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ABSTRACT

Abstract

This thesis deals with the problem of recovering the local structure of surfaces from discrete range data. It is

assumed that this recovery is done mostly in a bottom-up fashion, that is, without the help of a priori knowledge

about the viewed surface.

Because the problem is ill-posed, we nevertheless need to place constraints on the recovered structure to

get a unique solution. In a bottom-up approach, these constraints must come from generic assumptions that

apply to all surfaces.

Many methods of bottom-up surface reconstruction have been proposed up to now, some of them deal-

ing with intensity surfaces, some with range surfaces. Each of these methods either explicitly or implicitly

applies a set of constraints on the data. The way in which the constraints are applied also varies from method

to method. The main contribution of this thesis is some success at unifying a number of those methods under

a common formalism of energy minimization, which will permit to better compare the choice of constraints

between methods. We also show that the most successful surface reconstruction methods form idempotent

operators, which we argue is to be expected.

One method, Sander’s curvature consistency, is studied in more detail than the others because it has not

been studied much elsewhere yet.
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ABSTRACT

Abstract

This thesis deals with the problem of recovering the local structure of surfaces from discrete range data. It is

assumed that this recovery is done mostly in a bottom-up fashion, that is, without the help of a priori knowledge

about the viewed surface.

Because the problem is ill-posed, we nevertheless need to place constraints on the recovered structure to

get a unique solution. In a bottom-up approach, these constraints must come from generic assumptions that

apply to all surfaces.

Many methods of bottom-up surface reconstruction have been proposed up to now, some of them deal-

ing with intensity surfaces, some with range surfaces. Each of these methods either explicitly or implicitly

applies a set of constraints on the data. The way in which the constraints are applied also varies from method

to method. The main contribution of this thesis is some success at unifying a number of those methods under

a common formalism of energy minimization, which will permit to better compare the choice of constraints

between methods. We also show that the most successful surface reconstruction methods form idempotent

operators, which we argue is to be expected.

One method, Sander’s curvature consistency, is studied in more detail than the others because it has not

been studied much elsewhere yet.
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SOMMAIRE

Sommaire

Cette thèse considèrele problème de la récupération de la structure locale des surfaces à partir de données

télémétriques discrètes. Il est supposé que cette récupération est faite principalement du bas vers le haut, c’est-

à-dire, sans l’aide de connaissances preétablies sur la surface observée.

Parce que le problème est mal-posé, nous devons cepandant placer des contraintes sur la structure

récupérée, de manière à obtenir une solution unique. Dans une approche du bas vers le haut, ces contraintes

doivent venir de suppositions génériques qui sont applicables à toutes surfaces.

Plusieurs méthodes de reconstruction de surface ont été proposées jusqu’ici, certaines traitant avec des

surfaces d’intensité, certaines avec des surfaces de mesures télémétriques. Chaqune de ces méthodes ap-

pliquent un ensemble de contraintes sur les données, que ce soit explicitement ou implicitement. L’approche

utilisée pour appliquer ces contraintes est différente d’une méthode à l’autre. La contribution principale de

cette thèse est quelque succès à l’unification d’un nombre de ces méthodes sous un formalisme commun de

minimisation d’énergie, ce qui va permettre de mieux comparer le choix de contraintes entre les méthodes.

Nous montrons également que les méthodes de reconstruction de surface qui ont le plus de succès sont des

opérateurs idempotents, ce à quoi on devrait s’attendre, selon nous.

Une des methodes, celle de la compatibilité des courbures de Sander, est étudiée en plus de détails que

les autres, parce qu’elle n’a pas été beaucoup étudiée ailleurs jusqu’ici.
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1.1 ORIGINS OF THIS WORK

CHAPTER 1

Introduction

This thesis deals with the problem of recovering the local structure of surfaces from discrete range data, as a

bottom-up process.

Many methods of bottom-up surface reconstruction have been proposed up to now, some of them dealing

with intensity surfaces, some with range surfaces. Each of these methods either explicitly or implicitly applies

a set of constraints on the data. The way in which the constraints are applied usually varies from method to

method. The main contribution of this thesis is some success at unifying a number of those methods under

a common formalism of energy minimization, which will permit to better compare the choice of constraints

between methods. We also show that the most successful surface reconstruction methods are idempotent op-

erators, which we argue is to be expected.

One method, Sander’s curvature consistency, is studied in more detail than the others because it has not

been studied much elsewhere yet.

