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Abstract. In this paper, we consider the problem of color restoration
using statistical priors. This is applied to color recovery for underwater
images, using an energy minimization formulation. Underwater images
present a challenge when trying to correct the blue-green monochrome
look to bring out the color we know marine life has. For aquatic robot
tasks, the quality of the images is crucial and needed in real-time. Our
method enhances the color of the images by using a Markov Random
Field (MRF) to represent the relationship between color depleted and
color images. The parameters of the MRF model are learned from the
training data and then the most probable color assignment for each pixel
in the given color depleted image is inferred by using belief propagation
(BP). This allows the system to adapt the color restoration algorithm to
the current environmental conditions and also to the task requirements.
Experimental results on a variety of underwater scenes demonstrate the
feasibility of our method.

1 Introduction

High quality image data is desirable for many underwater inspection and obser-
vation tasks. Particularly, vision systems for aquatic robots [3, 6, 9] must cope
with a host of geometrical distortions: colour distortions, dynamic lighting condi-
tions and suspended particles (known as ’marine snow’) that are due to inherent
physical properties of the marine environment. All these distortions cause poor
visibility and hinder computer vision tasks, e.g., those based on stereo triangu-
lation or on structure from motion.

Image restoration in general, involves the correction of several types of degra-
dation in an image. Traditionally, the most common sources of degradation are
due to imperfections of the sensors, or in transmission. Underwater vision is
plagued by poor visibility [11, 10] (even in the cleanest water). Additional factors
are the ambient light, and frequency-dependent scattering and absorption, both
between the camera and the environment, and also between the light source (the
sun) and the local environment (i.e. this varies with both depth and local water
conditions). The light undergoes scattering along the line of sight. The result
is an image that is color depleted (typically appearing bluish), blurry and out



of focus. In this paper, we focus on the specific problem of restoring/enhancing
the color of underwater images. The term color refers to the red, green and blue
values (often called the color channels) for each pixel in an image. Prominent
blue color of clear ocean water, apart from sky reflection, is due to selective
absorption by water molecules. The quality of the water determines its filter-
ing properties. The greater the dissolved and suspended matter, the greener (or
browner) the water becomes. The time of day and cloudiness of the sky also have
a great effect on the nature of the light available. Another factor is depth, once at
sufficient depth, no amount of filtration can effectively restore color loss. Due to
the nature of underwater optics, red light diminishes when the depth increases,
thus producing blue to grey like images. By 3m in depth there is almost no red
light left from the sun. By 5m, orange light is gone, by 10m most yellow is also
gone. By the time one reaches 25m only blue light remains [4]. Since many (if
not all) of the above factors are constantly changing, we cannot really know all
the effects of water.

Color recovery is not a simple linear transform since it depends on distance
and it is also affected by quantization and even light source variations. We pro-
pose a learning based Markov Random Field model for color correction based
on training from examples. This allows the system to adapt the algorithm to
the current environmental conditions and also to the task requirements. As pro-
posed in[7], our approach is based on learning the statistics from training image
pairs. Specifically, our MRF model learns the relationships between each of the
color training images with its corresponding color depleted image. This model
uses multi-scale representations of the color corrected (enhanced) and original
images to construct a probabilistic enhancement algorithm that improves the
observed video. This improvement is based on a combination of color matching
correspondences from the training data, and local context via belief propagation
(BP), all embodied in the Markov Random Field. Training images are small
patches of regions of interest that capture the maximum of the intensity varia-
tions from the image to be restored.

This paper is structured as follows. Section 2 briefly consider some of the
related prior work. Section 3 describes our method for color correction. Defining
the MRF model and the inference approach using BP. Section 4 tests the pro-
posed algorithm on two different scenarios with several types of experimental
data each. Finally, in Section 5 we give some conclusions and future directions.

