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On the Sequential Determination of Model Misfit

Peter Whaite and Frank P. Ferrie

Abstract

Many strategies in computer vision assume the existence of general purpose models
that can be used to characterize a scene or environment at various levels of abstrac-
tion. The usual assumptions are that a selected model is competent to describe a
particular attribute, and that the parameters of this model can be estimated by in-
terpreting the input data in an appropriate manner (e.g. location of lines and edges,
segmentation into parts or regions, etc.). This paper considers the problem of de-
termining when these assumptions break down so that an alternate model may be
considered or further interpretation of data performed. Speci�cally, we consider how
this can be accomplished with a minimum of a-priori knowledge using an approach
that actively builds a description of the environment (i.e. structure and noise) over
several di�erent viewpoints. We show that a gaze planning strategy used to mini-
mize model parameter variance can also be used to decide whether the model itself
provides an adequate description of the environment.
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1. Introduction

(a) (b)

(c)

a) A shaded range image scanned from above a wooden mannequin
lying face down.

b) Superellipsoids �tted to segmented data from (a). The dark dots
are the range data points. Note that the mannequin's right arm
has failed to segment and only a single model has been �tted
where two would have been preferable

c) Detail of the superellipsoid �tted to the mannequin's right arm
in (b). The dark lines on the surface show the position of the
range scans. Although the model doesn't match our perceptual
notions of what the arm should look like, it does �t the data
well.

Figure 1. Superellipsoid models �tted to a range data from a Wooden Mannequin

Many strategies in computer vision assume the existence of general purpose models
that can be used to characterize a scene or environment at various levels of abstrac-
tion. They span the range from local characterizations of orientation and curva-
ture [3, 24], to intermediate level representations involving splines and parametric
surfaces [1,7,8,24], to still more global representations for solid shape [5,14,19]. The
usual assumptions are that a selected model is competent to describe a particular
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2 On the Sequential Determination of Model Mis�t

attribute, and that the parameters of this model can be estimated by appropriate in-
terpretation of input data. But many of these estimation problems are ill-conditioned
inverse problems that cannot be solved without additional constraints derived from
knowledge about the environment [15]. This leads to a classical chicken and egg prob-
lem where model selection and parameter estimation must be dealt with concurrently,
a problem di�cult to solve given a single static view of the world.

In this paper we describe an active strategy that permits solution of both prob-
lems, i.e. model parameter estimation and model validation. The context is a system
for computing an articulated, 3-D geometric model of an object's shape from a se-
quence of views obtained by a mobile sensor (laser range�nder) that is free to select
its viewpoint [23]. Shape is characterized by general purpose models consisting of
conjunctions of volumetric primitives [5]. An active approach is used where the cur-
rent state of the model, determined from a bottom-up analysis, is used to predict
the locations of surfaces not visible in the current view. Gaze is directed to surfaces
where the prediction is least certain (maximum variance), and from there additional
measurements are made and used to update the model parameters. The validity of
the model is tested against its ability to correctly predict the locations of hidden sur-
faces. Initially both the applicability of the model and estimates of its parameters are
uncertain, but as the process unfolds with each successive planning cycle (calculation
of new gaze point, measurement, updating of model parameters), such assessments
become increasingly clear.

The emphasis of this paper is the model validation problem. Knowing when a par-
ticular model fails can provide at least two signi�cant pieces of information. First, it
can indicate when assumptions about the scene are wrong and trigger the search for
other models that provide a plausible alternative, that is, it can initiate a model selec-
tion process. Second, it can indicate when the processes leading to the determination
of model parameters have gone awry. This can be used to initiate a backtracking
procedure to re-interpret the data, particularly if the validation procedure is also
able to indicate the location of where the model breaks down. Such would be the
case if a model is known to be valid but insu�cient data are available from which to
correctly apply the model or estimate its parameters.

The example shown in Figure 1 is a case in point and part of the motivation for this
research. Figure 1a shows a laser range�nder image of a wooden mannequin rendered
as a shaded image. Based on analysis of surface features, the image is partitioned
into regions corresponding to the di�erent parts of the mannequin [6]. A further
abstraction is computed by �tting superquadric primitives to each region with the
result shown in Figure 1b [5]. At �rst glance the result appears to capture each of
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2. Estimating Parameters and Planning Gaze 3

the parts of the mannequin. However, on closer examination (Figure 1c), it can be
seen that the partitioning algorithm has missed the cues separating the arm at the
right elbow. Superquadrics are appropriate shape descriptors provided that parts are
convex, but as Figure 1c shows, do not �t the data well otherwise.

Without contextual knowledge, it is di�cult to detect such an error given a single
view of the object because there is little basis from which to reject the resulting �t.
One would have to know the loci of the occluded surfaces in order assess the model's
true �t to the data. However such knowledge is often not possible, e.g. inaccessible
viewpoints; or is expensive to obtain, e.g. time required to acquire measurements.
The compromise advocated in this paper is a sequential process that incrementally
builds its descriptions by optimizing measurement to maximize the certainty of each
model, then tests them by verifying their consistency from view to view.

The remainder of the paper is as follows. Section 2 begins with a brief overview of
optimization strategy used to plan gaze and estimate model parameters. It provides
the necessary background for Section 3 which describes the model validation process,
and presents the results of experiments which demonstrate the resulting algorithms
at di�erent noise levels and for di�erent noise models. Section 4 shows how the
situation shown in Figure 1c can be identi�ed using the gaze planning strategy and
model validation procedures. Finally, we conclude with some observations and briey
outline remaining work.

2. Estimating Parameters and Planning Gaze

In earlier work we have considered the problem of how to best direct the gaze of a
laser range scanner in order to improve estimates of model parameters and knowledge
of object surface position over a sequence of views [20,21,23].