1. Origins of this work

In his doctoral thesis Peter Sander [56] presented a novel method for recovering the differential structure

of surfaces from noisy discrete data. One major difference with other surface reconstruction work is that his

method dealt with three-dimensional images produced from magnetic resonance imaging, rather than with

graph surfaces such as intensity or range images.

Sander suggested, as a possible research topic, to investigate the applicability of his method for

rangefinder data. The method should apply straightforwardly, because range data can be represented as a three-

dimensional image in which the surface is restricted to be a graph; the problem is therefore less general and

the method directly applicable. Furthermore, the trace is explicitly given in the case of range data, so trace

inference is not required, only the recovery of the differential properties of the surface need to be achieved.

One of the aspects of this thesis is the forementionned application of Sander’s method to range data.

This was to be the main contribution of the thesis, but early in the research, it became quite clear that some

4



1.2 BACKGROUND

fundamental questions were left unanswered in Sander’s original work. The application of Sander’s method

to range data was therefore the spring board to research on more fundamental issues of surface reconstruction

in general. The consideration of these issues (to be detailed later) is now the main contribution of this thesis.

The usual review of previous work on the subject, normally part of the introduction, will also be part of the

main body of this thesis. It will be shown that most major paradigms for surface reconstruction can be unified

through the use of an energy minimization formalism.

2. Background

2.1. Surfaces define the 3D world. Vision (or perception in general) permits an agent to interact with

the world that surrounds it. Here is an enumeration of some commonly cited visual tasks:

� Object recognition,

� object manipulation,

� obstacle avoidance,

� highly specialized tasks such as reading, recognizing faces, etc.

Depending on the task at hand, the world might be more or less restricted. For example, when reading

text, one may consider his visual world as being strictly two-dimensional. In general, however, our world is

three-dimensional, and objects within it occupy volume. Because objects are usually opaque, most of what we

can visually perceive of them is their surfaces, which are the two-dimensional boundaries that separate matter

types. This is why the perception and the representation of surfaces is a good starting point for the perception

of objects in general, as was first strongly proclaimed by Gibson [28, p.8#1].

2.2. Cooperation between curve and surface sensing. There has been and still is a lot of research

in the perception of two-dimensional curves in intensity images [54, 51] [46, 42, 4][34]; this research is in-

teresting in its own right, because as for the reading example above, there are a number of visual tasks that

can be restricted to a two-dimensional world. But methods that are successful in some dimensionality are

not necessarily easily extended to higher dimensions,1 so there is a need to tackle the perception of surfaces

directly.

Surface reconstruction and curve reconstruction must act cooperatively. The occluding contour of a

viewed object (a 2D curve on the image plane) gives information about the surface of that object [5, 52]. In

the other way, the structure of an intensity surface or of a range surface may be used to find 2D information,

such as the contours of characters embossed in a metal plate.

1For example, Leclerc [36] designed a very effective method for finding discontinuities in graph curves. His extension of the method to
graph surfaces necessitated much too many constraining assumptions to be practical, however.
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2.3. Intensity versus range surfaces. The now widespread availability of range-sensors gives re-

searchers the possibility to work on data that directly relates to the geometry of surfaces. The geometric per-

ception can therefore be studied without the need to consider surface reflectance and light source descriptions.

A number of the surface reconstruction paradigms studied in this thesis were designed to reconstruct

intensity surfaces rather than range surfaces. Intensity surfaces do not directly represent the geometry of the

scene which generated it. For example, surface markings will produce features in the intensity surface but not

in the range surface. Nevertheless, we will treat the problem of intensity surface reconstruction and of range

surface reconstruction as equivalent for the purpose of this thesis.

2.4. The recovery of local surface structure as a bottom-up process. It is accepted that vision

makes a great deal of use of high level reasoning. Perception, a “controlled hallucination” [17], uses gen-

eral contextual knowledge to restrict and to guide recognition. Nevertheless, it is also accepted that there is a

fair part of perception that is bottom-up (rather than top-down). [10] cites psychophysical studies suggesting

that

: : : in the first stage of visual recognition the image is categorized on perceptual grounds only,

whereas a perceptual category is given semantic content in the second stage.

The bottom-up parts of perception use generic assumptions that do not rely on a specific context in order to

make certain features of the world explicit, and available for higher level processes to use. These low-level

processes can be “hard/wet-coded”, and therefore more efficient. Biological support for such low level pro-

cesses has been found. For example, orientation, disparity, motion, and curvature detectors have been detected

[32, 20], which all make explicit some features implicitly present in the visual field.

