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Abstract. We consider the problem of rendezvous between two robots collaborating in
learning the layout of an unknown environment. That is, how can two autonomous exploring
agents that cannot communicate with one another over long distances meet if they start
exploring at di�erent locations in an unknown environment. The intended application is
collaborative map exploration. Ours is the �rst work to formalize the characteristics of
the rendezvous problem, and we approach it by proposing several alternative algorithms
that the robots could use in attempting to rendezvous quickly while continuing to explore.
The algorithms are based on the assumption that potential rendezvous locations, referred
to as landmarks, can be determined by the robots as they explore; these locations are
based on a distinctiveness measure computed with an arbitrary sensor. We consider the
performance of our proposed algorithms analytically with respect to both expected- and
worst-case behaviour. We then examine their behaviour under a wider set of conditions in
simulation.

1 Introduction

A rendezvous is a meeting between two or more
agents at an appointed place and time, for exam-
ple, when two people meet at a familiar restaurant.
The problem of rendezvous is ubiquitous in nature.
Migratory animals must learn to meet to share in-
formation about food. Non-social animals must be
able to �nd each other during mating season. Hu-
mans are equally familiar with the problem of ren-
dezvous, as any family whose members become sep-
arated at a large zoo or mall well knows. Multi-
agent robot systems also have an inherent need for
inter-agent rendezvous. The ability to meet facili-
tates localisation, allows collaborative map learning
and has a plethora of other advantages, but most
importantly it allows communication.

In this paper, we consider how a pair of robots
can jointly learn a map of an unknown environ-
ment. In particular, the key issue is how they can
learn where to meet one another. Most existing

hardware agents are only capable of communica-
tion over short distances. Environmental geometry,
wireless transmission technology, power considera-
tions and atmospheric conditions (or water condi-
tions for underwater agents) all contribute to fairly
short communication limits. In the absence of so-
phisticated satellite receivers or high power devices,
a common constraint for successful communication
is maintaining \line-of-sight" between agents, a con-
straint that is rarely satis�ed in the real world.
However, multi-agent robot systems for the major-
ity of real-life applications enjoy substantial speed
gains only with some level of communication, when
compared with single-agent systems or multi-agent
systems that do not communicate. (Balch & Arkin,
1994). Many distributed-agent algorithms, for in-
stance dynamic path-planning, assume and rely
upon instantaneous, in�nite bandwidth communi-
cation between agents at all times in order to
achieve promised performance levels (Brumitt &



Stentz, 1996).
In order to overcome these constraints on real

communication, we have proposed that the agents
use the information they have learned about the
environment in order to �nd each other. How-
ever, many factors may inhibit the rendezvous pro-
cess. Agents may not agree on rendezvous locations,
or rendezvous times; domains of spatial knowledge
may not overlap su�ciently. Consequently, the dif-
ferent agents must adapt to the di�erent environ-
mental conditions, and learn to overcome the fac-
tors that complicate the rendezvous process. Over-
coming these factors can require that the agents
learn each other's behaviours, and react accord-
ingly.
Looking to biology, some simple algorithms are

easily observed. Most animals rely upon established
common meeting points, such as a beehive, or a wa-
tering hole. In an unknown environment, however,
such an absolute reference point is almost impossi-
ble to de�ne a priori. A common strategy has one
agent (eg. a child lost at the zoo) wait to be found
by other agents (eg. desperate parents). As we
shall see, such simple strategies can perform poorly
under many conditions.
Speci�cally, this paper discusses how to deter-

mine the best strategy for a successful rendezvous
between two agents in optimal time, and ours is
the �rst work to formalize the characteristics of
this problem. We will consider how this rendezvous
task can be e�ciently accomplished under various
assumptions about the environment and the per-
ceptual abilities of the agents involved. In par-
ticular we are interested in the problem of ren-
dezvous in the context of multi-robot exploration
using video or sonar sensing. In practice, the partic-
ular sensing modality has numerous pragmatic im-
plications, a major factor being the range at which
the agents can either recognize one another or land-
marks in the environment. In the context of a gen-
eral rendezvous strategy we will, however, consider
a generic \abstract" sensor that allows the agents
to recognize one another when they are su�ciently
close together and which allows them to evaluate
any point in space as to its suitability as a ren-
dezvous point.