The laser scanner is capable (after appropriate transformations) of providing the
3-D coordinates of points sampled from surfaces in the scene. In this scenario it is
assumed that the scene is well represented by a conjunction of parametric volumetric
primitives, and that data is collected by moving the scanner around on the end-
e�ector of a robot arm (Figure 2). Using methods described in [5] the data are
partitioned into sets corresponding to the parts of each visible object. It is assumed
that each data set corresponds to a sample of the surface of a single model1.

Given one of these data sets fxiji = 1; : : : ; Ng we wish to infer those parameters
â that best estimate the true parameters a of the model in the scene from which
the data was collected. In general an exact solution cannot be found because the

1In this paper superellipsoids are used to represent parts, but the approach generalizes to other
parametric models.
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4 On the Sequential Determination of Model Mis�t

Figure 2. Mobile scanner setup. A laser range�nder with a 1m3 �eld
of view is mounted on the end-e�ector of an inverted Puma 560 robot.

scanner measurements are subject to both systematic and random errors, but a good
estimate can be obtained by �nding the parameters that minimize the squared sum

�2(a) =
NX
i=1

D2(xi;a);(1)

of distances D(xi;a) of the data points from the surface of the model. Except for very
simple models and distance metrics one usually must resort to iterative techniques,
e.g. the Levenburg-Marquardt method [12,16], to perform the minimization.

Provided the estimated parameters fall within the region of parameter space around
the true parameters where D is reasonably approximated by its �rst order linear
terms, the classic statistical theory of linear models can describe the parameter er-
rors [16]. This theory tells us that when the errors described by the distance metric
are randomly sampled from a normal distribution then the error in the estimated
parameters �a = â� a can be described by a p-variate normal distribution dispersed

Proof version: August 19, 1995



2. Estimating Parameters and Planning Gaze 5

in the di�erent parameter directions by an amount determined from the matrix of
covariances C. Furthermore the quadratic form �aTC�1 �a that de�nes the distribu-
tion is itself randomly sampled from a distribution that obeys a chi-square law with
p degrees of freedom. In that case we can �nd the point of the chi-square distribution
�2

 and use it to de�ne the ellipsoid of con�dence

�aTC�1 �a < �2

;(2)

that is an ellipsoidal region of parameter space around the estimated parameters and
in which there is a probability of  that the true parameters lie.

Because of the noise in the model, and because the data are often incompletely
sampled, e.g. only one side of the model is visible from a single viewpoint, the
parameters will often be under constrained and exhibit large estimation errors. These
errors can be reduced by collecting more data, but there are liabilities in terms of cost
and accessibility; e.g. the time taken to plan and move the scanner, memory and cpu
resources consumed to process additional data, and limits on accessible viewpoints.
Ideally we would like to minimize the amount of data collected and the complexity
of the movements necessary to place the scanner in the correct position. To do so
requires the formulation of a precise relationship between the parameters that govern
the data acquisition process and those related to the model being �t.

This task is somewhat di�cult because the scanner collects data in the 3-D space of
the scene, thus making it di�cult to predict the e�ect that newly collected data points
will have on the parameter errors in the p-dimensional space of model parameters.
The approach that we have taken to solve this problem is to think of the estimated
model as a predictor of surfaces in the scene, and to quantify this error in terms
of an interval around each point on the predicted surface. We call this the surface

prediction error interval and have shown [20] that an \error bar" protruding from a
point xs on the estimated model's surface is given by the quantity

��(xs) = �
q

��2


s
@D

@a

T

Ĉ
@D

@a
(3)

where (@D=@a) is the gradient of the distance metric evaluated for the point xs on
the surface of model â, and ��2

 is a con�dence interval chosen from a chi-square
distribution as for the ellipsoid of con�dence in (2).

The practical use of this representation for optimizing data collection via gaze
planning can be explained with the aid of Figure 3. The �gure shows the surface
prediction error interval corresponding to the model �t to the arm shown earlier in
Figure 1c. In Figure 3a, the interval is coded such that darker shading represents
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6 On the Sequential Determination of Model Mis�t

higher uncertainty in surface positions as predicted by the model. Even though
the data leading to the model are acquired from a single viewpoint, the resulting
prediction extends beyond the visible surfaces and can thus serve as a basis for
planning the next gaze direction. An intuitive strategy for doing so would be to direct
the scanner to the viewpoint corresponding to the highest uncertainty of prediction.
Theoretically we can show that updating model parameters with additional data
obtained from this view will minimize the determinant of the parameter covariances
[22,23].

Figure 3a shows a parameterization of the uncertainty surface in the coordinates
of a view sphere centered on the the model (uncertainty map), and as can be seen the
uncertainty is lowest at the current scanner position, but rises rapidly to a maximum
on the opposite side of the view sphere. The optimum strategy here is to move the
scanner to the other side of the model, to sample additional data there, and to update
the model parameters. However the general problem of gaze planning is much more
complex than implied by our example. First, the prediction a�orded by the surface
error prediction interval is local, so it is unlikely that a complete set of constraining
views can be determined on the basis of the model computed from a single viewpoint.
In fact the additional data will completely alter the uncertainty map so it must be
recomputed after each iteration. Second, the prediction does not take accessibility
constraints into account, e.g. certain views may either be unreachable by the scanner,
or occluded by surfaces not visible from the current viewpoint. So, as in our example,
it is often the case that \the other side" of the model cannot be reached.

In spite of these di�culties, we have found that using uncertainty to plan incre-

mental displacements of gaze angle relative to the current viewpoint can result in
a successful strategy [21, 23]. We apply a hill climbing algorithm to the changing
uncertainty map and use the resulting path to guide the trajectory of the mobile
scanner. This can result in a near optimum a data collection strategy with respect to
the rate of convergence of model parameters. Also, lack of accessibility is often not
that great a problem. For example when representing convex surfaces with superel-
lipsoid primitives we have observed that well constrained parameter estimates can
be obtained by taking data with the scanner displaced approximately 30� either side
of the initial gaze position. This is because the model can interpolate across large
\holes" in the data set.