2 Related Work

There are numerous image retouching programs on the market that have easy-
to-use, semi-automated image enhancement features. But since they are directed
at land-based photography, these features do not always work with underwater
images. Learning to manipulate the colors in underwater images with computer
editing programs requires patience. Automated methods are essential, specially
for real-time applications (such as aquatic inspection). Most prior work on im-
age enhancement tend to approximate the lighting and color processes by ideal-



ized mathematical models. Such approaches are often elegant, but may not be
well suited to the particular phenomena in any specific real environment. Color
restoration is an ill-posed problem since there is not enough information in the
poor colored image alone to determine the original image without ambiguity. In
their work, Ahlen et al. [1] estimate a diffuse attenuation coefficient for three
wavelengths using known reflectance values of a reference gray target that is
present on all tested images. To calculate new intensity values they use Beer’s
Law, where the depth parameter is derived from images that are taken at differ-
ent depths. Additional parameters needed are the image enhancements functions
built into the camera. In general, their results are good, but the method’s effi-
ciency depends highly on the previously noted parameters. In [14] a method that
eliminates the backscatter effect and improves the acquisition of underwater im-
ages with very good results is presented. Their method combines a mathematical
formula with a physical filter normally used for land photography. Although the
method does not perform color correction, the clarity achieved on the underwater
images may allow for color correction.

3 Our MRF-BP Approach for Color Correction

The solution of the color correction problem can be defined as the minimum of an
energy function. The first idea on which our approach is based, is that an image
can be modeled as a sample function of a stochastic process based on the Gibbs
distribution, that is, as a Markov Random Field (MRF) [8]. We consider the color
correction a task of assigning a color value to each pixel of the input image that
best describes its surrounding structure using the training image patches. The
MRF model has the ability to capture the characteristics between the training
sets and then used them to learn a marginal probability distribution that is to
be used on the input images. This model uses multi-scale representations of the
color corrected and color depleted (bluish) images to construct a probabilistic
algorithm that improves the color of underwater images. The power of our tech-
nique is evident in that only a small set of training patches is required to color
correct representative examples of color depleted underwater images, even when
the image contains literally no color information. Each pair of the training set is
composed by a color-corrected image patch with its corresponding color-depleted
image patch. Statistical relationships are learned directly from the training data,
without having to consider any lighting conditions of specific nature, location or
environment type that would be inappropiate to a particular underwater scene.
We use a pairwise MRF model, which is of particular interest in many low-level
vision problems.

3.1 The Pairwise MRF Model

Denote the input color depleted image by B = {bi}, i = 1, ..., N , where N ∈ Z

is the total number of pixels in the image and bi is a triplet containing the
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Fig. 1. (b) Pairwise Markov Random Field used to model the joint probability dis-
tribution of the system. Observation nodes, y, represent an image patch in the bluish
image (a), and hidden nodes x, an image patch in the color image (b) to be inferred.

RGB channels of pixel location i. We wish to estimate the color-corrected image
C = {ci}, i = 1, ..., N , where ci replaces the value of pixel bi with a color value.

A pairwise MRF model (also known as Markov network) is defined as a set
of hidden nodes xi (white circles in the graph) representing local patches in the
output image C, and the observable nodes yi (shaded circles in the graph) rep-
resenting local patches in the input bluish image B. Each local patch is centered
to pixel location i of the respective images. Figure 1 shows the MRF model for
color correction.

Denoting the pairwise potentials between variables xi and xj by ψij and
the local evidence potentials associated with variables xi and yi by φi (see Fig-
ure 2), the joint probability of the MRF model under variable instantiation
x = (x1, ..., xN ) and y = (y1, ..., yN ), can be written [2, 8] as:

P (x, y) =
1

Z

∏

ij

ψij(xi, xj)
∏

i

φi(xi, yi), (1)

where Z is the normalization constant. We wish to maximize P (x, y), that is, we
want to find the most likely state for all hidden nodes xi, given all the evidence
nodes yi.

The compatibility functions allows to set high (or low) compatibilities to
neighboring pixels according to the particular application. In our case, we wish
to preserve discontinuities (edges) in the input (color depleted) image to avoid
over smoothing the color corrected image. Thus, we set high compatibility be-
tween neighboring pixels that have similar colors, and low compatibility between
neighboring pixels with abrupt change in color values. These potentials are used
in messages that are propagated between the pixels to indicate what color or
combination of intensities each image pixel should have.



