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Abstract— We consider the use of visual target tracking for
autonomous steering of an underwater robot. In this context, we
consider a performance comparison for three key visual tracking
algorithms used for servo control. We present a comparative
study of the performance in underwater environments of three
tracking algorithms that are widely used in vision applications.
Variations in illumination, suspended particles and a resulting
reduction in visibility hinders vision systems from performing
satisfactorily in marine environments; at least not as well as
they do in terrestrial (i.e. non-underwater) surroundings. Our
work focuses on quantitatively measuring the performance of
three color-based tracking algorithms– color blob tracker, color
histogram tracker and mean-shift tracker, in tracking objects
underwater in different levels lighting and visibility. We also
present results demonstrating the effect of suspended particles
underwater, and in conclusion we summarize the three tracking
algorithms by comparing their pros and cons.

I. INTRODUCTION

We consider the use of visual target tracking for autonomous
steering of an underwater robot. In this context, we consider
a performance comparison for three key visual tracking algo-
rithms used for servo control. Using vision sensors in under-
water applications has certain desirable properties, compared
to other more ’traditional’ sensing methods like sonar or infra-
red (IR). Vision is a passive sensing medium, unlike sonar or
IR sensors, which makes it energy-efficient (in spite of the
power required for the sensor, i.e.camera). This purely passive
operation of vision also makes it desirable in marine biology
applications such as monitoring coral reefs and registering
fish population in particular habitats in the ocean. Along with
the need for a sensor to collect data, autonomous underwater
vehicles are becoming an increasingly effective and robust
technology [1][2]. The majority of these vehicles have no
working vision sensors for achieving autonomous operation,
mostly relying on active and passive sonar to navigate. In
recent work, underwater vehicles have been deployed for
shallow-water navigation using vision as the primary sensing
mechanism [3]. One of the main causes of vision being
neglected, is the effect underwater objects and the water
medium itself exerts on light beams. We take a closer look
at these effects, particularly the effects on color objects and
on algorithms that track these objects.

The propagation of light underwater is complicated by
several phenomena which affect both the illuminant and the
light rays reflected from the object to the sensor. In particular,
these are refraction, absorption and scattering [4]. Refraction,
which causes light rays to bend while passing from one
medium to another, is the reason for over– or under-estimation
of depth. Waves and different salinity levels of sea-water also
cause light rays to be bent at different angles even while
passing through water. Scattering causes individual photons of
light to be deflected or diverted, and is frequency dependant.
Contrast between objects are greatly reduced underwater and
also the transmission of color hues are influenced massively by
scattering. Absorption of light is another common phenomenon
underwater, as a large amount of light is lost with increased
depth from the air-water surface. This phenomenon is also
frequency dependant, which makes detection of certain colors
difficult. These three phenomena uniquely alter behavior of
light beams underwater, and hence influencing the way vision
algorithms perform.

In section II, we discuss some background work regarding
color tracking and the three algorithms we investigate. A brief
discussion of the effects on light of open-ocean underwater
environments also appears in that section. Section III describes
the experimental setup used. Section IV gives the results
of the tracking operations using the three approaches. We
discuss with illustrations in Section V the implications of
the results from Section IV, and attempt to characterize the
salient features of underwater optics that can be exploited for
enhanced visual tracking underwater. We conclude in Section
VI by stating the future directions for this work and the
ultimate objective of making our robot operate robustly using
vision-dependent autonomy.

II. COLOR TRACKING

Using color features in visual tracking is an attractive
option because of its simplicity and robustness under partial
occlusion, depth and scale changes [5]. Nevertheless, there
exist some significant problems that need to be addressed
in order to design a robust and accurate color tracker. The
biggest problem existing with color cues is color constancy



[6], which is defined as the removal of color bias due to effect
of illumination. Issues like shadows, change in illumination
and camera characteristics affect the phenomenon of color
constancy. Since we are considering color trackers suitable
for real-time applications such as UAVs, we seek a robust and
efficient representation of the object colors, resulting in faster
and accurate computation. The color space [5] [7] plays an
important role in computational accuracy and robustness. We
present the RGB and the HSV color spaces as a precursor to
the tracking approaches we employ. Tracking algorithms used
in the experiments all operate in the normalized-RGB (i.e. hue)
space, which is obtained by dividing individual RGB values of
each pixel by the sum of the values in the R,G and B channels.
These tracking algorithms are also integrated into an on-line
vehicle control system [8], as shown in Figure 1.