However the success of the exploration strategy hinges on the central assumption
that the model �ts the data. If this is not the case the parameter covariances,
and therefore the surface prediction error, do not accurately reect the constraints
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The �gure shows predicted surface uncertainty U =
q

(@D=@a)T Ĉ (@D=@a) =

� (xs)=
q

��2
 as an uncertainty map (a) where U is plotted as a function of view

sphere latitude and longitude, and as an uncertainty surface (b) where the surface of
the model is shaded such that darker shading corresponds to higher values of U .

The lines on the top of the uncertainty surface show the data collected when the scanner
was positioned at the north pole of the view sphere (latitude=90�), and to which the model
was �tted. As can be seen U is low where data exists, but increases as the model attempts
to extrapolate away from the data. The maximum uncertainty lies under the sharp ends
of the model, and is marked by the tall peaks on the uncertainty map.

The scanner is initially located at the right edge of the uncertainty map. When it moves
to the next view position it will follow the local uncertainty gradient, and will therefore
move up the center of the broad ridge extending out between the two peaks, i.e. towards
the south pole along a longitude of approximately 220�. This corresponds to a path that
samples the side of the model facing the viewer in (b).

Figure 3. Two di�erent representations for the surface prediction er-
ror interval
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8 On the Sequential Determination of Model Mis�t

placed on the model by the data. Thus to ensure a meaningful sensor trajectory it
is necessary to test the validity of the model at each iteration.

3. The Detection of Misfits

Implicit in our \bottom-up" approach to vision is the notion of \increasing speci-
�city" as processing moves from the lower to the higher layers. By doing things this
way we can build computationally intensive lower layers that operate very generally,
yet still provide usable data to higher layers designed for speci�c tasks. However spe-
cialized algorithms are usually tuned to a set of assumptions more restrictive than
can be truthfully applied to input data processed by the lower layers. Consequently
it is necessary to check the validity of the data before proceeding.

Such a necessity becomes apparent when we �t volumetric models to segmented
range data. The segmentation algorithm we use [5] deliberately avoids detailed as-
sumptions about the exact shape of the primitives (e.g. that they be symmetric) and
requires only that they be convex. To this segmented data we �t models designed to
represent the kinds of shapes expected in the world. In our case, because they can
economically portray a wide range of symmetrical shapes, we use superellipsoids. The
problem is that not all convex shapes are superellipsoids, so while the segmentation
algorithm may have correctly processed its input data, there is no guarantee that a
valid superellipsoid model can be made to �t it.

The most straightforward means of evaluating the validity of the data is simply
to �t and see. If the model �ts well then all of the data should lie on or close to its
surface. If not there will be signi�cant residual errors, the model can be declared a
mis�t, and the ow of processing altered to take remedial action. Because the data
are subject to random uctuations it is not possible to conclude that there has been
mis�t (or that there has not) with complete certainty. We show how to deal with
this problem using methods found in the statistical �eld of decision theory [4,13].

In the theory that follows we develop three lack-of-�t statistics, each one useful
in di�erent situations. The �rst of these ( L1) requires an accurate model of the
data noise, and knowledge of the parameters of that model, in particular the value
of the noise level. When the noise level is not known but the noise model is, then
the second lack-of-�t statistic ( L2) can be used. It requires repeat measurements of
the data in order to provide an independent estimate of data noise, and therefore
incurs additional time and processing costs (e.g. it takes about 12 seconds to scan a
256�256 image with the McGill-NRC scanner). In situations where a rapid response
is required, and where the noise not known, we propose an incremental lack-of-�t
statistic ( L3) which \learns" the local noise level as the scanner moves through the
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3. The Detection of Mis�ts 9

scene. Our experimental results suggest that the measure is able to detect model
mis�t even if the real noise is not well modeled by the theory.

3.1. Theory. In the discussion that follows we will assume that we have at our
disposal a sequence of ns data sets S0; S1; : : : Sns of 3-D coordinates Sj = fxi; i =
1 : : : njg obtained by moving a laser range scanner along some trajectory through the
scene. The Sj are not necessarily the original data scans, but are subsets picked out
by a segmentation algorithm as having come from the same convex surface. There is
also a �nite chance that the segmentation algorithm has incorrectly partitioned the
data.

3.1.1. Known sensor noise. We will �rst consider the case for which the data noise
meets the conditions assumed by the �tting procedure, i.e. that the data is normally
distributed in a direction radially about the surface of the true model with zero mean
and known variance �2.

For each step j in the sequence of views we �nd the model parameters âj that
minimize the least squared error of the combined data sets ST

j = S0 [S1[ : : : Sj. We
do this by iteratively minimizing the following functional,

D4 = jxij

�
1 �

1

f �1=2(xi; âj)

�
;(4)

where f(xi; âj) is the implicit equation of the surface of a superellipsoid [18, 20].
Despite the nonlinearity of the model we will assume that a global minimum error
has been found and that the errors are small enough so we can linearize the model
and apply the well-known result from linear least squares theory | that an unbiased
estimate �̂2j of the true variance �2 can be found from the squared sum of the residuals
(which are measured by the D4 metric),

�̂2j =

Pn
xi2STj

D4(xi; âj)2

Nj � p
;(5)

where Nj is the total number of data points and p is the number of parameters used
to �t the model (p = 11 for superellipsoids).

Unexpectedly large values of �̂2j indicate that the residual errors are not solely due
to noise, and therefore give us grounds for believing that the model �ts the data
badly. A simple strategy to detect mis�t is to �nd those cases for which

�̂2j
�2

> kv;(6)

where kv is a threshold used to decide whether models should be accepted or rejected.
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10 On the Sequential Determination of Model Mis�t

Because of random data noise it is impossible to �nd a value of kv that correctly
classi�es the models in all situations, and we must learn to live with two types of
detection errors. The �rst of these, the Type I error, occurs when a model �ts well
but chance variations increase the value of �̂2j enough that the model is erroneously
rejected. The other, the Type II error, is the alternative; that a model �ts the data
badly but random variations result in a reduction of �̂2j large enough to cause the
model to be erroneously accepted. In general there is a tradeo� | larger values of
kv decrease the chance of Type I errors but increase the possibility of Type II errors.