In this thesis, the recovery of local surface structure will also be considered as a low-level, data-driven

process, which should nevertheless be open to suggestions or constraints imposed by a high level process. An

example of such top-down influence on low-level processes can be seen in [38, Fig. 14, plate 2].

2.5. Semantics. Finally, let us interpret the meaning of “recovery of local surface structure” in the

context of this thesis. Seen as a low-level process, it is to make explicit features that are only implicitly present

in the input data. The features that relate to the local (geometric) structure of surfaces are of two kinds. First

are the differential properties, up to a certain order, of the continuous parts of the surfaces. Seen as geometric

entities, the first two low order differential properties translate to surface orientation and surface curvature.

Second are the surface discontinuities, also up to a certain order. Steps and creases (height and orientation

discontinuities) are usually considered [59, 26, 13, 29], as well as curvature discontinuities sometimes [49, 36].

Global properties, such as how a surface may enclose a volume, are not considered here.

The expression “surface reconstruction”, which I have already used above, is more popular in the liter-

ature. It is less specific than the previous expression, and its meaning varies slightly from one author to the
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other. However, because it is simpler to write, I will use it here to mean the same thing as the recovery of local

surface structure.

3. Constraints and their satisfaction

Given that the initial data consists in (possibly noisy) samples of a surface, and that the end product of

our low level process is a local differential structure, there still lacks something to the problem definition. In

terms of regularization theory, the problem is still ill-posed [47]. Informally put, there could be a very large

number of answers explaining any particular set of data. If the goal is to get stable and meaningful solutions,

additional constraints must be added to enforce stability and “meaningfulness”, but the information content

of the data must not be lost. For example, it is natural to assume that “nothing extraordinary” happens to the

surface in between the points that were sampled, even if anything could happen in reality.

In this thesis, we consider the surface reconstruction problem as one of constraint satisfaction. That is,

in order to make the ill-posed problem well-posed, we constrain the answer to lie within a region (a constraint

subset) determined by a set of constraints, and for given data, we choose the point in the subset closest to that

data. Such a closest point problem forms an idempotent operator, and we argue that idempotency is a required

property of surface reconstruction algorithms.

Once a problem is well-posed, one remains to find the now unique solution to it. Even if the solution is

known to exist, to be unique and to be stable, it is not necessarily simple to find. For example, the traveling

salesman problem is well-posed, but it is also NP-complete. The satisfaction of the constraints must therefore

be attained by the use of some computationally practical algorithm, and many such algorithms have been pro-

posed in the computer vision literature. Most of these methods do not express the problem as one of constraint

satisfaction, and a number of them do not dissociate between the problem statement and the problem solution

process. Within our framework, the dissociation is straightforward: The problem solution is the minimization

of some functional, and the problem statement is the functional to minimize and the type of minimization to

perform.

4. Organization of the thesis

The formalism to be used throughout this thesis when talking of constraints and their satisfaction is pre-

sented in the next chapter. It is based on constraint subsets and energy minimization. Detailed analysis of the

work of Sander has not been published on a large scale, and its adaptation to range imagery has only been

given an overview in papers using the method [22, 23, 24]. It is therefore a good choice as a case of a sur-

face reconstruction method to be described in detail. This is done in chapter 3. The description of Sander’s

method is followed by a comparison with other methods in chapter 4. It is shown in that chapter that a num-

ber of methods are actually equivalent. The conclusion first summarizes the findings of the preceding chapter.
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Then, suggestions for future work that could originate from this thesis are presented. A number of appendices

are included. A review of differential geometry is relatively standalone. The other appendices relate directly

to the contents of some chapters. These will be introduced within the relevant sections.

5. Contributions

The two most important contributions of this thesis are the unification of popular surface reconstruction

methods, based on the functional minimization framework, and the proof of idempotency of some surface re-

construction methods. Also, the adaptation of Sander’s locally constant curvature updating to 2–1=2D (range)

data and an in-depth analysis of the method are worthwile contributions.

8



2.1 INTRODUCTION

CHAPTER 2

Idempotent operators, constraint subsets, and energy minimization

1. Introduction

This chapter presents the formalism that will be used in the following chapters in order to analyze and

compare different surface reconstruction methods. This formalism uses constraint satisfaction and energy

minimization. Many surface reconstruction methods are not formulated as energy minimization problems

from the outset, and we consider useful that a number of generating theories, consisting of the problem defini-

tion, context, starting assumptions, that lead to a particular formulation, be presented. These different gener-

ating theories can provide insight into the interpretation of the basic problem. Such theories include physical

models such as membrane and plates under tension [60], [13], stochastic models such as [26], information

theoretic models such as Minimum Description Length (MDL) [36], evolutionary theories such as dynamic

shape theories [35], etc. However, once a theory has been established, a paradigm designed to solve a problem

within this theory, and computer code generated to implement the paradigm, say, on a Turing machine, one

notices that there are much less different patterns in the code as there are generating theories. It is in an attempt

to reduce a number of theories into a small number of problem classes that we use constraint satisfaction and

energy minimization as the formalism in which to view surface reconstruction problems.

