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Abstract. In mobile robotics, the inference of the 3D layout of large-
scale indoor environments is a critical problem for achieving exploration
and navigation tasks. This article presents a framework for building a 3D
model of an indoor environment from partial data using a mobile robot.
The modeling of a large-scale environment involves the acquisition of a
huge amount of range data to extract the geometry of the scene. This task
is physically demanding and time consuming for many real systems. Our
approach overcomes this problem by allowing a robot to rapidly collect
a set of intensity images and a small amount of range information. The
method integrates and analyzes the statistical relationships between the
visual data and the limited available depth on terms of small patches
and is capable of recovering complete dense range maps. Experiments on
real-world data are given to illustrate the suitability of our approach.

1 Introduction

One of the major goals of mobile robot research is the creation of a 3D model
from local sensor data collected as the robot moves in an unknown environment.
Having a mobile robot able to build a 3D map of the environment is particularly
appealing as it can be used for several important applications (e.g. virtual ex-
ploration of remote locations, automatic rescue and inspection of hazardous or
inhospitable environments, museums’ tours, etc.). All these applications depend
on the transmission of meaningful visual and geometric information. To this end,
suitable sensors to densely cover the environment are required. Since all sensors
are imperfect, sensor inputs must be used in a way that enables the robot to
interact with its environment successfully in spite of measurement uncertainty.
One way to cope with the accumulation of uncertainty is through sensor fu-
sion, as different types of sensors can have their data correlated appropriately,
strengthening the confidence of the resulting percepts well beyond that of any
individual sensor’s readings.

A typical 3D model acquisition pipeline is composed by a 3D scanner to ac-
quire precise geometry, and a digital camera to capture appearance information.
Photometric details can be acquired easily, however, to acquire dense range maps
is a time and energy consuming process, unless costly and/or sophisticated hard-
ware is used. Thus, when building 3D models or map representations of large



scenes, is desirable to simplify the way range sensor data is acquired so that time
and energy consumption can be minimized. This can be achieved by acquiring
only partial, but reliable, depth information.

Surface depth recovery is essential in multiple applications involving robotics
and computer vision. In particular, we investigate the autonomous integration
of incomplete sensory data to build a 3D model of an unknown large-scale 1

indoor environment. Thus, the challenge becomes one of trying to extract, from
the sparse sensory data, an overall concept of shape and size of the structures
within the environment.

We explore and analyze the statistical relationships between intensity and
range data in terms of small image patches. Our goal is to demonstrate that the
surround (context) statistics on both the intensity and range image patches can
provide information to infer the complete 3D layout of space. It has been shown
by Lee et al. [6] that although there are clear differences between optical and
range images, they do have similar second-order statistics and scaling proper-
ties (i.e., they both have similar structure when viewed as random variables).
Our motivation is to exploit this fact and also that both video imaging and lim-
ited range sensing are ubiquitous readily-available technologies while complete
volume scanning is prohibitive on most mobile platforms.

In summary, this research answers the question of how the statistical nature
of visual context can provide information about its geometric properties. In
particular, how can the statistical relationships between intensity and range data
be modeled reliably such that the inference of unknown range be as accurate as
possible?

2 Related Work

Most prior work focuses on the extraction of geometric relationships and cali-
bration parameters in order to achieve realistic and accurate representations of
the world. In most cases it is not easy to extract the required features, and hu-
man intervention is often required. Moreover, real world environments include a
large number of characteristics and properties due to scene illumination, sensor
geometry, object geometry, and object reflectance, that have to be taken into
account if we want to have a realistic and robust representation.