It is possible to evaluate the Type I error. When a model �ts the data and the
residuals are distributed normally, the statistic

W = (n � p)
�̂2

�2
(7)

is known to be sampled from a chi-squared distribution with n�p degrees of freedom.
Thus the probability of a Type I error is

P
�
�̂2j=�

2 > kvwhen the model �ts
�

= P (W > (n� p) kv) :(8)

Graphically it is the area under the chi-squared probability distribution to the right
of (n� p) kv.

However it usually makes more sense to work the other way around; that is from the
probability distribution �nd the value of kv which gives a tolerable Type I error. The
level is often expressed in terms of a con�dence level , or the probability of correctly
classifying the good models as good. Knowing that (7) follows a chi-squared law
we can �nd the point �2;n�p on the distribution for which the probability of a Type

I error is P (W > �2
;n�p) = 1 � , and reject models as mis�ts at the  level of

con�dence when

 L1 =
�̂2j
�2

>
�2
;Nj�p

Nj � p
:(9)

In contrast to the Type I error, it is very di�cult to �nd the expected levels of
Type II error. The reason for this is that the Type II error is the probability that
�̂2j =�

2 < kv given that the model does not �t the data. The number of di�erent
data con�gurations that can lead to this situation is so huge, and the interaction
of the �tting algorithm to them so unpredictable, that it is impractical to �nd the
probability distribution of �̂2j that takes into account all the ways in which a model
can be mis�tted.
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3. The Detection of Mis�ts 11

3.1.2. Unknown sensor noise level. When the true level of data noise is unknown we
can use an estimate of it, provided that estimate is independent of the model �tting
process. One way to do this is to exploit repeated measurements. Suppose at some
stage during an experiment the laser beam has hit locations i = 1 : : : q on surfaces of
the scene, and at each location we have made mi measurements. An estimate of the
variance, often called the pure estimate �̂2

R
, is

�̂2
R

=

qX
i=1

miX
k=1

jxik � xij
2=m

R
;(10)

where m
R

=
Pq

i=1(mi � 1) and xi =
Pmk

k=1 xik=mi is the mean value of the measured
surface coordinates at location i. If a model �ts the data well �̂2

Rj
and �̂2j computed

for the �rst j + 1 data sets should be approximately equal2. A lack-of-�t statistic
that uses the weighted di�erence of the two estimates relative to the pure estimate
is [2]

 L2 =
(�̂2j (Nj � p) � �̂2

Rj
m

Rj)=(Nj � p�m
Rj)

�̂2
Rj

:(11)

 L2 can be shown to be sampled from an F ratio distribution with Nj � p � m
Rj

numerator and m
R

denominator degrees of freedom. Models can be rejected at the 
level of con�dence when  L2 > F;Nj�p�mRj

;m
Rj

.

3.1.3. Consecutive Estimates of Variance. When repeated measurements cannot be
taken we propose that mis�t can be detected by comparing consecutive estimates of
variance. If the model âj�1 �tted to the �rst j data sets S0 [S1 : : : Sj�1 is valid then
the estimated variance �̂2j�1 should be a valid estimate of data noise. If on the next

iteration the variance �̂2j found after adding Sj is signi�cantly greater than �̂2j�1 we
have grounds for believing that the model cannot account for the additional data and
that it is therefore unacceptable. It is di�cult however to evaluate the Type I errors,
and therefore to design a test at the appropriate level of con�dence. One might think
that because �̂2j�1 and �̂2j are sampled from chi-squared distributions an F distribution
would correctly account for their ratio. Unfortunately, this relationship is true only if
the chi-squared distributions are independent. Because they share coordinates from
the �rst j data sets, such is obviously not the case.

2To avoid any confusion, the index j is added to variable subscripts to indicate the sequential
order of data samples and their statistics, e.g. �̂2j is the sample variance computed over the �rst

j + 1 data sets.
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12 On the Sequential Determination of Model Mis�t

The approach we have taken is to minimize the dependency by using only the
residuals of the newly added points to estimate the data noise. First we compute �̂2j�1
in the usual way (5) from all of the data in the �rst j data sets ST

j�1 = S0[S1[: : : Sj�1:

The other estimate of variance �̂2
P j

is computed using only the data in Sj , that is

�̂2
P j

=

P
xi2Sj

D4(xi; âj)2

nj
;(12)

where in this case nj is the number of data in Sj, but the model âj is the least squares
�t to all of the data ST

j . Because the residuals are distributed normally then �̂2j�1
and �̂2

P j
are sampled from a chi-squared distributions with Nj�1 � p and nj degrees

of freedom respectively. Therefore when the two variance estimates are independent
the incremental lack-of-�t statistic

 L3 =
�̂2
P j

�̂2j�1
(13)

is sampled from an F ratio distribution with nj numerator, and Nj�1�p denominator,
degrees of freedom. Models can be rejected as mis�ts at the  level of con�dence when
 L3 > F;nj;Nj�1�p.

However the  L3 lack-of-�t statistic should be used with caution because the esti-
mate of �̂2

P j
is biased. In e�ect some of the data variability is used to compute the

model parameters, and this loss results in an estimate of variance lower than it should
be. We compensate for the loss in (5) by dividing by Nj�1 � p, that is p points have
been used up �tting the p model parameters. When we take only a subset of the data
as in (12) it is hard to arrive at an appropriate compensatory �gure; mainly because
it is di�cult to evaluate the relative inuence exerted by the subset on the �t. The
lower bias of �̂2

P j
will be compensated to some degree by a narrower con�dence inter-

val in an F distribution with a higher number of degrees of freedom so the overall
e�ect is probably minor and will in any case decrease as the number of data points
increases.