2 Background

Several authors have considered interaction and co-
ordination between multiple mobile robots. Arkin
and his colleagues, in particular, have considered
issues of co-ordinated motion as well as collabora-
tive behaviour with minimal pre-planning (Arkin &

Hobbs, 1992; Balch & Arkin, 1994). His work, how-
ever, has not focussed on exploration or the use of
deliberative strategies to allow robots to meet.
There has been considerable work in addressing

the problems of communication between agents in
a multiple agent system, however the majority of
work has been to maximise e�ciency and minimise
complexity (Mataric, 1992) (Hara, 1992). Mataric
has looked at models of collaborative behaviour be-
tween mobile robots (Mataric, 1992), and observed
that the form of communication plays an impor-
tant role in how collaborative actions proceed. In
this work, we deal with how to facilitate that com-
munication by allowing the robots to meet.
Yoshida et al. addressed the problem of how

to reduce a global communication network to local
communication, in order to minimizing information
complexity (Yoshida, 1995). However, there has not
been much research in overcoming communication
limitations, except by limiting the scope of the sys-
tem to some area (such as a factory or a port) where
communication between agents can be guaranteed
by some global co-ordinator.
The selection of distinctive locations in a sim-

ple 2-D environment has been considered previ-
ously in the context of map-making (Kuipers &
Byun, 1991), in which distinctive locations were
determined by hill-climbing, that is, by local gra-
dient ascent over some function of the sensor out-
put. More generally, local maxima in some contin-
uous property of the environment would seem to
present an opportunity for converting a metric en-
vironment representation into a graph-like or topo-
logical one (Chatila & Laumond, 1985; Dudek et

al., 1991).
The problem of map generation from co-operative

multi-agent exploration was discussed and imple-
mented by Ishioka et al. (Ishioka, Hiraki, & Anzai,
1993). Their work is a canonical example of the
potential applications of the technique presented
in this paper, in which co-operative heterogeneous
robots generated maps of unknown environments.
They did not discuss the problem of rendezvous, but
focussed only on how to merge maps once the ren-
dezvous has occurred. It is worth noting that map
fusion is also closely related to the generic image-
registration problem.

3 The Rendezvous Problem

We have separated the rendezvous problem into two
separate sub-problems. The �rst is learning what
points in the environment are suitable for poten-
tial rendezvous. These points will be referred to as



landmarks. The second sub-problem that is the
major focus of this work, is learning how to �nd
which point, out of the set of potential rendezvous
points, to visit at the assigned time. The context of
the rendezvous is an unknown environment, with no
shared spatial information between agents, and no
communication until rendezvous. We are examin-
ing the rendezvous problem in terms of minimizing
time to rendezvous under various conditions such as
sensor noise, environment size, etc.. Determining
when a rendezvous is necessary in the framework
of another task is a task-dependent problem, and is
outside the scope of this paper.

We start by briey considering some properties of
good distinctiveness measures. We will then present
several rendezvous strategies, consider their statis-
tical properties analytically and simulate their be-
haviour numerically. We conclude with a discussion
of the results.

3.1 Landmark Selection

As an agent travels throughout the environment,
every visited location is evaluated by the agent in
terms of its uniqueness. The assumption is that
distinctive locations (with respect to some sensor-
based computation) serve as locations that both
robots can independently select as good landmarks.
This notion of a landmark also serves as the ba-
sis of the topological mapping strategy proposed by
Kuipers (Kuipers & Byun, 1991). We refer to the
scalar measure of suitability as a rendezvous point
as distinctiveness: D(x; y), or more generally, for
a pose vector q we can de�ne D(q). This is im-
plicitly a function of sensor data f(q), so we have
D(f(q)). Although the agent's sensor may not re-
turn scalar values, some scalar suitability measure
can be usually be computed from the sensor. Some
intuitive examples of environmental attributes that
might serve as distinctiveness measures are: sym-
metry, distance to the nearest obstacle, or altitude
(for 3D surfaces { for example humans might select
hill tops).