A. The RGB Color Space

The RGB(Red-Green-Blue) color space is a predominant
representation for color representation. The RGB space uses a
Cartesian coordinate system and forms a unit cube as shown
in Figure 2.

In the normalized RGB space, each of the red, green and
blue pixel values are divided by the sum of the RGB pixel
values, such that the sum normalizes to one. The normalized
RGB space is more stable to intensity and lighting variations,
although there is an added overhead of transforming from the
RGB to the normalized RGB space. We have also investigated
the possibility of using the HSV color space, although further
discussion of this color model is precluded due to space
consideration.

B. Color Blob Tracking

The simplest approach to color based tracking is using a
segmentation algorithm to detect objects of interest using their
color features. The output of the segmentation algorithm is
(possibly disconnected) regions in a binary image that match
the color properties being tracked. These regions are termed
‘blobs’, and hence the approach is known as color blob track-
ing. We attempt to form these blobs through a thresholding
process. By thresholding, we refer to the operation where
pixels are turned ‘on’ if and only if their color values fall
within a certain range and turned ‘off’ otherwise.

The blob tracker used for the experiments use the average
normalized RGB values in a fixed-size window to set the low

Fig. 1. Visual tracking integrated with vehicle control.
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Fig. 2. The RGB color space.

and high thresholds for the segmentation process.

C. Color Histogram Tracking

The color histogram [10] tracker works by first creating a
color histogram of a fixed subregion of the image, presumably
in the immediate neighborhood of the target to be tracked,
which we refer to as the target model histogram. During
the tracking stage, every incoming frame from the camera
is divided into rectangular regions and their histograms are
calculated. The similarities between the new candidate his-
togram and the target model histogram is calculated following
one of several possible distance measures (to be discussed
below). The subwindow with the highest match is chosen as
the probable subwindow containing the target. The pattern of
scanning the image for the target can be done sequentially, or
in a spiral pattern starting from the location of target found in
the previous frame. Depending on the application, the size
and shape of the subwindow can also be made to change
dynamically, although that makes the tracker computationally
slightly expensive.

D. Mean-Shift Tracking

Mean-shift tracking [11] performs visual tracking by at-
tempting to maximize the correlation between two statistical
models of the underlying color distribution in the image. The
correlation between the two distributions is expressed as a
measurement derived from the Bhattacharyya coefficient [12].
Mean-shift trackers have been used to track objects based on
color or texture, by building a statistical distribution of the
feature being tracked. In effect, the mean-shift tracker relies
on the mean-shift vector [13] to detect the direction of the
change in gradient and correspondingly point to the (possible)
new location of the target being tracked.

E. Distribution Similarity Measures

The tracking algorithms depend on a statistical measurement
of similarity between two histograms to detect a possible
match between the target and a candidate location. The follow-
ing four methods of measurements are used in the experiments.
We assume two histograms H and K, both having the same
number of bins, N . The measurements compare hi and kj for



i = j, where hi and kj are the i-th and j-th bins of histograms
H and K respectively.

1) Histogram Intersection Measure: The histogram inter-
section similarity measurement is calculated using the follow-
ing formula:

d∩(H,K) = 1 −
∑

i min(hi, ki)∑
i ki

(1)

This measurement has been proved useful in comparing his-
tograms of different sizes [14].