With the  L3 metric, �̂2
P j

is calculated over a more localized region of the surface.
Given that surface features causing mis�t are most likely to be in the newly scanned
region then the mean squared residual error here will be higher than if it were com-
puted over the entire region so far scanned. The result is an apparent increase in
the metric's sensitivity to mis�t error. However this sensitivity is o�set by a higher
con�dence threshold due to a lower number of degrees of freedom in the chi-squared
distribution of �̂2

P j
calculated from fewer data points.
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3. The Detection of Mis�ts 13

An implicit assumption when using the  L3 statistic is that âj�1 is a valid �t, and
that �̂2j�1 is a valid estimate of the data noise level. By induction it must also be
true that the initial estimate â0 be a valid �t, so in practice it is up to us to select
the appropriate initial conditions which make sure that this is the case. Generally
this can be done without great di�culty, and with only a rough a-priori knowledge
of the scene being explored. For example by knowing the minimum size of objects in
the scene one could limit the initial scan to a small region, and validly �t it to the
surface of almost any large model (even a planar patch).

3.2. Simulation Experiments. In the experiments that follow we used a scene
synthesized from two superellipsoid models, a sphere and a cylinder both of 50mm
radius, but joined so as to blend smoothly and form an squat cylindric shape with
a spherically domed top (Figure 4). This shape was chosen because the overall
convexity of the surface ensures that it will not be partitioned by the segmentation
algorithms. Data collected from the top of the scene can be initially modeled with a
superellipsoid, but as the scanner moves from the top of the scene to a view of the
bottom the mis�t increases, at �rst slowly as more of the cylindrical edge is exposed,
then abruptly when the at bottom surface comes into view.

Range data is sampled from the scene using a computer simulation of the McGill-
NRC range scanner we have in our laboratory [17]. The camera is always directed
so that its line of sight is towards the origin of the scene coordinate system, but is
allowed to move around on the surface of a view sphere of radius %, also centered on
the scene origin. Camera position is speci�ed by a latitude and longitude (#;') set
up with respect to the scene coordinate frame such that the positive Z axis intersects
the view sphere at its north pole (# = 90�), and so that the X-Z plane cuts the view
sphere around the meridian of zero longitude. Our scanner uses two mirrors to sweep
the laser beam over a �eld of view 36:9� by 29:2� along the camera's X and Y axes
respectively. In both cases the mirror angles are controlled by an index between 0
and 256 that divides the �eld of view into equi-angular increments. The sampling is
speci�ed by two triples of numbers fimin; imax; iincg � fjmin; jmax; jincg where the X
mirror is moved from index imin to imax in steps of iinc, and likewise for the Y mirror
and the j indices. If a mirror is not moved, for example when only a single scan line
is taken, then the redundant maximum and incremental values will be dropped. We
call the array of data collected by scanning the X and Y mirrors a range image.

An advantage of a simulated range scanner is that it is very easy to implement
and investigate the e�ect of di�erent noise models. For these experiments we will
use a radial noise model in which normally distributed noise (i.e. Gaussian noise)
is added so as to displace the data point from the surface in a direction radial to
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a) We use a scene composed of two superel-
lipsoid models, a sphere and a cylinder,
joined to make a smooth transition. Al-
though the compound model is convex it
cannot be described by a single superellip-
soid surface. The scene above is as seen
from a view sphere latitude of about�20�.

b) A typical sequence of data. The dots mark
the data points, and the lines show the
direction of the scan lines, which are dou-
bled to obtain repeat measurements. A
radial noise model (� = 2:0mm) was used.

Figure 4. The 3-D Scene and Data used in these experiments

the model's center. This noise model matches the assumptions upon which the least
squares minimization is based, and therefore those of the tests that detect mis�t.

Unless otherwise stated all of the following experiments will be performed with
sets of data collected in the following way. Initially the scanner is moved to # = 90�

on a view sphere of radius % = 150mm, and the scene is twice sampled coarsely
(f0; 256; 64g � f96; 160; 16g) to give 50 points (a repeated 5 � 5 range image). The
�eld of view is such that the scanner sees only the spherical surface. After an initial
scan, additional data from a sequence of views is taken by moving the camera along
the meridian of 0� longitude in 10� increments of latitude until it reaches the south
pole. At each position a single line of data (f0; 256; 32g � f128g) is twice scanned
to give a set usually containing 10 points (a repeated 5 � 1 image). The result is
a sequence of 19 data sets ordered according to the latitude, so S0 is the initial set
collected from the north pole, and S18 is collected from the south pole. In every
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3. The Detection of Mis�ts 15

data set there are repeat samples of each point, so we can evaluate all 3 lack-of-�t
statistics under exactly the same conditions. Figure 4 shows a 3-D rendition of a
typical sequence of scans with added radial noise (� = 2:0mm).

The �rst set of experiments was designed to evaluate the performance of the three
lack-of-�t measures for radially distributed noise, i.e noise in agreement with the as-
sumptions upon which the lack-of-�t statistics are based. A large number of trials
were performed at two di�erent noise levels: one about twice that typically observed
in our laboratory (� = 1:0mm, N = 2541), and the other observed when sampling
from the limits of the scanner's range (� = 4:0mm, N = 2000). In each trial a se-
quence of data was obtained by moving the scanner in 10� steps as described above.
At each step the three lack-of-�t statistics were evaluated, and accumulated into the
corresponding histogram at that step. On completion we obtained a sequence of his-
tograms showing the progression of each lack-of-�t statistic as the scanner discovered
the model surface while moving from the top to the bottom of the scene. The results
are shown in Figure 5.