In order for two robots to agree on a good land-
mark, they must have similar perceptions of the en-
vironment or be able to convert their percepts into
a common intermediate form. In the extreme case
of two agents with dramatically di�erent sensing
modalities, there is essentially no way for them to
rendezvous based on the recognition of environmen-
tal characteristics. Sensor noise can play a similar
problematic role. We model this aspect of the prob-
lem by parameterizing the extent to which the two
agents can reliably obtain the same measurement of

distinctiveness at the same location. With full gen-
erality, we can consider one of the two agents as the
reference perceiver (the arbiter of good taste) with
a percept D1(x; y) = D(x; y) while the second robot
obtains a sensor measurement which can be viewed
as noisy with respect to that of the �rst robot:

D2(x; y) = (1� �)D(x; y) + ��(x; y); (1)

where �(x; y) is a noise process and � speci�es the
extent to which both robots sense (or perceive) the
same thing. If both robots have exactly the same
perceptions of the environment we have � = 0. In
the context of this formalism, �(x; y) combines both
intrinsic sensor noise and any di�erences in the type
of sensor used.
The possible distinctiveness measures are heavily

dependent on the types of sensor the robots have at
their disposal. Because the robot learns the value
at every point, a good modality is one that allows
the distinctiveness to be de�ned at any location in
the environment, and for which there exists some
metric that can order the resulting landmarks in
the environment in terms of distinctiveness. This
ordering allows the landmarks to be ranked in terms
of their likelihood to lead to a successful rendezvous.
Certain generic properties apply to suitable land-

marks and the distinctiveness function D(x; y) in-
dependent of the sensing modality. If the distinc-
tiveness function is smooth and has few local ex-
trema or inection points, then it may be possi-
ble to de�ne highly stable and mutually agreed-
upon landmarks with great ease using gradient as-
cent. However, although this strategy is attrac-
tive in principle, we believe that in many real en-
vironments, sensor noise, occlusion and other fac-
tors may make the \distinctiveness surfaces" highly
non-convex and thus complicate the process.
The distinctiveness function and the associated

landmarks should be stable over time and should
not depend on the trajectory or history of the
robot. For example, the \Northern-most" point in
the already-explored environment is a poor choice
since if, for example, the explored area of each robot
is circular, then two robots will only have the same
\northern-most" point if the environment is highly
constrained or if the explored regions are very sim-
ilar.
In this paper, we will neglect issues of navigation

and assume an agent can always accurately reach a
desired goal in the environment. While our frame-
work can accommodate navigational error, it is out-
side the scope of this paper. For concreteness, the
reader can imagine a point robot capable of arbi-
trary motion within free space.



The distinctiveness measure typically used for re-
search in this area, in the context of mobile robotics
and sonar-based perception, is the mean distance
returned by the sonar ring, which essentially uses
the enclosed space as the value of the landmark -
the bigger the room, the better a landmark. Note
that errors due to specularity with respect to sonar
make the physical interpretation of the measure-
ment ambiguous.

3.2 Rendezvous Strategies

In order to estimate the e�ectiveness of alternative
strategies for rendezvous, we have identi�ed key at-
tributes that must be formalised. Important at-
tributes of the rendezvous problem are:

� Similarities | the reproducibility of the per-
ceptions between agents (do they sense the
same attributes, and do they even use the same
sensors),

� Landmark Commonality | the extent of over-
lap between the spatial ranges of the agents
(this may change with time),

� Synchronisation | the level of synchronisa-
tion between the agents (for example, can they
agree to meet at high noon).

� Landmark Cardinality | the number n of
landmarks selected by each agent.