Fig. 2. The potential functions φ and ψ define the compatibilities between nodes in
the Markov network.

A color pixel value in C is synthesized by estimating the maximum a posteri-
ori (MAP) solution of the MRF model using the training set. The MAP solution
of the MRF model is:

xMAP = arg max P (x | y), (2)
x

where

P (x | y) ∝ P (y | x)P (x) ∝
∏

i

φi(xi, yi)
∏

(i,j)

ψij(xi, xj) (3)

Calculating the conditional probabilities in an explicit form to infer the exact
MAP in MRF models is intractable. We cannot efficiently represent or determine
all the possible combinations between pixels with its associated neighborhoods.
Various techniques exist for approximating the MAP estimate, such as Markov
Chain Monte Carlo (MCMC), iterated conditional modes (ICM), maximizer of
posterior marginals (MPM), etc. See [5] for a comparison. In this work, we
compute a MAP estimate, by using a learning-based framework on pairwise
MRFs, as proposed by [7], using belief propagation (BP).

The compatibility functions φ(xi, yi) and ψ(xi, xj) are learned from the train-
ing set using the patch-based method in [7]. They are usually assumed to obey
a Gaussian distribution to model Gaussian noise. The φi(xi, yi) compatibility
function is defined as follows

φi(xi, yi) = e−|yi−yxi
|2/2σ2

i (4)

where xi is a color-corrected patch candidate, yxi
is the corresponding bluish

patch of xi, and yi is the bluish patch in the input image.

The image is divided so that the corresponding color-corrected patches over-
lap. If the overlapping pixels of two node states match, the compatibility between
those states is high. We define ψ(xi, xj) as:

ψij(xi, xj) = e−dij(xi,xj)/2σ2

i (5)

where dij is the difference between neighborhoods i and j (Section 3.3 defines
the precise similarity measure we use).



Images in the training set are pairs of small image regions of the bluish image
with its corresponding color-corrected image, thus the compatibility functions
depend on each particular input image.

3.2 MRF-MAP inference using BP

Belief propagation (BP) was originally introduced as an exact algorithm for
tree-structured models [12], but it can also be applied for graphs with loops,
in which case it becomes an approximate algorithm, leading often to good ap-
proximate and tractable solutions [15]. For MRFs, BP is an inference method
to efficiently estimate Bayesian beliefs in the network by the way of iteratively
passing messages between neighboring nodes.

The message send from node i to any of its adjacent nodes j ∈ N(i) is

mij(xj) = Z
∑

xi

ψ(xi, xj)φ(xi, yi)
∏

k∈N(i)\{j}

mki(xi) (6)

where Z is the normalization constant. The maximum a posteriori scene patch
for node i is:

xiMAP = arg max φ(xi, yi)
∏

j∈N(i)

mji(xi). (7)
xi

The BP algorithm is not guaranteed to converge, but if it does so, then it
converges to a local stationary point of the Bethe approximation to the free
energy [17]. In our experiments, the BP algorithm usually converges in less than
10 iterations. And it is also notable that BP is faster than many traditional
inference methods.

Candidate states for each patch are taken from the training set. Fore each
bluish patch in the image, we search the training set for patches that best re-
semble the input. The color-corrected patches corresponding the best k patches
are used as possible states for the hidden nodes.

The algorithm for color correction can be summarized as follows:

1. Divide the training images (both the bluish and color images) into small
patches, which form the sets of xi’s and yi’s.

2. For each input patch yi, find the k closest yxi
’s. The corresponding xi’s are

the candidates for that patch. Calculate the compatibility function φ(xi, yi)
according to Eq. 4.

3. For each pair of neighboring input patches, calculate the k× k compatibility
function ψ(xi, xj) according to Eq. 5.

4. Estimate the MRF-MAP solution using BP.
5. Assign the color value of the center pixel of each estimated maximum

probability patch xiMAP to the corresponding pixel in output image C.