We obtain the theoretically expected results for viewsphere latitudes from 90�

down to 0�. Here the scanner is just sampling the surface of the sphere, so a valid
superellipsoid �t can be obtained. The histograms indicate that for the  L1 and  L2

statistics approximately 1% of the trials exceed the 99% con�dence level, and that the
histogram value is close to the expected value of 1%. The mis�t level is somewhat
lower than expected for the  L3 statistic, and the histogram peak is also displaced
downward. As mentioned in the theoretical discussion, an e�ect like this could be
due to overestimation of the degrees of freedom when calculating �̂2

P j
. Only 5 data

points were used in these computations, so an additional degree of freedom would
cause a signi�cant decrease in the value of  L3.

For latitudes below 0� there is a gradual rise in the rate of mis�ts, until by �40�

almost all of the trials are classi�ed as such. This behaviour also matches that
expected, with the slow increase marking the transition region where it becomes
increasingly di�cult to describe the surface shape as superellipsoid, and the abrupt
change indicating gross violations of the assumed symmetry.

The  L3 statistic is not as sensitive as the other two in detecting mis�t, and again
we would expect that behaviour. Because it compares variance estimates at adjacent
latitudes, the  L3 statistic is really detecting incremental increase in mis�t, and can
therefore be fooled when the mis�t is increased slowly. Another way of looking at
this is to think of  L3 as adapting to \learn" the noise. Thus we see that unlike  L1 and
 L2, the  L3 statistic does not reject �ts at latitudes # < �60� because it has adapted
itself to the very high levels of �̂2j found at # = �60�.

Proof version: August 19, 1995



16 On the Sequential Determination of Model Mis�t
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Histograms are rendered radially at their corresponding view sphere latitude. Each bin is
coloured a level of grey in proportion to the number of values falling within it. The number of
trials used to compute the histograms is shown in parentheses above each �gure.

Each histogram has been computed by dividing the theoretical one-sided 99% con�dence
interval (shown underneath the histograms) into 11 bins. The �rst 10 bins split the 95%
interval up into equal parts, while the remaining one shows the other 4%. Values exceeding
99% con�dence threshold are all accumulated into the outer bin and the percentage falling here
is indicated beside it. When the model �ts we would expect this �gure to be 1%. The dotted
circle marks a lack-of-�t statistic value of 1:0. It should coincide with the histogram maximum.

Figure 5. Comparison of  L1,  L2, and  L3 mis�t tests for radial noise
model with noise levels of (a) 1mm and (b) 4mm.
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3. The Detection of Mis�ts 17

At the higher noise level (� = 4:0mm) all three statistics are close to the limits of
their ability to discriminate, and only the gross mis�t is detected. In fact the noise
level is so high that it is starting to obscure the viewer's perception of the corner of
the cylinder in the pro�le data. Noise of this level would not be encountered on our
scanner except when measuring surfaces at the limits of its range.

3.3. Real experiments. The simulations con�rm the correctness of theory but
to what extent is this true when using real scanners for which the theoretical noise
models are only an approximation? To test this we have used the apparatus shown
in Figure 6 to perform the same experiments but with real data. The apparatus
consists of the McGill{NRC scanner mounted in a �xed position with a view of an
object clamped to the rotational axis of a small stage. Di�erent parts of object can
be scanned by using stepper motors to rotate the stage about two orthogonal axes.
Before the experiment begins a calibration procedure is run to determine the orien-
tation and position of the two rotational axes. Once known, the angles of rotation
can be used to map scanner range coordinates into a scene frame attached to the
rotating object.

Figure 6. Rotary stage used in the real experiments showing the com-
pound model comprised of a smoothly joined cylinder and block
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18 On the Sequential Determination of Model Mis�t

A side e�ect of the calibration procedure is that it provides us with an estimate of
the sensor noise �. The axes are found by measuring, at several di�erent rotations,
the orientation of an inclined plane attached to the stage. For each orientation we
can estimate the sensor noise from the residual errors left after �tting a plane to the
scanned data. Figure 7 shows that � varies with orientation, that it depends mainly
on the angle the plane makes with the scan direction, and that it is minimum when
the surface is normal to the scanner's line of sight. It is well known that � also varys
with the distance to the surface, that it depends on surface properties, and that it
can change with time. In general these factors make it very di�cult to choose a
constant value of � demanded by the mis�t statistics, but for these experiments we
have taken the average minimum value over several calibration runs (� = 0:17mm).
Our choice is motivated by the fact that most of the data are taken from surfaces
normal to the scan beam, and that the distance to the surface is approximately that
of the calibration plane.
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Figure 7. Sensor noise as a function of surface orientation. The �gure
shows � as a function of the angle between surface to the scanner's X
and Y axes. Most of the variation is due to surface slope in the direction
of the scan line (the X direction).

The results of the �rst experiment are shown in Figure 8. The procedure used was
essentially the same as that described in Section 3.2, though we used the smoothly
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Figure 8. Comparison of  L1,  L2, and  L3 mis�t tests for real data
obtained using McGill-NRC range�nder.

joined cylinder and block shown in Figure 6 because it was easier to fabricate than the
spherically capped cylinder. The sampling was also changed to take into account the
di�erent con�guration, and to prevent inclusion of points not on the object's surface.
The results were accumulated from 536 trials. It took approximately 2 minutes for
each trial and around 20 hours to collect the complete data set. In general the results
indicate that the  L1 statistic overestimates the amount of mis�t slightly, that the  L2
statistic is in gross error, but that the  L3 statistic still behaves very much as predicted
by the theory.

