping goals that require the framework of environment evaluation.

7.1. Future Work

The two sensory and localization systems described in this thesis form an instance
of our generic mapping scheme. To improve robustness, other localization methods
can be incorporated into the architecture. This would allow a robot to select between
many different schemes when building a local island of reliability (a node). Hence,
it is possible that an area, where the two (vision/sonar) sensing methods show a low
distinctiveness measure, is included in the map due to a high distinctiveness measure
of another method. Other localization methods may use information in a better way
at that region, even when the same sensory system is used. This opens a broad range
of work in developing evaluation criteria and formulating the distinctiveness measure
for localization schemes. Each localization scheme can be analysed to formulate the
distinctiveness measure as described in this thesis.

Further work can include optimizing the distinctiveness measure by variation of
parameters within its formulation to minimize the differences between the predicted
measure and the actual localization errors. Evaluating different functional forms
of combining both I and ∆I may also improve the measure. The distinctiveness
measure operator scale also remains an open problem. An advantage in extending
this work is that each localization method can be analysed and optimized separately
to be included as an extra component in the architecture.

The mapping architecture itself opens room for much expansion. One main issue
is to derive a suitable method for identifying new nodes from old ones. This can be
considered as a global localization task within the topological representation. Issues
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to be considered are problems of detecting visited nodes from new ones, geometrically
identical but separate nodes and partially intersecting nodes.

More work can expand on the node building mechanism. In this thesis, we simply
collected data from four corners defined by ε, unless an obstacle was in the way i.e.,
map within the minimum visibility. This does not guarantee that the size of the
nodes will be large enough so that the robot can reach them. Obstacles may obstruct
the node building routine and limit the node size. Thus, a more intelligent routine
can be developed to map around obstacles and assure metric mapping of a given size.

The use of more sophisticated exploration strategies can also improve the mapping
procedure. An exploration strategy directed by the distinctiveness measure can be
developed to explore the environment specifically looking for good regions. A hill
climbing technique could be incorporated within the exploration strategy such that
the mapping criteria will not be threshold based but will search for neighbourhood
optimality of distinctive regions. Future work on navigation can help develop an
optimal navigation procedure coupled to our environment representation. With our
model, the navigation problem now falls within the topological framework where we
can use graph search algorithms.

The topological-metric environment representation described in this thesis pro-
vides a framework for developing maps for many purposes. Therefore, it is possible
to investigate different mapping goals and develop a distinctiveness measure and the
associated algorithm for each. The general approach is to decompose a task into
components requiring metric data. Then, to define the node placement criteria by
deriving the distinctiveness measure most appropriate for the computational task.
The robot can then follow these criteria to construct the nodes and connect them
appropriately. It is also possible to investigate a method for combining several task-
based maps. For example, combining a navigation map and a painter’s map (figure 1)
can provide a complete map where the robot can navigate and paint an environment.
The problem then becomes how to match and connect the two maps together.
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Figure 1. An example of 2 task-based maps. A navigation map con-
sisting of connected localization maps and a painter map consisting of
connected surface maps (describing the surfaces to be painted). The
merged map allows the robot to navigate and paint the environment.
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APPENDIX A

Implementation

The architecture of the map building routine consisted of several components run-
ning in parallel. At the top level lies the main map building module which consists
of computing the distinctiveness measure, building and connecting the nodes follow-
ing our mapping criteria. The main mapping module communicates with five other
processes:

• robot controller/simulator,
• robot,
• exploration module,
• vision system server,
• sonar system server.

It directly communicates with a robot controller/simulator developed in our labs,
which opens a connection to a real or simulated robot. It also connects to an explo-
ration module and the two model based mapping modules (sonar and vision system
packages converted to servers) which also connect to the robot controller/simulator.
Figure 1 shows the flow chart for these modules and Figure 2 shows the modules
running.

Server

Exploration

Module

Mapping 

Vision System

Robot

Simulator

Controller/

ServerServer

Sonar System

Figure 1. Flow chart of software modules.

These modules were all written in the C programming language along with some
scripts, written in Perl, for data analysis and conversions.
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Figure 2. This screen shot shows the software modules running to-
gether. On the top left is the robot controller with a socket connection
to the other modules. The bottom left window shows the output of
the sonar system module after executing the line fitting algorithm (in
the dark xterm window). The three upper to middle right windows
show the vision system module, one window shows the captured im-
age, another window shows the edge map and the last window shows
a histogram of the extracted feature values.
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APPENDIX B

Sigmoid Function

The sigmoid function is a function that provides a gradual change from a low
plateau to a high one. It is used often as a a weighed normalizing function. It
was shown in chapter 4 that it can also be used to describe the characteristics of
sonar signal degradation (although, we used an exponential decay). The parameters
of the function control the transition point (c) and the transition rate (m). Figure
1 show a plot of the high pass function and figure 2 shows the low pass function.
We use this function to provide a consistent threshold based measure based on the
parameters. For example, for the vision system, we considered that the slope between
good features and the position should be about 45◦, so we set the cutoff value of c
accordingly. This was chosen such that desired features are ones that vary at least
at that rate over the operators scale where all axis are normalized. If the axis were
not normalized, a slope of 45◦ over the operator scale would be meaningless. Thus
we must vary the parameters with respect to some normalizing factor and a desired
target result. Similarly, the numerical result of the integral for the vector influence
(equation 5.15) is dependent on the quantization of the seen line segment, i.e., the
sensory resolution. We set the value of c according to a minimum line length seen
at a certain distance, normalizing with the sensory resolution. If only a single line
segment is seen that is further away or smaller than the measure would lie below
the cutoff. Thus the meaning of these values can be portrayed by re-mapping them
through the normalizer and setting the parameters accordingly.
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Figure 1. Sigmoid function passing large values:
xm/(xm + cm) with m = 7 and c = 1. The vertical axis shows
the function and the horizontal axis shows x.

Figure 2. Sigmoid function passing low values:
1− xm/(xm + cm) with m = 7 and c = 1.The vertical axis shows
the function and the horizontal axis shows x.
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