Implicit in the description of these attributes
are certain assumptions. It is assumed that all
agents share some degree of synchronization - that
is, all agents can agree on when rendezvous at-
tempts should be made. However, this synchroni-
sation may contain noise, which will be dealt with
shortly. The second assumption is that all agents
have the same landmark set cardinality - they all
attempt rendezvous over the same number of land-
marks (even if they are not using identically the
same landmarks in their sets). Finally, it is assumed
that all agents are performing the same task, and
using the same rendezvous strategies.
We have developed several fundamental strate-

gies for assuring a rendezvous. As we will see, the
best strategy depends on several properties of the
robots and of the environment. In the simplest, ide-
alized, noise-free case, each robot should select the
location in the environment that is the most dis-
tinctive. Given 100% landmark commonality and
the absence of noise, they will select the same lo-
cation. Each robot should navigate to this location
and wait for the other robot(s) to arrive. At such a

time, they could fuse their maps and suitably par-
tition any remaining exploration to be done. The
problem with this idealized scenario in practice is
that due to sensor variations, or disjoint landmark
sets, they may not agree on where the ideal land-
mark is situated.

Our formalization of the rendezvous problem
takes the key attributes mentioned above into ac-
count as follows:

1. Sensor noise | the distinctiveness measure ob-
served by the two robots is unlikely to match
perfectly. This is expressed by the constant
� and leads to strategies that must e�ectively
consider a larger number of candidate ren-
dezvous landmarks since a single guaranteed
candidate may not be determined reliably. The
issue of non-repeatability of sensor readings
due to noise is not relevant in the context of
this abstract model and is not considered here.

2. Sensor dissimilarities | the two robots may
not measure the landmarks the same as each
other. As illustrated in Eq. 1, so long as we
do not consider issues of repeatability, sensor
di�erences can be modelled as a form of noise.

3. Asynchrony| when two robots are attempting
to meet at the same landmark, the rendezvous
may fail because one could not reach the land-
mark in a dynamic environment, or even more
likely, one robot could not reach the landmark
in time, and the other moved on. This asyn-
chrony j is referred to in this paper as the
probability that a given meet at a common
landmark will fail, j�[0; 1]. This e�ect leads
to a need for strategies that may re-visit the
same landmarks repeatedly to compensate for
missed meetings.

4. Non-identical Landmark sets | the robots may
have explored di�erent areas, and will have se-
lected di�erent landmarks that are not in the
common region (assuming such a common re-
gion exists at all). This is modelled formally
as the number d of landmarks out of a total
set of n that are not common to the robots.
The e�ect of the non-commonality is that both
robots must consider a larger number of candi-
date landmarks, since any given subset of land-
marks selected by one robot may not be known
to the other robot.

We will show that the choice of an appropri-
ate rendezvous strategy depends on the extent to



which the robots have learned the same set of land-
marks, the amount of sensor noise (or, equivalently,
the similarity of the sensors) and the reliability of
the robots being at a mutually selected rendezvous
point and detecting one another.

In the presence of large amounts of sensor noise,
the landmark selection will be essentially random,
in which case the best strategy is simply to have
one robot visit every landmark, and have the other
robot sit and wait for it. However, this is also an
unrealistically pessimistic scenario. If the robots
have been constructed to facilitate rendezvous, they
are likely to have a somewhat common perception
of the environment and to have some commonal-
ity in their explored areas. In reality, the robots
will probably experience some limited sensor noise,
minimal dissimilarities, some asynchrony, and par-
tial but not complete landmark commonality. So,
the best strategy takes these factors into account,
and chooses a series of landmarks to visit in some
intelligent way.

We are interested in strategies that would per-
mit a robot to interleave its learning of the envi-
ronmental structure, and its rendezvous attempts
so that if the rendezvous fails, the robots can con-
tinue their work and the strategies remain robust
even in the face of a complete inability to �nd their
associates. Below, we describe four alternative ren-
dezvous strategies: these form exemplars of what we
believe are two key representative algorithm classes.

1. Deterministic Algorithms { Given the same set
of landmarks, these algorithms will always cre-
ate the same ordering of landmarks.