The qualitative behaviour of the  L1 lack-of-�t statistic matches that in the simu-
lations, except the percentage of trials exceeding the 99% con�dence level is about
twice that expected (1.7%{2.8% or 9{13 trials). The cause of this discrepancy is in-
dicated in Figure 9 where we show a histogram of the residual errors left after �tting
a superellipsoid to a patch of range data scanned from the cylindrical part of the sur-
face (Figure 6). When compared to the normal distribution with standard deviation
�̂ computed from (5) we observe that the residuals depart from the assumption of
normality: there is asymmetry, and the tails of the histogram are somewhat thicker
than expected when compared with the width of the peak. One has the impression
that the distribution is composed of two or more normal distributions with di�erent
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20 On the Sequential Determination of Model Mis�t

variances and o�set means, which is the kind of e�ect expected due to the variation
of � with surface orientation and distance. In addition we observed an overall upward
drift in the residual errors over the 20 hour duration of the experiment, indicating
that the actual sensor noise worsened during this period. The net result is that the
values of �̂ obtained from the residual errors are greater than the assumed sensor
noise, so the values of the  L1 statistic are higher than expected.
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Figure 9. Histogram of residual errors left after �tting a superellip-
soid to cylindrical data. The solid line shows the normal distribution
with the same mean as the residual errors and with a standard devi-
ation �̂ computed using equation (5). The dotted line indicates the
normal distribution assumed for a sensor noise level of � = 0:17mm.

The  L2 statistic performs very badly, with the number of trials exceeding the 99%
con�dence level at around 30 times that expected for a good �t. The reason for
the poor performance is that the errors in the repeat data sets are not independent
as demanded by the theory. In Figure 10, where we show 8 successive scans of the
same patch of surface, it can be seen that there is a noticeable amount of coherency
from scan to scan. For example there are similar patterns of variation in scans 4,
5, & 8 for the �rst 15 mirror positions, and in scans 6, 7, & 8 for the last 12.
As a result the noise �̂

R
estimated by looking at the di�erences between successive

scans will be signi�cantly less than the variation along a scan, and since the latter
is e�ectively the residual variation left after �tting it will look like mis�t to the  L3
lack-of-�t statistic. The reason for the repeatability in the \noise" from scan to
scan is not exactly known, but we have seen it in other laser range scanners as well.
One possibility is that it is caused by speckle interference induced when the laser
beam passes through the scanner's optics. However even if this kind of noise was
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3. The Detection of Mis�ts 21

not present in the sensor, exactly the same problem would arise if the surface was
roughly textured or patterned. We must conclude that the  L2 statistic will only be
useful in very speci�c circumstances.
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Figure 10. Repeated Scans. The �gure shows 8 sequential scans
taken approximately 1 second apart from exactly the same place on
the cylindrical part of the surface used in the experiments. The scans
have been o�set from each other and a plotted horizontally as a func-
tion of the scanner's X mirror index. The vertical scale of each scan is
indicated by the 1 mm bar on the left.

In comparison the  L3 statistic still behaves as expected, even though the scanner
noise characteristics depart from the underlying theoretical assumptions. In fact
the results seem to match the theory better than those obtained in the simulations
(5) where we observed a lower than expected number of trials exceeding the 99%
con�dence interval. A possible reason for this is that in the real experiments over
twice as many points (12 vs 5) were taken in each scan line so the  L3 statistic will
be less sensitive to underestimation of degrees of freedom.

A curious point, and one which highlights a limitation of the  L3 statistic, is the dip
in mis�t at a latitude of 30�. If this feature is statistically signi�cant (1% represents
only 5 trials in this experiment) the interpretation is that the data obtained at this
latitude �ts the current model better than the data from all the higher latitudes.
That can happen when the measured surface is not exactly superellipsoidal (e.g.
because of small errors in the stage calibration). The �tted surface would position
itself to minimize the residual error so some parts of it would be inside the measured
surface and some parts outside. If the last scan happens to fall near the place the
�tted and measured surfaces cross, then the residual errors for it will be lower than
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22 On the Sequential Determination of Model Mis�t

average resulting in a low value of  L3. We cannot expect the  L3 statistic to detect
slow departures from the valid class of models, but we can expect it to function well
when changes are abrupt (e.g. segmentation errors).

4. An Example

Figure 1 illustrates a scenario which typi�es the mis�t problem | the jointed
right arm of the mannequin has been described using a single model, rather than
two as one would expect. In this particular situation segmentation should take place
along the local concave creases marking the join between the upper and lower arm.
However the discrete sampling of the scanner has \skipped" over the �ne detail of the
elbow joint. A crease is detected around the elbow, but it is not continuous enough
to completely sever the arm data into two surface patches. It can be argued that
a more detailed analysis could handle this situation, e.g. [9{11, 24], but there will
always be times when it is just not possible to segment smoothly joined, articulated
objects at such a low level. Consider the out-stretched human arm | how is the
boundary that separates it into the upper and lower arms precisely delineated?

Instead we have to rely on more global models of the surface to provide additional
clues as to when data should be partitioned. Model mis�t is one such clue, and
where it occurs may, under the right conditions, indicate good places to re-partition.
However for the arm of the mannequin there is no clue that anything is wrong | the
surface and the scanner have conspired to produce unsegmented data that can be �t
very well by a superellipsoid model. Only by collecting more data can the structure
of the mannequin be correctly inferred and resolved, which brings us back to the gaze
planning strategy described in Section 2.

Recall that the strategy operates by directing the scanner to that position on
the surface of the current model that exhibits highest uncertainty, or in the case of
incremental planning, to a position along the direction of the uncertainty gradient
[23]. According to the theory we expect that when data collected at the new sensor
position are added to the model �̂ will not increase by any signi�cant degree. This can
be con�rmed by applying an appropriate lack of �t statistic (Table 1). In the event
that mis�t is detected, further data acquisition can be inhibited until the problem is
resolved, e.g. by re-applying the segmentation algorithm to the composite data set.