Dense stereo vision gained popularity in the early 1990’s due to the large
amount of range data that it could provide [8]. In mobile robotics, a common
setup is the use of one or two cameras mounted on the robot to acquire depth in-
formation as the robot moves through the environment [9]. The cameras must be
precisely calibrated for reasonably accurate results. The depth maps generated
by stereo under normal scene conditions (i.e., no special textures or structured
lighting) suffer from problems inherent in window-based correlation. These prob-
lems manifest as imprecisely localized surfaces in 3D space and as hallucinated
surfaces that in fact do not exist. Other works have attempted to model 3D
1 Large-scale space is defined as a physical space that cannot be entirely perceived

from a single vantage point [5].



objects from image sequences [2, 11], with the effort of reducing the amount
of calibration and avoiding restriction on the camera motion. In general, these
methods derive the epipolar geometry and the trifocal tensor from point corre-
spondences. However, they assume that it is possible to run an interest operator
such as a corner detector to extract from one of the images a sufficiently large
number of points that can then be reliably matched in the other images. It
appears that if one uses information of only one type, the reconstruction task
becomes very difficult and works well only under narrow constraints.

There is a vast body of research work using laser rangefinders for different ap-
plications, particularly, in the 3D reconstruction problem [10, 12]. However, the
limitations of using only one type of sensor have increased the interest in fusing
two or more type of data. Specifically, the fusing of intensity and range informa-
tion for 3D model building and virtual reality applications [7, 12] with promising
results. These methods use dense intensity images to provide photometric detail
which can be registered and fused with range data to provide geometric detail.
However, there is one notable difference, in our work the amount of range data
acquired is very small compared to the intensity data.

3 Our framework

This research work focuses on modeling man-made large-scale indoor environ-
ments. Man-made indoor environments have inherent geometric and photomet-
ric characteristics that can be exploited to help in the reconstruction. We use a
robot to navigate the environment, and together with its sensors, captures the
geometry and appearance of the environment in order to build a complete 3D
model.
We divide the 3D environment modeling in the following stages:

– data acquisition and registration of the intensity and partial range data;
– range synthesis, which refers to the estimation of dense range maps at each

robot pose;
– data integration of the local dense range maps to a global map; and
– 3D model representation.

In this paper, we only cover in detail the first two stages (see [13]). Experiments
were carried out into two environments of different size and type of objects
they contain. The first environment is a medium-size room (9.5m × 6m × 3m.
It contains the usual objects in offices and labs (e.g., chairs, tables, computers,
tools, etc.) The second environment is larger (2m × 20m × 3m) and corresponds
to the corridors of our building. This environment is mostly composed of walls,
doors, windows. The results are shown in each of stage described next.

4 Data Acquisition and Registration

The main aspect of our data acquisition system relies on how the data is acquired,
which provides two important benefits: i) it allows the robot to rapidly collect



Fig. 1. Our mobile robot with the 2D laser range finder and camera mounted on it.

sparse range data and intensity images while navigating the environment to be
modeled, and ii) it facilitates the sensor-to-sensor registration. The first benefit
is essential when dealing with large environments, where the acquisition of huge
amount of range data is a time consuming and impractical task. The second
benefit is related to the complexity of registering different types of sensor data,
which have different projections, resolutions and scaling properties. To this end,
an image-based technique is presented for registering the range and intensity
data that takes advantage of the way data is acquired.

The mobile robot used in our experiments is a Nomad Super Scout II, manu-
factured by Nomadics, Inc., retrofitted and customized for this work. On top of
the robot we have assembled a system consisting of a 2D laser rangefinder, from
Accuity Research, Inc., and a CCD Dragonfly camera from Point Grey Research
(see Figure 1) both mounted in a pan unit.

The camera is attached to the laser in such a way that their center of projec-
tions (optical center for the camera and mirror center for the laser) are aligned
to the center of projection of the pan unit. This alignment facilitates the reg-
istration between the intensity and range data, as we only need to know their
projection types in order to do image mapping.

We assume dense and uniformly sampled intensity images, and sparse but
uniformly sampled range images. Since taking images from the camera is an
effortless task, sampling of intensity images occurs more often than that of range
images. The area covered by the sampling data is equal at each robot pose, it
covers approximately a view of 90o. However, the amount of range data may
vary depending essentially on the sampling strategy.