2) The χ2 (Chi-Squared) Measure: The χ2 (chi-squared)
metric is a measurement of the probability that one distribution
was drawn from the other. The χ2 measure is calculated by:

dχ2(H,K) = 1 −
∑

i

(hi − mi)2

mi
(2)

where,

mi =
hi + ki

2

The χ2 metric does not permit the data in the underlying
distributions to be percentages; they must be raw data. Also,
the measured values have to be independent and observed
frequencies must not be too small.

3) The Bhattacharyya Distance Measure: The Bhat-
tacharyya coefficient has a direct geometric interpretation
with respect to two distributions; for two m-dimensional unit
vectors p and q, it is equal to the cosine of the angle between
them. The Bhattacharyya distance between two histograms can
be found using the following expression:

ρBhattacharyya(H,K) =
m∑

i=1

√
kihi (3)

It has been shown [13] that this measure is near-optimal
and possesses scale invariant properties.

4) Jeffrey’s Divergence: Jeffrey’s Divergence has been de-
rived from the Kullback-Leibler (K-L) divergence. The KL
divergence measure is an information theoretic measure that
can be interpreted as the inefficiency of transforming one
distribution to the other using a code book. The KL measure,
however is sensitive to quantization effects in the histogram
computation (i.e bin size). Jeffrey’s divergence is an empiri-
cally derived divergence that is numerically stable, insensitive
to histogram binning and also robust in the presence of noise.
The Jeffrey’s divergence measure of similarity is calculated as
follows:

ρJ (H,K) = 1 −
m∑

u=1

(hilog
hi

mi
+ kilog

ki

mi
) (4)

where

mi =
hi + ki

2
(5)

III. EXPERIMENTAL SETUP

We obtain footage from a controlled underwater environ-
ment of two targets of different color characteristics and run
our tracking algorithms on this video footage. Lighting levels
are varied and the water is disturbed to observe the effect
of underwater currents. To create realistic underwater envi-
ronments, we fill one-third of a glass tank of approximately
122.5cm × 61.5cm × 61.5cm with water. The bottom of the
tank contains dead coral; for sediment, we use all-purpose
sand for the bottom of the tank. The camera is placed at
one end outside the tank, using a black lens hood to optically
insulate the lens from receiving light from outside the tank.
For each type of target, two sequences are recorded– one with
low lighting and no water disturbance and one with increased
lighting and disturbance. All three types of trackers are used on
these four sequences, giving a total of 12 tracking sequences
for the two targets. The number of frames of successful
tracking are logged against the total number of frames in
which the target is in the camera’s field of view. We also
obtain automatically the time span over which the trackers are
able to successfully follow the target, since the frame-rate is
constant throughout the sequences.

As mentioned before, the color blob tracker uses the average
normalized RGB values in a 5×5 pixel window to set the low
and high thresholds for the segmentation process. We use a
median filtering algorithm [15] on a 5× 5 window to remove
‘salt-and-pepper’ noise. The histogram tracker uses a 64-bin
cumulative normalized histogram for storing the underlying
color distribution. The mean-shift window used in our experi-
ments has a 50 pixel diameter. We use a 3×32 histogram, i.e.
a three-dimensional histogram with 32 bins per color channel
for the target feature. To calculate histogram similarity, we use
the Bhattacharyya distance measure described above.

Figure 3 shows one clip from each of these four sequences,
showing the targets. The following section presents the results
of tracking each of these frame sequences.

IV. EXPERIMENTAL RESULTS

As stated, the goal of this experiment is to quantitatively
analyze performances of tracking algorithms in underwater
environments to provide a vision-based autonomous behavior
for our underwater robot. We organize the results of the
tracking algorithms below, based on tracking accuracy, target
color characteristics and water and lighting conditions. Tracker
outputs are compared manually with the ground truth obtained
from the video sequences. We consider a successful tracking
output to be only those frames in which the color blob
tracker outputs a blob which contains part of the target, or
the histogram or mean-shift trackers output a location on the
image frame where a part of the target appears. Locking on
to wrong objects (suspended particles, surface reflections) are
also considered as mistracking. Table I shows the result of
tracking a green cylindrical object– a monochromatic target.