Also, we claim that a surface reconstruction operator should be idempotent. Under some conditions, an

idempotent operator can be expressed as an energy minimizer, so it can be expressed within our formalism.

Not all surface reconstruction methods that have been proposed have this property.

In this chapter, we first present the notion of idempotency and its properties. Then, the associated notion

of constraint subset is introduced, followed by examples of idempotent operators. In the following section, we

describe three classes of energy minimization problems and show how they relate together and to idempotent

operators. These classes will be used as a basis for comparing different surface reconstruction methods in the

following chapter.
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2. Idempotency requirement

A surface reconstruction algorithm may be considered as an operator1 in functional analysis terminology.

An operator has a domain and a range, such that it performs a mapping from an element in its domain to an

element in its range. In this chapter, it is argued that one of the required properties of an operator that is to

perform surface reconstruction is idempotency. An operator g is idempotent when its composition with itself

yields itself2

(g � g)(d) = g(d):(2.1)

The argument in favor of the idempotency requirement is informal: If the goal of the operator is to re-

cover a valid interpretation from initial data, then applying the process one more time on the supposedly valid

interpretation should not change it. Otherwise, how can we say the first interpretation was valid in the first

place?

A perpendicular projection is an operator that is both idempotent and self-adjoint. [61] was among the

first to advocate that a signal restoration operator should be a perpendicular projection. More recently, [45]

argues that edge detection should be a projection, and [25] enforce an integrability constraint as a projection,

in a shape from shading algorithm.

3. Constraint subsets

If a surface reconstruction operator is idempotent, then we will denote its range as its constraint subset3,

because the function constrains the answer to lie within that set, and does not modify arguments that already lie

in it. We use “subset” rather than “set” because the range of an idempotent operator is a subset of its domain.

If a point lies outside of the range of the operator (but is in its domain), the operator will cause the answer to lie

in the constraint subset (its range). If the argument of the operator lies in its range, then the operator will act

as the identity operation, because it is idempotent.4 In other terms, all the points in the range of an idempotent

operator are “fixed points” of the operator [1]. If a surface reconstruction operator is not idempotent, then we

cannot identify its range with a constraint subset: Even if the argument to the function lies in its range, the

result is not necessarily equal to the argument.

For the surface reconstruction function to make sense, the meaning of elements of its domain must be the

same as the meaning of the elements of its range. This is not to say that the domain and the range must have

the same dimensionality in the initial problem statement. Rather, the cardinality of the range must be lower

than or equal to the cardinality of the domain [37]. A few examples are in order.

1An operator is more general than a functional or a function. It will therefore be used unless we want to be more specific.
2See [37] for a review of functional analysis.
3Which is not quite the same as the constraint set, or feasible region, of nonlinear programming [33, p. 1096].
4The proof is trivial. If x lies in the range of f , then there exists a y in its domain such that f(y) = x. By the idempotency of f ,
f(f(y)) = f(x) = x, which completes the proof.
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In [45], the function is to produce a binary feature map corresponding to the edges and lines of the input

image. In this case, even if the input image is not a binary image, the result is nevertheless a valid image that

consists only of binary lines. Applying the function once more on this image should therefore give the same

result back.

The function f : <n ! < consisting in taking the norm of a vector in <n lowers the dimensionality of

the result to one. However, the meaning of the components of the argument and of the result may be the same.

For example, the average of a set of heights is a height. In order to represent this function as an idempotency,

we view the result as the parameter t of the one-dimensional manifold u(t) = (t; t; : : : ; t), u 2 <n. Taking

the average can then be seen as the perpendicular projection of the argument onto the constraint subset de-

fined above. The operator can then be applied on its result, which produces no effect, since the argument now

already satisfies the constraint (that all the components of the vector be equal).