� Sequential { One robot picks a land-
mark and waits there for the other robot,
which visits every landmark in turn. If the
second robot has visited every landmark
without encountering the �rst robot, the
�rst robot moves to another landmark it
has not yet visited.

� Smart-sequential { Each pairwise com-
bination of landmarks known to a robot is
assigned a \goodness" value. This value
is the product of the distinctiveness of the
pair. The list of landmark pairs is sorted
by this product, and one side of each pair
is discarded, leaving an ordered list of n2

landmarks from a set of n. The robot then
visits the landmarks in this order.

2. Probabilistic { The landmarks are sorted
with respect to their distinctiveness and then

assigning a likelihood of visitation pi for land-
mark i as a function of its rank in the sorted
list i.e pi = f(i). The algorithm probabilisti-
cally selects a landmark to visit, using pi for
each landmark.

� Exponential { The likelihood of visiting
the i� th best landmark is �ei.

� Random { On each attempted visit, each
robot selects a landmark at random and
goes there.

Each of these methods has particular advantages
and disadvantages. The sequential method is sim-
ple, but makes no e�ort to account for relative like-
lihoods, or asynchrony. In view of the potential
shortcomings of the sequential method, we have
proposed an alternative method, the probabilistic
method, that has an increased chance of compen-
sating for a missed rendezvous and also attempts
to compensate for small variations in the respec-
tive rankings of the landmarks selected by the two
robots. For instance, the distinctiveness of each
landmark could be the same, which would lead to
a uniform random visitation strategy. The prob-
ability distribution f() could be a linear function
of value, or, if we assume that the amount of sen-
sor noise is low, an exponential strategy. However,
if sensor noise is high and the two agents do not
share the same ordering of landmarks, then the
agents may be forced into revisiting the incorrect
landmarks much too often. A good compromise
between these two methods is the smart-sequential
method. The advantage of this method is that, if
� is low, landmark combinations with high values
are explored before landmark combinations where
one landmark has a very high value, and the other
has a relatively low value. This leads to an in-
creased probability of meeting even with substantial
asynchrony. The smart-sequential method is tanta-
mount to guessing where the other robot might be,
given relatively similar but not identical landmark
rankings.

4 Behaviour - Analytical re-

sults

We can make an analytical assessment of the perfor-
mance of the deterministic rendezvous algorithms,
compared to the random algorithm baseline. If
there is no noise, no asynchrony, and 100% land-
mark commonality, then all of the algorithms which
use the distinctiveness measure to sort landmarks



Algorithm Simple Async. <100% Comm.

Random 1
log2(

n
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log j n+ d

n
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log d
n

Figure 1: Expected case behaviour. The columns
denote the ideal case, the case where the asynchrony
j 6= 0 and the case where the landmark sets are
not identical, but each agent has d non-common
landmarks.

will lead to a rendezvous after only one attempt
(i.e., both robots will go straight to the mutually
agreed upon best landmark.). The random algo-
rithm can never assure a rendezvous but will have
a small, equal probability of leading to a rendezvous
on every attempt.
More interesting is the performance of the algo-

rithms in the limit of high noise, � = 1, such that
no common ordering between agents of the same
landmarks can be reliably determined. The �rst
assessment is the algorithmic time complexity, i.e.,
the expected time to rendezvous, for the three algo-
rithms in the limit of � = 1. The expected time to
rendezvous is the maximum number of unsuccessful
rendezvous attempts, where the probability of no
success on the next attempt is greater than or equal
to 50%. For a landmark set of size n, the probabil-
ity of any single, random rendezvous attempt being
unsuccessful is:

Punsuccessful =
n� 1

n
(2)

If the asynchrony rate is accounted for, then the
probability of an attempt being unsuccessful rises
to

Punsuccessful =
n� 1 + j

n
(3)