4.1 Acquiring Partial Range Data

The spinning mirror (y-axis) of the laser rangefinder and panning motor (x-axis)
combine to allow the laser to sweep out a longitude-latitude sphere. Since each
step taken by the pan unit can be programmed, we can have different sampling



strategies to acquire sparse range data. We adopt a simple heuristic for sampling
which depends on how far the robot is from the objects/walls in the scene. Thus,
as the robot gets closer to objects, the subsampling can be sparser since no much
details are lost, compared to when the robot is located far away.

4.2 Acquiring the Cylindrical Panorama Mosaic

A cylindrical panorama is created by projecting images taken from the same
viewpoint, but with different viewing angles onto a cylindrical surface. Each
scene point P = (x, y, z)T is mapped to cylindrical coordinate system (ψ, v) by

ψ = arctan(
x

z
), v = f

y√
x2 + z2

. (1)

where ψ is the panning angle, v is the scanline, and f is the camera’s focal
length. The projected images are ”stitched” and correlated. The cylindrical im-
age is built by translating each component image with respect to the previous
one. Due to possible misalignments between images, both a horizontal tx and a
vertical ty translations are estimated for each input image. We then estimate the
incremental translation δt = (δtx, δty) by minimizing the intensity error between
two images,

E(δt) =
∑
i

[I1(x′i + δt)− I0(xi)]2, (2)

where xi = (xi, yi) and x′i = (x′i, y
′
i) = (xi + tx, yi + ty) are corresponding points

in the two images, and t = (tx, ty) is the global translational motion field which
is the same for all pixels. After a first order Taylor series expansion, the above
equation becomes

E(δt) ≈
∑
i

[gT
i δt + ei]2, (3)

where ei = I1(x′i)−I0(xi) is the current intensity or color error, and gT
i = ∇I1(x′i)

is the image gradient of I1 at x′i. This minimization problem has a simple least-
squares solution,

(
∑

i

gig
T
i )δt = −(

∑
i

[eigi]). (4)

The complexity of the registration lies on the amount of overlap between the
images to be aligned. In our experimental apparatus, as the panning angles at
which images are taken is known, the overlap can be as small as 10% and still be
able to align the images. To reduce discontinuities in intensity between images,
we weight each pixel in every image proportionally to their distance to the edge
of the image (i.e., it varies linearly from 1 at the centre of the image to 0 at the
edge), so that intensities in the overlap area show a smooth transition between
intensities in one image to intensities of the other image. A natural weighting
function is the hat function,

w(x, y) = ‖h/2− x

h/2
‖ − ‖w/2− y

w/2
(5)



Fig. 2. A cylindrical panorama.

where h and w are the height and the width of the image. In our experiments,
the pan unit rotates at every 18 degrees. Figure 2 presents a 180o cylindrical
panorama constructed using the technique described above.

4.3 Camera-Laser Data Registration: Panorama with depth

The panoramic image mosaic and the incomplete spherical range data must be
registered for the range synthesis. An image-based technique, similar to that
in [1], is used that recovers the projective model transformation by computing
a direct mapping between the points in the data sets. First, we need to convert
the spherical range image to a cylindrical representation similar to that of the
panoramic image mosaic, to do that the radius of the cylindrical range image
must be equal to the camera’s focal length. This mapping is given by

P(r, θ, φ) 7→ P(r, φ,
f

tan θ
) 7→ P(r, φ, h) (6)

where r represents the distance from the center of the cylinder to the point, h
is the height of the point projected on the cylinder, φ is the azimuth angle and
f the focal length of the camera (see Fig. 3). Again, this data is sampled on a
cylindrical grid (φ, h) and represented as a cylindrical image.