Now, let us consider an operator which has a range with a higher dimensionality than its domain. This is

an important consideration in surface reconstruction in the case of sparse data and multi-sensor integration. In

this case, I slightly generalize the definition of idempotency. As long as a subspace of the range corresponds

to the domain, it is possible to test for a generalized idempotency of the operator. For example, consider an

operator that takes as argument a vector y representing the depth of points sampled on a planar curve, and

that produces a piecewise continuous polygonal estimate of the underlying curve, while satisfying some set

of constraints. If the input consists of n depth values, then the result will consist in n new depths and in the

n orientations of the polygonal segments. If the operator is idempotent with respect to the depth information,

applying the operator on the resulting depth should give the same polygonal estimate. In this example, the

reason for the idempotency requirement is again clear. If the goal is to obtain the best (under a fixed set of

constraints) n segment piecewise continuous polygonal approximation to the underlying curve, it would not

make sense that the data generated by the first application of the operator generate a different approximation

upon a second application of the constraints.

Here are some more properties of constraint subsets. A constraint subset does not have to be a smooth

manifold in the domain A � <n. It could consist of the union of any number of sets of any dimensionality,

as long as they can be embedded in A. For example, it could consist of a Ck regular surface of dimension

m < n, either bounded or of infinite or partially infinite extent. It could consist of a subset of<n, of dimension

n. It could also consist of a disconnected set of m points in <n. Figure 2.1 shows examples of the three.

The cardinality of the constraint subset is one indication of how information reducing the operator is, but the

“volume” occupied by a bounded subset is also informative in the case of an n dimensional subset of <n,

because the cardinality of both these sets is the same [37].
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FIGURE 2.1. Examples of constraint surfaces. From left to right, a manifold in<n, an n dimensional
subset of <n, and a set of disconnected points in <n. The arrows represent the solutions of closest
point problems on these constraint subsets.

4. Some types of idempotent operators

The perpendicular projection of a point d on a convex constraint subset is idempotent. When a set is not

convex, d may perpendicularly project on more than one point, and the operator is therefore not well defined.

Given an arbitrary constraint subset, the closest point operator is the one that finds the point in the con-

straint subset closest to the data pointd. The closest point problem for a convex constraint subset is equivalent

to the projection operator. Figure 2.1 gives examples of the closest point operator for different types of con-

straint subsets. If the constraint subset is not convex, it is possible that a data point has more than one closest

point on the constraint subset. The operator is unstable at these points.

When restricted to Euclidean spaces, the closest point operator is of limited use. We borrow on the termi-

nology of field theory [43] to conceptualize the closest point operator in any curvilinear orthogonal coordinate

system. In such a system, we designate one set of coordinates as flux lines, and all the other coordinates as

equipotential, with the constraint subset having a constant potential by definition. From a data point in this

space, the idempotent operator consists in following the flux line from the data point to the constraint subset.

5. Three classes of energy minimization

We now present the energy minimization problem, and divide it into three classes. The division between

the classes depends both on the problem to be solved and on the approach used to solve it. That is, the same

problem usually can be formulated by more than one class of energy minimization.
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5.1. Minimization of convex energies. The simplest energy minimization problem is the minimiza-

tion of convex energies. Numerical methods for such minimizations abound, and the process is well under-

stood [64]. It is sometimes possible to solve the problem analytically, especially when the parameter space

is small. In most cases, however, numerical methods are more practical. Some idempotent operations can be

formulated as minimization of convex energies. For example, perpendicular projection of a point d on a con-

vex manifold r(u) can be expressed as minu(d � r(u))2, where the function to minimize is convex. This

problem can be solved numerically using gradient descent approaches, that use local differential properties of

the energy function, such as its first, and even second, partial derivatives. Note that the problem is completely

defined by the energy function to minimize, and that this energy function combines both the constraints of and

the argument to the operator.

5.2. Global minimization of non-convex energies. The second family of energy minimization is the

most difficult to solve, and many methods of surface reconstruction currently fall in this energy minimization

class. Problems in this class consist of finding the global minimum of a non-convex energy function. For

the problem to be well posed, there must be no more than one point with the minimum value of the function

over the domain of interest. What differentiates between this class and convex minimization problems is the

problem itself. The formulation of the minimization is the same, but some problems will produce convex

energies, while some will not. As for convex energy minimizations, the argument to the operator is part of the

energy function, in this case.

When the parameter space is small, it is possible to solve this problem exactly using dynamic program-

ming approaches [2]. However, this approach becomes inefficient very fast as the dimensionality of the pa-

rameter space and the required accuracy increases. Numerical methods fall mostly in two categories. One

is simulated annealling, which performs a kind of informed random search on the energy function [26]. The

other approach has actually been developed independently for computer vision algorithms [13], and is gener-

ally known as the continuation method [1]. It consists in smoothing the energy function to make it convex,

and to track the minimum as the function is gradually unsmoothed back to its original shape. The tracking is

similar to zero crossing tracking in the scale-space of Witkin [65].