Results of tracking an object comprised of blocks of three
different colors–red, green and yellow, are listed below in
Table II.



(a) Monochromatic target,
with light & disturbance

(b) Monochromatic target,
without light & disturbance

(c) Multichromatic target,
with light & disturbance

(d) Multichromatic target,
without light & disturbance

Fig. 3. Tracked objects in different water conditions

TABLE I

TRACKING RESULTS: MONOCHROMATIC TARGET

Tracker Light/Waves Tracked Frames Missed Frames Ratio

Color blob Yes 372 234 61.39%

Histogram Yes 181 390 31.70%

Mean-shift Yes 208 366 36.24%

Color blob No 800 10 98.77%

Histogram No 697 113 86.05%

Mean-shift No 441 416 51.46%

For comparison, we show the parameters for the color blob
tracker for the green cylinder target both without and with
lighting variations and water disturbance, in Table III and IV.

Figures 4 and 5 show the color histogram distribution for
the single and multi-hued target objects, respectively. Note the
distribution of color bins are spread out more for the multi-
hued target.

V. DISCUSSION

Tables I and II give quantitative performances of each of the
tracking algorithms. As expected, the presence or absence of
disturbance and lighting variations affect each of the trackers
considerably. For the monochromatic target, we see from the
results that the color blob tracker performs the best, both with
and without variations in water and lighting. This result is not
unexpected, however, as the parameters of the blob tracker are
tuned to track single color objects. If applied to track an object
with a multitude of hues, the color blob tracker will output
multiple blobs and will end up with many false positives.

Lighting variations affect the amount of hue transmitted
through water, which in turn has an influence on the distance
up to which the target can be tracked (or even, seen by the
human eye) successfully underwater. For the monochromatic
target, Table I shows that the successful tracking ratio is
significantly lower with lighting variations and water distur-
bance than that of uniform lighting and calm water conditions.
As mentioned above, the variations in lighting added with
the water disturbance caused the target to blend in with the
background, and subsequently the trackers failed to locate it
at distances where they were successful previously. Figure
6 shows the multi-colored target under these two different
conditions, along with the outputs from the histogram tracker.
The output of the tracker is marked with a cross-hair outlined
by a circle.

Performance of the color blob tracker under normal cir-
cumstances while tracking the multicolored target is worse
than tracking under lighting variations. While not suitable for
tracking multi-hued objects, the color blob tracker has been
tuned on the yellow portion of the target block. With increased
lighting levels, the amount of hue transmitted by the yellow
block enable the blob tracker to lock on to the target in spite
of disturbances in the water.

Both the histogram and mean-shift trackers performed
poorly ( 31.7% and 36.24% success rate, respectively) tracking
the single-colored cylinder. As one would expect, this result
establishes the belief that a target object needs to have a
sufficient mix of hues to be uniquely identified by the color
distribution based trackers. The green cylinder, obviously
lacked such variety in color and was henceforth mistracked
a large number of frames by these two trackers.

Between the mean-shift and histogram trackers, we see from
Table I and II that the histogram tracker performs significantly
better than the mean-shift tracker on all but one instance. We
attribute the better performance of the histogram tracker to its
approach of performing a global search for the target. In con-
trast to the mean-shift tracker which performs a neighborhood
search of the target object based on its previous location, the
histogram tracker searches the entire input frame for a region
that exhibits high similarity with the target histogram. This is a
computationally more expensive approach than the one mean-
shift uses, but this approach has been found to work very

TABLE II

TRACKING RESULTS: MULTICHROMATIC TARGET

Tracker Light/Waves Tracked Frames Missed Frames Ratio

Color blob Yes 718 82 89.75%

Histogram Yes 391 384 50.45%

Mean-shift Yes 246 524 31.95%

Color blob No 415 385 51.88%

Histogram No 675 233 74.34%

Mean-shift No 152 760 16.67%



TABLE III

BLOB TRACKER PARAMETERS; NO LIGHT/WATER DISTURBANCE

Color Channel Low High

Red 0.287317 0.327317

Green 0.38 0.42

Blue 0.272683 0.312683

Actual Color (63,82,60)