These equations give rise to table 1. The �rst
column refers to both robots having the same set
of landmarks. The second column considers the
scenario where the robots may fail to get to the
appointed landmark at the same time (or fail to
notice one another). This probability is the asyn-
chrony, j. The third column deals with the case
where d of each robot's n landmarks are not in the
other robot's landmark set.
In the deterministic sequential algorithm, the ex-

pected time of the simplest case (identical landmark
sets, no asynchrony), is very straightforward. One
agent sits at a landmark, and the other agent visits
every landmark in turn until they meet - on aver-
age n=2 landmarks. However, in the presence of

asynchrony, additional sweeps of all n landmarks
will have to be performed. To �nd the expected
number, k such additional sweeps, we use

0:5 = jk (4)

noting that each extra sweep i of k will reduce the
probability of failure, and k such sweeps must re-
duce the probability of failure to 50%. Thus, on

average j
�1
log j sweeps during the rendezvous will fail

due to asynchrony. Similarly, for non-identical land-
mark sets, additional sweeps of n landmarks will

have to be performed on average d
n

�1

log d
n times.

In the worst case, the performance time complex-
ity is much more straightforward. For the proba-
bilistic algorithms, such as the random strategy, or
whenever asynchrony is an issue, the worst-case is
always O(1), because a meet can never be guaran-
teed. Similarly, a rendezvous can never be guaran-
teed if any asynchrony is present, and so for j 6= 0,
the worst case for all algorithms is O(1).
However, the deterministic algorithms are guar-

anteed to terminate when j = 0. In the worst case,
the two algorithms terminate in n2 iterations when
they share no common landmarks. At this point,
both agents can determine that they cannot meet,
and continue exploration. If, however, the agents
share identical landmark sets, the sequential algo-
rithm has a much lower worst-case complexity than
the smart-sequential strategy, because one agent is
guaranteed to visit every landmark in the other
agent's set in n iterations.

Algorithm Simple Async. < 100% Comm.
Random 1 1 1
Sequential n 1 nd
Smart Seq. n2 � n 1 n2 � (n� d)

Figure 2: Worst case behaviour. Cols. as in Fig. 1.

5 Numerical Simulation

In order to determine the behaviour of the vari-
ous algorithms with increasing noise, the algorithms
were tested in numerical simulation. Rather than
simulating an actual exploration1, two agents were
modelled as having already explored an unknown
area, and collected a set of landmarks. The dis-
tinctiveness values of the ordered landmarks were
generated with a linear function, and then the ran-
dom noise � as developed in equation 1 was applied
to the two sets.

1This was carried out as well, but is not reported here
due to lack of space.



The visitation strategy was then executed on the
two ordered sets of landmarks, creating a (poten-
tially in�nite) sequence of landmarks for each agent
to visit. The sequence was terminated at the �rst
instance where both agents had a landmark at the
same position in the sequence, corresponding to a
successful rendezvous. At � = 0, the two ordered
sets were identical, and the deterministic algorithms
(sequential and smart-sequential) were guaranteed
to generate sequences of length 1. The length of
the sub-sequences until rendezvous was used as a
measure of time until successful rendezvous. The
cardinality of the landmark set was 50 landmarks,
unless otherwise speci�ed.
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Figure 3: Baseline Performance - Time to Ren-
dezvous as a function of Noise-level �

The baseline simulation shows the performance
of four algorithms in the face of increasing noise.
The four algorithms are the deterministic sequen-
tial and smart-sequential algorithms, and weighted
probabilistic distributions with exponential and lin-
ear probability functions. Recall that the exponen-
tial probabilistic function, for example, would have
an exponentially higher probability of visiting the
best landmark over any other. There is no asyn-
chrony present, and the landmark sets were com-
pletely common. Figure 3 shows that the sequen-
tial algorithm is the best performer, especially in
the face of high noise (i.e., � > 0:2) , which concurs
with the analytical result. Clearly, exponential is
a very fragile function, failing catastrophically with
noise, � > 0:2.
Figure 4 shows the performance of the algorithms

with a larger landmark set cardinality. Unsurpris-
ingly, the performance of the algorithms scales ap-
propriately with landmark set size.
In the face of asynchrony, however, the algo-