The closest point in a constraint subset r(u) to a point d can be found by solving minu(d� r(u))2. If

r(u) is not convex, this problem is a non-convex global minimization.

5.3. Local minimization of non-convex energies. This is the second simplest energy minimization

problem to solve. In this case, the problem data consists of a possibly non-convex energy function, together

with a starting point in the parameter space of the function, called an initial estimate to the solution. The

problem is to find the minimum of the function local to that point. Local, in this case, may have two meanings.

In one case, the local minimum is considered as the minimum closest to the initial estimate in the parameter
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Same pit minima

Closest minima

Initial
estimate

FIGURE 2.2. The closest local minimum to the initial point is not necessarily the same as the same-
pit local minima, as this example shows. The point to the left is much further from the initial estimate
than the point to the right, but it lies in the same pit as the initial estimate.

space. We call this problem the closest minimum problem. In the other case, the solution is the local minimum

that one would obtain by gradient descent from the initial point. We call this problem the same-pit minimum

problem. Figure 2.2 shows that these two problems do not necessarily give the same solution. If the energy

function has some symmetry with respect to its minima then both problems may be equivalent, as is the case

for energy defined by a distance transform [14]. In any case, the same-pit minimum makes more sense as an

energy minimization problem because the closest point minimum makes no use of the energy function else than

to find the set of local minima. In terms of problem complexity, the same-pit minimum problem is equivalent

to a convex minimization, since it can be solved by using only local properties of the energy function. The

second case is not as easy because the local structure of the energy function does not provide any information

as to the direction where the solution lies.

The same-pit energy minimization will be the one used for the local energy minimization class in the rest

of this thesis. It is trivial to show that a local energy minimization is an idempotent operator. For the closest

point problem, for example, the corresponding energy function, mentioned above, is the distance transform

of the constraint subset. Contrary to the previous classes, the function to (locally) minimize is only defined

by the constraints, and not by the argument to the operator. The argument is taken as the initial estimate, that

determines the “local pit” of the energy function.

5.4. Comparison between global and local energy minimization methods. The difference between

the global and the local minimization class is partly in how the problem is posed. We saw in section 4 that
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a local energy minimization problem can be expressed as a distance transform in an appropriate curvilinear

orthogonal coordinate system. Any local minimization can therefore be posed as a global minimization by

constructing the parametric equation c(t) of the boundary of the constraint subset in the distance transform

space, and by expressing the problem as

min
t

(d� c(t))2:(2.2)

Figure 2.3 illustrates this duality between global minimization and local minimization problems.

However, not all global energy minimization problems, even convex ones, can be expressed as local

minimizations, because these operators are not necessarily idempotent, and we know that a local minimization

problem is idempotent. A local minimization is much simpler to solve than a non-convex global minimization,

but the local energy function itself might not be easily computable, however.

In local minimization problems one needs an initial estimate of all the features to be explicitly produced

by the operator. However, some features can be implicitly represented. For example, the position of disconti-

nuities in a surface can be derived from the junction of the Monge patch surfaces that were explicitly computed,

as is done in [36]. In contrast, global minimization methods permits for data that is not explicitly provided to

be explicitly produced, such as the line process in [13].

5.5. Stability. In any problem that has to be solved numerically comes the question of stability. Even

if a minimization is solved exactly, there can be instabilities inherent to the problem itself, for certain data.

Slight changes in unstable data may produce very large changes in the result, and that may be considered as a

type of ill-posedness [47].

In terms of an energy minimization framework, numerical stability has to do with the shape of the en-

ergy functional near the global or the local minimum that is to be found. A very small curvature in the neigh-

bourhood of the minimum makes the exact localization of the minimum hard to find numerically, even if it

is actually well defined. A gradient descent process will tend to wander around the minimum if it sits in an

almost flat area. In surface reconstruction, the minimization takes place in a multidimensional space where

each dimension usually represents a particular pixel site in the image. In that case, the minimum may be very

localized along some axes, but not along others.

The data instabilities differ in their instantiation depending on the type of energy minimization. No such

instability can exist for a convex minimization, because such a minimization does not take any decision [13].

In the case of a global but non convex minimization, data that is unstable (with respect to the problem to solve)

will have some of its local minima at almost the same value (or even at the same value) as the “global” one,

in at least one direction in the problem space. The process looking for the global minimum will therefore

not know which one to choose. In local minimization, the energy functional does not change with the data.