3.3 Implementation issues

Measuring the dissimilarity between image patches is of crucial for obtaining
quality results, especially when there is a prominent color (blue or green) as in
underwater images. Color information can be specified, created and visualized
by different color spaces (see [16] for more information about color spaces). For
example, the RGB color space, can be visualized as a cube with red, green and
blue axes. Color distance is a metric of proximity between colors (e.g. Euclidean
distance) measured in a color space. However, color distance does not necessar-
ily correlate with perceived color similarity. Different applications have different
needs which can be handled better using different color spaces. For our needs
it is important to be able to measure differences between colors in a way that
matches perceptual similarity as good as possible. This task is simplified by the
use of perceptually uniform color spaces. A color space is perceptually uniform if
a small change of a color will produce the same change in perception anywhere
in the color space. Neither RGB, HLS or CIE XYZ is perceptually uniform.

The (nonlinear) conversions from RGB to CIE Lab are given by: 1





X
Y
Z



 =





0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227









R
G
B





L∗ =

{

116(Y/Yn)1/3 − 16 if Y/Yn > 0.008856
903.3(Y/Yn) otherwise

a∗ = 500[f(X/Xn)1/3 − f(Y/Yn)1/3]

b∗ = 200[f(Y/Yn)1/3 − f(Z/Zn)1/3]

where

f(t) =

{

t1/3 if Y/Yn > 0.008856
7.787t+ 16/116 otherwise

We use the CIE Lab space which was designed such that the equal distances
in the color space represent equal perceived differences in appearance. Color
difference is defined as the Euclidean distance between two colors in this color
space:

∆E∗
ab =

√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (8)

where ∆L∗, ∆a∗, and ∆b∗ are the differences between two color pixel values.
This is the similarity measure used to select possible candidates to define the

compatibility functions and also to evaluate the performance of our method. Our
algorithm uses a pixel-based synthesis, i.e. one pixel (color) value ci is estimated
at a time.

1 Following ITU-R Recommendation BT.709, we use D65 as the reference white point
so that [Xn, Yn, Zn] = [0.9504511.088754] (see [13])



4 Experimental results

We test the proposed approach in two different scenarios. In the first scenario,
we use color underwater images available on the web 2 as our ground truth data.
These images were taken with a professional camera and in most of the cases
they were also enhanced by using a commercial software. The second scenario,
involves the acquisition of underwater video by our aquatic robot. Sections 4.1
and 4.2 describe these scenarios with the experimental results.

4.1 Scenario 1

In order to simulate the effects of water, an attenuation filter were applied to
each of the color underwater image. Figure 3a shows the ground truth (color)
image and Figure 3b, the simulated (color depleted) image after applying the
attenuation filter. Since we have ground truth information, we can compute
the performance of our algorithm. The images in the training set correspond
to small image regions extracted from the ground truth image and the color
depleted image (see Figure 4).

(a) (b)

Fig. 3. (a) The ground truth (color) image. (b) The simulated bluish image (this is the
test image to be color corrected by our algorithm).

These images correspond to regions of interest in terms of the variations in
pixel color values , thus the intention is that they capture the intrinsic statistical
dependencies between the color depleted and ground truth pixel values. The size
of the neighborhoods in all experiments were 5 × 5 pixels, the overlapping area
between image patches 2 × 5 pixels, and the number of possible candidates k,
was fixed to be 10. Figure 5a shows the training image patches from where our
algorithm learns the compatibility functions and Figure 5b shows the resulted
image after running our learning-based method. The color-corrected image looks

2 http://www.pbase.com/imagine



Fig. 4. Diagram showing how the training image pairs are acquired for the Scenario 1.