Once having the intensity and range data in similar cylindrical image rep-
resentations, a global mapping between them is computed. For a point xl(φ, h)
in the cylindrical laser image, its corresponding point in the panoramic mosaic
xc(u, v) is

u = aφ+ α,

v = f
Y −∆Y

r
= f

Y

r
− f

∆Y

r
= bh− f

∆Y

r
(7)

where a and b are two warp parameters that will account for difference in res-
olution between the two images, α aligns the pan rotation, ∆Y is a vertical
translation between the sensors, and Y = rh/

√
f2 + h2 is the height of the 3D

point X(r, φ, h). Since f , ∆Y , and the r remain fixed through the experimental
setup, the term f ∆Y

r can be approximated to a constant β. Thus, the general
warp equations are:

u = aφ+ α, v = bh+ β (8)

The warp parameters (a, b, α, β) are computed by minimizing the sum of the
squared error of two or more corresponding points in the two images. The initial
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Fig. 3. Projection of the 3D point P onto cylindrical coordinates: (φ, h) for the range
data and (u, v) for the panoramic mosaic.

estimate places the panorama mosaic nearly aligned with the range data, with a
moderate translation or misalignment typically of about 5 to 7 pixels. To correct
this, a local alignment is performed using the set of corresponding control points.

For the arrangement used in these experiments, f = 300 pixels, ∆Y = 5 cm
and the range of the points is r = 5− 8 m, and β is between 6 to 10 pixel units.
Figure 4 shows a samples of the registered panorama mosaic (top) and range
image (bottom). It is important to note that the registration was computed
using only partial range data as an input, but we show the complete range map
for viewing purposes.

Fig. 4. A registered intensity (top) and range (bottom) data collected from our lab.



5 Range synthesis

After registering the intensity and partial range data at every robot pose, we
apply our range synthesis method. The following sections detail our statistical
learning method for depth recovery. Specifically, we estimate dense or high reso-
lution range maps of indoor environments using only intensity images and sparse
partial depth information. Markov Random Field (MRF) models are proposed
as a viable stochastic model for the spatial distribution of intensity and range
data. This model is trained using the (local) relationships between the observed
range data and the variations in the intensity images and then used to compute
unknown depth values. The MAP-MRF estimation is achieved by using the belief
propagation (BP) algorithm.

5.1 The MRF Model

The range estimation problem can be posed as a labeling problem. A labeling is
specified in terms of a set of sites and a set of labels. In our case, sites represent
the pixel intensities in the matrix I and the labels represent the depth values in
R. Let S index a discrete set of M sites S = {s1, s2, ..., sM}, and L be the set
of corresponding labels L = {l1, l2, ..., lM}, where each li takes a depth value.
The inter-relationship between sites and labels define the neighborhood system
N = {Ns | ∀s ∈ S}, where Ns is the set of neighbors of s, such that (1) s 6∈ Ns,
and (2) s ∈ Nr ⇐⇒ r ∈ Ns. Each site si is associated with a random variable
(r.v.) Fi. Formally, let F = {F1, ..., FM} be a random field defined on S, in
which a r.v. Fi takes a value fi in L. A realization f = f1, ..., fM , is called a
configuration of F, corresponding to a realization of the field. The r.v. F defined
on S are related to one another via the neighborhood system N . F is said to be
an MRF on S with respect to N iff the following two conditions are satisfied [4]:

1) P (f ) > 0 (positivity), and 2) P (fi | fS−{i}) = P (fi | fNi) (Markovianity).

where S − {i} is the set difference, fS−{i} denotes the set of labels at the sites
in S − {i} and fNi

= {f ′i | i′ ∈ Ni} stands for the set of labels at the sites
neighboring i. The Markovianity condition describes the local characteristics of
F. The depth value (label) at a site is dependent only on the augmented voxels
(containing intensity and/or range) at the neighboring sites. In other words, only
neighboring augmented voxels have direct interactions on each other.

The choice of N together with the conditional probability distribution of
P (fi | fS−{i}), provides a powerful mechanism for modeling spatial continuity
and other scene features. On one hand, we choose to model a neighborhood Ni

as a square mask of size n×n centered at pixel location i, where only those aug-
mented voxels with already assigned intensity and range values are considered
in the synthesis process. On the other hand, calculating the conditional proba-
bilities in an explicit form to infer the exact maximum a posteriori (MAP) in
MRF models is intractable. We cannot efficiently represent or determine all the
possible combinations between pixels with its associated neighborhoods. Various
techniques exist for approximating the MAP estimate, such as Markov Chain



Fig. 5. Pairwise Markov network for the range estimation problem.