Therefore, it is the position of the data point on the energy functional that determines its stability. Data will
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u~

X

X
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X

c(t ) = u
00

FIGURE 2.3. Relation between global minimizations and local minimizations. The point ~u is the
data. The thick curve is the constraint subset, expressed parametrically as c(t): only points on this
surface satisfy all the constraints. The problem is to find the closest point u0 to ~u that lies on the
constraint surface. One way to find u0 is to build the distance transform of the constraint surface,
pictured by the shaded surface with level curves, and to find the local minimum of this function. This
is done by moving from ~u along the path of steepest descent (the dashed line) to the solution. The other
way is to find the global minimum of (~u� c(t))2 in terms of t. However, the function to minimize
is non-convex (the crosses indicate where the local minima would occur).

FIGURE 2.4. Numerical stability in one dimension. The minimum of the left energy will be much
more stable than the minimum of the right energy.
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FIGURE 2.5. Numerical stability in two dimensions. The minimization will be more stable in the
highly curved direction than in the other direction.

STABLE UNSTABLE

FIGURE 2.6. Stability in global minimizations.

?

FIGURE 2.7. Stability in local minimizations.

be unstable if it is at a local maximum of the functional, along at least one direction in the problem space. In

that case, a gradient descent approach can decide to proceed on either side of the ridge, giving two completely

different results.

What I have termed numerical instabilities and data instabilities are in fact related. If the local minima of

an unstable global energy functional close up together to the point where they touch in the limit, the result will

be a large flat minimum, causing numerical instability. Also, when a continuation method is used to “smooth”

an unstable global energy functional, the resulting functionals will tend to be flatter, as can be seen in [36,

Appendix B]. In the case of a local energy functional, if the local minima are connected, then there are no

ridges separating them, and the unstability will be a numerical one.
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6. Summary

I have put forth arguments for the requirement that a surface reconstruction operator be idempotent. In

such a case, the range of the operator can be considered as a constraint subset. An argument that is already in

the range of the operator is considered to satisfy the constraints of the operator, and an argument that is not in

the range will be made to adhere to the constraint subset.

In order to compare surface reconstruction operators, either idempotent or not, I have adopted an energy

minimization formalism. The three classes of energy minimization I consider are global convex minimization,

local minimization, and global non-convex minimization. The distinction between the global convex and the

global non-convex energy minimizations depend on the type of problem to solve. The distinction between lo-

cal and global minimizations depends on the formalism adopted to solve a given problem. Local minimization

problems always correspond to idempotent operators and can always be expressed as a global minimization

problem, although the reverse is not necessarily true.

In the next chapter, we present the locally constant curvature constraint algorithm of Peter Sander [56],

which I have adapted for surfaces presented as a graph rather than as a density image. This method is presented

here in more detail because it has only been outlined in the literature [23, 22, 24], and because it involves all

the key issues that will be considered in the following chapters. Immediately following is a chapter comparing

a number of well known surface reconstruction methods under the formalism of this chapter. In particular, we

are interested to know which methods are idempotent operators. Or, equivalently, which methods are associ-

ated with a well defined constraint subset.
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CHAPTER 3

Sander’s variational relaxation

1. Introduction

This chapter presents the adaptation of the locally constant curvature approach of Peter Sander to the

reconstruction of graph surfaces. The first part gives an overview of the original work of Sander [56]. The

rest of the chapter presents its adaptation to graph surfaces and an analysis of the algorithm.

2. Summary of Sander’s original work

This section briefly overviews the original work presented in Peter Sander’s doctoral thesis [56]. The

emphasis is on the implementation of the method, as it was applied to magnetic resonance images. The fibre

bundle formalism introduced by Sander will not be used at all, since it is felt it does not add anything to the

understanding of the method.1

2.1. Goals. The goals of Sander’s method are to infer the trace points (see appendix A) of surfaces

in three-dimensional images (analogous to inferring the trace points of curves in standard two-dimensional

intensity images), and to estimate the differential geometric properties of these surfaces, in the form of an

augmented Darboux frame (to be defined later) at every sample point. Sander’s method does not attempt to find

step and crease edges in the surfaces, as many other methods do. Rather, the surfaces are assumed everywhere

smooth.2

2.2. Representation of the surface. The differential geometric properties that are to be explicitly

recovered by the method are the surface orientation and principal curvatures [19]. Specifically, an augmented

Darboux frame �P
3 is stored for every trace point P . The frame consists of the coordinate P of its origin,

the surface normal N at P , the principal directions MM and Mm, and principal curvatures �M and �m,

1Actually, even Sander does not refer much to the formalism outside of the section where it is presented.
2Referring to appendix A, smooth is interpreted as C2, since this is sufficiently regular to perform all the computations of the algorithm.
3Actually, principal frame [6, p. 20] would be a better designation, since Darboux frames do not have to correspond to frames on the
lines of curvatures. Nevertheless, this notation will be kept for compatibility with Sander’s work.
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at P [56]. The vectors N , MM , and Mm are all unit vectors, and form a direct orthonormal frame in <3.