rithms exhibit less intuitive behaviour. Asynchrony,
again, is the probability that a particular ren-
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Figure 4: Performance with 100 Landmarks, ideal
case

dezvous succeeded. The simulation (which cre-
ates landmark sequences) implemented asynchrony
as the probability that a particular sequence el-
ement could be used. Even if the pair of land-
mark sequences contained the same landmark at
identical positions, the sequence may not have ter-
minated there, because the asynchrony probability
prevented the �rst pair of matching landmarks in
sequence from being compared, as if the robots had
failed to rendezvous successfully despite attempting
to do so at the same location at the same time.
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Figure 5: Performance with 50% Asynchrony rate

Figure 5 shows the performance of the algorithms
given a 50% asynchrony rate, or a 50% probabil-
ity of successfully making a rendezvous. In this
case, the smart-sequential and exponential algo-
rithms out-perform the sequential strategy, because
the sequential form su�ers from having to visit ev-
ery other landmark before being able to return to
the landmark that failed on a particular iteration,
whereas the other two algorithms can return to



landmarks relatively quickly. However, once noise
dominates the values, (� > 0:5) the sequential algo-
rithm becomes faster because it does not rely heav-
ily on particular landmark values - it is not return-
ing to the same landmark over and over again.
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Figure 6: Performance with 80% Jitter rate

Even more interesting in the case of very high
asynchrony, Figure 6 shows that the exponential
probabilistic function outperforms the deterministic
algorithms in the face of low noise (0:5 < � < 0:25),
but again fails rapidly in the case of high noise
(� > 0:25). The exponential algorithm essentially
forces the robot to return to the same landmark
over and over again, which is the correct strategy
when asynchrony is high. However, when noise
is high, the odds that the recurrent landmark is
the wrong one increase, and the deterministic algo-
rithms, which do not return to the same landmark
as often, perform better.
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Finally, Figures 7 and 8 show performance for
maps with only 75% of the landmarks in com-
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Figure 8: Performance with non-identical landmark
sets, and 50% Asynchrony rate

mon. The performance with non-identical land-
mark sets (akin to non-isomorphic maps) is very
similar to performance under low- to medium-
asynchrony. The smart-sequential algorithm per-
forms better with low noise because it can return
to landmarks faster than sequential, but in the case
of high noise (� > 0:35), returning to landmarks
too frequently can be costly, and the sequential al-
gorithm again dominates.

6 Experiments using Robots

While these abstract results have shown which algo-
rithm the di�erent robots must learn to use under
di�erent conditions, we would like to verify that the
formalism is applicable to real robots. We �rst con-
ducted the experiments in simulation, to show that
the results under the range of noise conditions are
upheld.
Using the map shown in �gure 9, we tested a sim-

ulation of two robots learning the environment, and
then learning to �nd each other. The two robots
simulated were two cylindrical vehicles with holo-
nomic motion constraints, using sonar transducers
as their primary sensor.
The distinctiveness measure used the sonar sen-

sors, and encapsulated a notion of both openness
and symmetry; we summed the range from each
sonar sensor, and then divided by the di�erence of
opposing pairs, as equation 5 shows:

D =

P64

n=1Ri
P32

n=1 j Ri �Ri+32 j
(5)

The experiment involved allowing the robots to
learn the environment, determine where the best
rendezvous locations were, and then learn to �nd



Figure 9: The map learned by the simulation of two
robots.