Monte Carlo (MCMC), iterated conditional modes (ICM), etc. We avoid the
computational expense of sampling from a probability distribution and use the
belief propagation algorithm to compute marginal probabilities.

5.2 MAP-MRF using Belief Propagation (BP)

In order to propagate evidence, we use a pairwise Markov network. BP efficiently
estimates Bayesian beliefs in the MRF network by iteratively passing messages
between neighboring nodes. The pairwise Markov network for the range estima-
tion problem is shown in Fig. 5, where the observation node yi is a neighborhood
in intensity centered at voxel location i, and the hidden nodes xi are the depth
values to be estimated, but also hidden nodes contain the already available range
data (as image patches), whose beliefs remain fixed at all times.

Learning the Compatibility Functions A local subset of patches containing
intensity and range are used as training pairs to learn the compatibility func-
tions. This reflects our heuristics about how the intensity values locally provide
knowledge about the type of surface that intensity value belongs to.

As in [3], we use the overlapping information from the intensity image
patches themselves, to estimate the compatibilities Ψ(xj , xk) between neighbors.
Let k and j be two neighboring intensity image patches. Let dl

jk be a vector of
pixels of the lth possible candidate for image patch xk which lie in the overlap
region with patch j. Likewise, let dm

kj be the values of the pixels (in correspon-
dence with those of dl

jk) of mth candidate for patch xj which overlap patch k.
We say that image candidates xl

k (candidate l at node k) and xm
j are compatible

with each other if the pixels in their region of overlap agree. We assume a Gaus-
sian noise of covariance σi and σs, respectively. Then, the compatibility matrix
between range nodes k and j are defined as follows:

Ψ(xl
k, x

m
j ) = exp−|d

l
jk−dm

kl|
2/2σ2

s . (9)

The rows and columns of the compatibility matrix Φ(xl
k, x

m
j ) are indexed by l

and m, the range image candidates at each node, at nodes j and k.
We say that a range image patch candidate xl

k is compatible with an observed
intensity image patch y0 if the intensity image patch yl

k, associated with the



range image patch candidate xl
k in the training database matches y0. Since it

will not exactly match, we must again assume ”noisy” training data and define
the compatibility

Φ(xl
k, yk) = exp−|y

l
k−yo|2/2σ2

s . (10)

The maximum a posteriori (MAP) range image patch for node i is:

xiMAP = arg max Φ(xi, yi)
∏

j∈N(i)

Mji(xi). (11)
xi

where N(i) are all node neighbors of node i, and Mji is the message from node
j to node i and is computed as follows (Z is the normalization constant):

Mij(xj) = Z
∑
xi

Ψ(xi, xj)Φ(xi, yi)
∏

k∈N(i)\{j}

Mki(xi) (12)

An example of applying our range synthesis algorithm is shown in Fig. 6. In
(a) is the input intensity, (b) the intensity edges and (c) the input partial range
data, where 50% of the total range is unknown. The resulted synthesized range
image is shown in (d), and the ground truth range image in (e), for comparison
purposes. The MAR error for this example is 7.85 cm.

(a) Input intensity data (b) Intensity edges

(c) Input range (50% is unknown range) (d) Synthesized range image

(e) Ground truth range

Fig. 6. Results on dense range map estimation. (a)-(c) Input data to our range synthesis
algorithm. (b) The synthesized range image and (e) the ground truth range.



6 Conclusions

The ability to reconstruct a 3D model of an object or scene greatly depends
on the type, quality and amount of information available. The data acquisition
framework described here was designed to speed up the acquisition of range data
by obtaining a relatively small amount of range information from the scene to be
modeled. By doing so, we compromise the accuracy of our final representation.
However, since we are dealing with man-made environments, the coherence of
surfaces and their causal inter-relationships with the photometric information
facilitate the estimation of complete range maps from the partial range data.
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