Another object which can cause the gaze planning strategy to fail is the small owl
shown in Figure 11. The problem here is that the crease separating the head of the
owl from its body does not completely encircle the neck (Figure 12 top). If the initial
data is taken from the back of the owl (Figure 12 bottom) a single model is �t to
both the head and the body but the strategy will cause the scanner to move towards
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Figure 11. The owl. a) View of the owl mounted in the rotary stage.
b) A typical sequence of scans collected from a band encircling the
region around the owl's neck.

the front of the owl where two models are more appropriate. We investigated the
behaviour of the  L3 statistic in this situation by mounting the owl in the stage so
data could be collected from the smooth portion of the back. The initial model �t
was cylindrical, though both the  L1 and  L2 statistics rejected it outright. The initial
mis�t is unsurprising given that the soapstone surface is roughly textured, and that
the back is slightly concave. A sequence of single line scans was collected by rolling
the owl's body over until it faced the scanner | the direction predicted as being
the quickest way to improve knowledge of the model surface according to the gaze
planning techniques discussed in Section 2.

A typical set of scans is shown in Figure 11b and the  L3 lack-of-�t histograms in
Figure 13. The scale of the histogram has been expanded (the con�dence interval is
99.99999%) to reveal the pattern of change even when the mis�t is large. Initially
the value of the statistic stays below the 99% con�dence level but rises rapidly as
soon as data are scanned from part of the owl's wing at a latitude of 40�. After
this the statistic starts to adapt to the variation exhibited by the wing parts until
by 0� the mis�t levels have almost dropped back to normal. The abrupt jump at
�30� occurs when the scanner encounters the crease around the owl's neck, but the
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24 On the Sequential Determination of Model Mis�t

Figure 12. Two views of the owl. Depending on whether it is viewed
from the front (top view) or from the back (bottom view), the owl can
be represented by either two models or a single model respectively.

statistic adapts to this change as well, falling to near normal levels by the time the
face is fully in view.

As can be seen by examining the trace of histogram peaks in Figure 13, the
 L3 statistic provides a stable indication of mis�t errors associated with the sur-
face boundaries that would normally be determined by segmentation. In practice
we have found close agreement between mis�t indications based on the  L3 statis-
tic and empirically determined modeling errors observed in our laboratory system.
The assumptions regarding the use of the  L3 and the other lack-of-�t statistics are
summarized below in Table 1.
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Assumption  L1  L2  L3

Sensor noise is normally distributed3 yes yes yes
Sensor noise level � known yes no no
Sensor noise level is constant4 yes yes weakly
Residual errors due only to sensor noise yes yes no
Residual errors spatially independent5 yes yes yes
Residual errors temporally independent6 yes yes no
Repeat measurements available no yes no
No initial mis�t no no yes
Table 1: Assumptions used in the di�erent lack-of-�t sta-
tistics

5. Discussion and Conclusions

The results we obtain match those our intuition leads us to expect. Perhaps this is
better illustrated by considering the analogy of an archaeologist who has discovered
a object shaped as above but with only the top of the joint protruding from the sand.
So great is the antiquity of this object that the original surface detail has eroded, and
the discoverer can only guess at its true nature. Initially it appears to be the top of
a container of unusual design, perhaps a burial casket, but only further excavation
will tell. From the exposed shape the object looks signi�cantly longer than it is wide,
and it will therefore be more economical to begin digging down the objects side. This
is done and as the excavation proceeds the initial expectations are con�rmed | the
object still appears to be a casket. However at some depth further digging suddenly
reveals a concavity in the objects surface so pronounced that the archaeologist is
forced to drop the casket hypothesis and consider others.

3In practice the assumption of normality can be weakened. The factor of real importance is that
the cumulative lack-of-�t distribution is accurate at the chosen con�dence level, because we can
then make accurate predictions about the expected rate of mis�t due to random chance.

4Constancy of the noise can also be weakened in practice, particularly with the  L3 statistic.
5By spatially independent we mean that errors at di�erent surface locations do not depend on each

other. It is not strictly necessary that this be the case, for example the errors could be Markovian
provided the scale of interaction is much smaller than the spatial extent of the measurements.

6By temporally independent we mean that the errors from exactly the same surface location at
di�erent times are independent. For example, the residual errors resulting from a rough surface are
not temporally independent.
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Thus it is with the arm of the mannequin and the back of the owl. Initially the
laser scanner exposes only a part of the surface so our knowledge of the global shape
is extremely uncertain. To resolve this uncertainty we must explore, and to guide our
exploration we need an initial hypothesis { that the shape is superellipsoid. However
we must always be on guard lest that hypothesis fail. This is the role of the test
for mis�t | to tell us to reconsider, either by choosing a di�erent hypothesis or by
re-examining the data. We are particularly interested in the latter scenario because
it is common in an active vision context. Very often we have strong prior knowledge
about the appropriate model to use for a given task, but fail because the data used
to �t the model is wrong, e.g. segmentation errors.

Can we gain any insight into the nature and location of such errors from the explo-
ration procedure? This would be of obvious advantage to a backtracking procedure.
In general the answer appears to be no. While we can determine the exact point
at which the model fails, we still cannot ascertain whether this is due to the data
already collected or to the data newly acquired. In the case of failures due to parti-
tioning errors, our only alternative thus far is to go back and re-sample the data at
higher precision such that the segmentation algorithm [6,10,11] has a better chance
of detecting the missing boundary.

In this paper we have outlined a framework for this process of what we call au-
tonomous exploration. We have shown that by using the current estimate of a model
to predict the locations of surfaces in yet to be explored regions of a scene, we can
both improve estimates of model parameters as well as validate its ability to describe
the scene. Knowing when we are wrong is not su�cient. In an unstructured envi-
ronment an autonomous system must act to correct that wrong either by selecting
a more appropriate model or by re-interpreting the data in light of cues provided
by the failure of the model. These topics are currently under investigation in our
laboratory.
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Figure 13.  L3 mis�t histograms for real data obtained from the owl.
The scale of the histogram has been expanded to show the pattern
of variation when the mis�t is very high. In this case the con�dence
interval is 99.99999% so only 1 in 107 trials should fall in the top bin
due to random chance.

Proof version: August 19, 1995