(a) (b)

Fig. 5. (a) The training image patches used to learn the compatibility functions. (b)
The color corrected image.

good, the discontinuities and edges are preserved since our method assign colors
pixel by pixel, thus avoiding over-smoothing. Also, there are no sudden changes
in color which are typically both unrealistic and perceptually unappealing. To
evaluate the performance of our algorithm, we compute the mean absolute resid-
ual (MAR) error between the ground truth and the color corrected images. As
mentioned in Section 3.3, the CIELab metric was used to calculate the simi-
larities between pixels in the images. For this case, the MAR error is 6.5. For
comparison purposes, we calculate the MAR error between the input (color de-
pleted) image and the ground truth image, this is 22.03.

Using the same input image (Figure 5b), we now show how the final result
varies depending on the training data. In Figure 6, 4 examples when using dif-
ferent training pairs are shown. For example, Figure 6a shows a color-corrected
image when using training pairs (1) and (3) (see Figure 5a). The MAR errors are
9.43, 9.65, 9.82, and 12.20, respectively. It can be seen that the resulting images
are limited to the statistical dependencies captured by the training pairs.

Three more examples of underwater scenes are shown in Figure 7. Each row
shows from left to right, the ground truth color image, the input bluish image



(a) (b)

(c) (d)

Fig. 6. Color correction results using different training sets. The input image is shown
in Figure 3b. The training pairs (labeled) are shown in Figure 5a. Results using training
pair (a) (1) and (3); (b) (2) and (3); (c) (1) and (2), and (d) (1).

and the color corrected image after running our algorithm. The training image
regions are shown by squares in the corresponding color and bluish images. In
general the results looks very good. For the last two examples, the size of the
image patches in the training set is very small and enough to capture all the
statistical dependencies between bluish and color information, as a result, the
number of total comparisons in our algorithm is reduced and speed is achieved.

It was previously mentioned, that underwater images also contain some blur-
riness. In Figure 8, we show an example of applying our algorithm to a blurry
and color depleted image at the same time. From left to right are, the ground
truth image, the input image given to our algorithm and the color-corrected and
deblurred image after running our algorithm.

4.2 Scenario 2: The aquatic robot in action

As our aquatic robot [9] swims through the ocean, it takes video images. Figure 9
shows a picture of our aquatic robot in action.

In order to be able to correct the color of the images, training data from the
environment that the robot is currently seeing needs to be gathered. How can



Fig. 7. More examples. The training pairs are indicated by the squares in the original
and input images respectively.

better images be acquired? As light is absorbed selectively by water, not only
does it get darker as you go deeper, but there is a marked shift in the light source
color. In addition, there are non-uniformities in the source amplitude. Therefore,
the aquatic robot needs to bring its own source of white light on it. However,
due to power consumption, the light cannot be left turned on. Therefore, only
at certain time intervals, the robot stops, turns its light on and take an image.
These images are certainly much better, in terms of color and clarity, than the
previous ones, and they can be used to train our algorithm to color correct
neighboring frames (under the assumption that neighboring frames are similar).
Figure 10 shows this scenario, here frame t3 represents the image pair to be used
to train our model for color correction.

Now we show an example. Figures 11a,b show the training image pair cap-
tured at time t. The robot moves around and then at time t+ δ takes an image
(Figure 11c), which is input to our algorithm. The resulting color-corrected im-
age is shown in Figure 11d. Since we do not have ground truth data for this



(a) (b)

(c)

Fig. 8. An example of color correcting and deblurring at the same time. The training
pairs are indicated by the boxes in the original (a) and input images (b) respectively.
(c) is the color-corrected and deblurred image.

scenario, we cannot measure the performance of our algorithm, however it can
be seen that the resulting image looks visually good.

5 Summary and Conclusions

Color restoration and image enhancement are ubiquitous problems. In particular,
underwater images contain distortions that arise from multiple factors making
them difficult to correct using simple methods. In this paper, we show how to for-
mulate color recovery and more general enhancement as an energy minimization
problem using learned constraints. This approach’s novelty lies in using a pair
of images to constrain the reconstruction. There are some factors that influence
the quality of the results, such as the adequate amount of reliable information
as an input and the statistical consistency of the images in the training set.
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