TABLE IV

BLOB TRACKER PARAMETERS; WITH LIGHT/WATER DISTURBANCE

Color Channel Low High

Red 0.288157 0.328157

Green 0.412024 0.452024

Blue 0.239819 0.279819

Actual Color (102,143,86)

well. The added computational overhead is compensated by
the gains in tracking accuracy and robustness. It may be noted,
however, that the search region of the mean-shift window can
be expanded at an added computational cost, this in theory
matching the performance of the histogram tracker.

One instance where the mean-shift tracker actually performs
better than the histogram tracker, is during tracking the single-
colored object with lighting variations and water disturbances.
Since the histogram tracker works by looking at fixed-size
rectangular windows, it is possible for the target to appear
between two search windows, thereby confusing the tracker
and losing track. The mean-shift tracker, on the other hand,
does not change location in discrete steps. The green cylinder
object tends to blend into the background with the light
and water disturbances, and in this case we point out this
phenomenon relating to the search windows as the reason for
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Fig. 4. Color Histogram for monochromatic target.
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Fig. 5. Color Histogram for multichromatic target.

(a) With variations (b) Without variations

Fig. 6. Effect of distance and lighting variations on tracking the multichro-
matic target

poor performance from the histogram tracker.
Figure 7 shows the tracking results on one frame of the

multi-colored object. The blob tracker failed to detect the
target in this frame. The mean-shift tracker also failed to
localize the target accurately. Only the histogram tracker was
able to detect the target at the right location, even then barely
locking on to the top-right corner. The target is outlined with
a white border for clarity.

VI. CONCLUSION

We have presented a comparative discussion of three color
tracking algorithms tracking objects with different color char-
acteristics underwater. The key results are the success rates
of the individual trackers under changing lighting conditions,
disturbances in the water and motion of the targets. The
approach was found to work well in field trials on our robot
in both enclosed environments (a large pool) as well as in
the open sea. We have been able to track a yellow ball 15cm
in diameter using the color blob tracker over a distance of
27 meters on open-ocean trials on more than one occasion
(the distance being limited by the fiber-optic tether length
for the robot) [8], but those trials did not permit quantitative



(a) Histogram

(b) Mean-Shift

Fig. 7. Performance of histogram and mean-shift trackers on a colored
object. The white trapezoidal region outlines the barely visible target. The
yellow circle with the red cross-hair is where the trackers detect the target
location. Both trackers fail to localize the target properly in this case, although
the Histogram tracker performs somewhat better.

performance evaluation of the trackers. Color characteristics
of the target objects were seen to be of major significance
between the color blob and color distribution based trackers.
We observed the effects of different underwater phenomena
on lighting, and how it affects established vision algorithms
that are known to work well in terrestrial (i.e. non-underwater)
environments. The results summarize the performances of the
three tracking algorithms and attempts to characterize the
types of targets and environment conditions where each of
the trackers would be best suited for tracking.

As we have discussed before, vision underwater is restricted
by physical effects of the water medium on light rays. For
a robust, efficient and effective tracking application, vision
alone may not be sufficient, as the amount of light decreases

exponentially with depth. Nevertheless, for shallow water
applications, like monitoring marine life or servicing of marine
equipment, vision can be a valuable sensing medium. To
develop visually-guided underwater vehicles that strive for
autonomy, development of algorithms suited for underwater
vision are an absolute necessity. This study is a step towards
identifying the problems vision applications face in underwa-
ter environments, and possible solutions for those problems
without delving into the more complicated issues of novel
algorithm design. In future work, the goal is to take these
results and use them as the base for more robust, computa-
tionally efficient algorithms for underwater target tracking and
apply these algorithms to make our underwater vehicle truly
autonomous.
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