the other agent. We performed 25 trials for 8 noise
levels, shown in �gure 10.
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Figure 10: Simulated Robots - Time to Rendezvous
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As the �gure indicates, the results were gener-
ally very similar to those of the numerical analysis,
given in �gure 3. Smart-sequential is a superior al-
gorithm in the low-noise range, but once the noise
begins to dominate the robots' perceptions of the
environment, sequential is a preferable algorithm.
The stochastic algorithm su�ers the same dramatic
failure with noise as was indicated by the numerical
results.
Of more interest are the results concerning the

ability of the agents to use rendezvous as a tech-
nique for overcoming communication de�cits as
they learn the environment. Figure 11 shows the in-
crease in learning speed of the environmental struc-
ture available to the various algorithms. Notice that
as the noise begins to dominate, the ability of the
agents to �nd each other decreases, as does the rate
at which the agents learn the environment. These
�gures were computed from the area learned by two
agents in the time to explore added to the time to
rendezvous, as compared to the area learned by one

agent in the same time. Even though the agents
must take the additional time to rendezvous, the
increase in speed is still up to 50%.
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Figure 11: Increase in learning speed - Increase in
speed as a function of Noise-level �.

Finally, in �gure 12, we show the result of an
actual map learning and rendezvous experiment,
implemented on a Nomad 200 and an RWI B-12
robot. This map is the result of the merging pro-
cess, merging the information acquired by the two
robots. This map is conclusive proof that the ren-
dezvous process can be used successfully for multi-
agent exploration and environmental learning.

Figure 12: Map created from information learned
by two robots and merged following rendezvous.

7 Conclusion

In this paper we have described the new problem
of performing rendezvous between two exploring
robots in an unknown environment. We are specif-
ically interested in the ability of multi-robot sys-



tems to learn an environment, where communica-
tion is limited to short range. This is the �rst pa-
per to describe a formalism for this problem, and we
have presented an analytical and numerical analysis
of some solutions to the rendezvous problem. Al-
though we have primarily dealt with two agents,
the algorithms we have presented could readily be
adapted to larger collections of agents, or swarms.

We have shown that certain algorithms for per-
forming a rendezvous in an unknown environment
are especially good or bad under certain system and
environment conditions. These factors include sen-
sor noise, lack of commonality in the regions ex-
plored by the robots, and the possibility of the
robots missing a scheduled rendezvous. An inter-
esting result is that, depending on a combination of
these confounding factors, no strategy is canonically
a poor choice - under the correct circumstances, a
heretofore poor choice of algorithm can outperform
the erstwhile winner. These results are con�rmed
by both analytic closed-form solutions, and ideal-
ized numerical simulations.

Two major subtleties complicate the rendezvous
problem. One is the possibility of missed ren-
dezvous. This \asynchrony" factor may be a result
of lack of synchronisation, a failure of the robots de-
tecting each other, or navigation errors resulting in
arriving at the wrong location. The other subtlety
is whether both robots select landmarks from within
commonly explored sub-regions of the environment.
We refer to possible non-identical landmark sets as
a lack of commonality. In the absence of these prob-
lems, several simple strategies are possible and ren-
dezvous is a fairly simple problem. Expected time
to rendezvous is between 1 and n=2 landmark vis-
its depending on the strategy and the ability of the
robots to agree on a consistent preference ordering
of landmarks using noisy sensors.

In the presence of asynchrony and in the ab-
sence of 100% commonality of the explored ar-
eas, the algorithms referred to as sequential and
smart-sequential each have their domains of superi-
ority while surprisingly, a stochastic strategy based
on an exponential probability of visit also has a
small region of the parameter space in which it
proves superior. That these small regions of param-
eter space exist indicates that the problem of ren-
dezvous deserves further development. The smart-
sequential strategy exploits the distinctiveness mea-
sure or preference ordering on landmarks to attempt
to compensate for missed rendezvous and is superior
under substantial levels of asynchrony and limited
noise. The pure sequential strategy is preferable
when asynchrony is low, since without asynchrony

a meet is assured after n visits by avoiding visiting
combinations that might otherwise compensate for
asynchrony. With substantial levels of both asyn-
chrony and moderate noise the stochastic search
strategy is preferable to deterministic ones: a phe-
nomenon we are investigating further.
Issues for future consideration are how the robots

learn which algorithm to apply, and how to recog-
nise the appropriate environmental conditions for
each algorithm. Another interesting issue is how
to re�ne the system parameters for subsequent ren-
dezvous after an initial one has been achieved.
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