Although the principal directions are represented as vectors, the only information content is in their direction.

Appendix A reviews the relevant differential geometric concepts.

2.3. Initial Estimates. It is necessary for this method to have initial estimates of all the quantities to be

produced by the algorithm. This does not automatically prove that the method falls into the local minimization

family. The estimates are the coordinates of the trace points, and their associated differential properties in the

form of their augmented Darboux frames, to be described later.

The initial estimate of the position of the trace points and of their associated normals is obtained in a

way similar to the use of edge operators on two-dimensional images, except that the operators are now three-

dimensional. Details can be found in [67]. Basically, the image is convolved with a 3D edge operator at a set

of discrete orientations. The image positions at which an operator response is above a threshold, and which

survive a local maxima selection are chosen as the trace points, and the normal is taken as the orientation

of the operator which produced the response. It still remains to estimate the principal curvatures and direc-

tions. These could be found by estimating the second order derivatives using difference operations over the

trace points, but Sander argues that better estimates can be achieved by using a more robust surface fitting

method [56, Chapter 3]. From differential geometry, we know that the osculating paraboloid to a surface has

same principal curvatures and principal directions at the point of osculation [48]. The required quantities are

therefore estimated by fitting a paraboloid to the putative trace point and its neighbours. The fit includes both

positional and surface normal information.

2.4. Refining estimated differential properties. The initial estimates obtained in the previous sec-

tion are not yet satisfactory. This can easily be seen in examples, such as the one in figure 3.12. It is well

known that signal noise is magnified in the computation of its derivatives, and second order quantities have

to be computed in this method. The principal directions are known to be especially noisy [56]. The initial

estimates are computed locally, and consistency between neighbours is not insured. The initial estimates are

therefore further refined by an iterative process which enforces a locally constant curvature constraint over

the trace points. Sander attempts to do this in a framework similar to the relaxation labelling process used to

extract image curves in [46] and [34]. However, the complexity of the representation precludes the use of a

discrete set of labels, as in relaxation labelling. Instead, Sander applies the same local minimization principle

using continuous values and variational methods, thus the name variational relaxation.

The iterative updating process is now described. Most of the figures will represent planar curves instead

of surfaces. This is clearer, and the principles are easily transferred in 3D through the mind’s eye. The updating

process refines the set of augmented Darboux frames �i
P

for every point P that is part of the putative trace.

The superscript i indicates the iteration at which the Darboux frame was produced. The data estimated from the
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preceding section provide the updating algorithm with �0
P

. At any given iteration, all the points are updated

in parallel.

At iteration i + 1, the new frame �i+1
P

at point P is determined from the frames at points Q�, that are

members of the contextual neighbourhoodN i
P

of pointP at iteration i. This contextual neighbourhood con-

sists of the points within a sphere of radius r centered on P that satisfy a contextual neighbourhood criteria

on the point. This criteria is that P lies within a “thick trace” of width � of the dual paraboloid patch (see

appendix A) s� of �i
Q�

. Issues concerning the thick trace will be addressed in the next section.
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P

Q α

Q
~

FIGURE 3.1. Darboux frames of the trace points, and how to determine the contextual Neighbourhood.
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Figure 3.1 illustrates the ideas presented above. In the figure, the thick curves are the actual surfaces that

were sampled using the grid shown. The grey grid elements are the trace of the curve, as determined by the

3D edge detectors. The coordinate axes at every trace point represent the vector components of the Darboux

frame, and a section of the osculating paraboloid is included to represent the magnitude of the curvature at the

trace points. All the Darboux frames are for iteration i, so the superscripts are not shown.

The contextual neighbourhood of point P is a subset of the trace points included in a sphere of radius r

(2 pixels in this case, as indicated by the dashed circle) aboutP . For a neighbouring point Q� to be included

in the contextual neighbourhood, point P must lie in the thick trace of the osculating paraboloid to the surface

at Q�. The thick trace of point Q�, which is two pixel wide in this case, is indicated by the hashed pattern.

The thick trace at point ~Q, indicated by a grid pattern, does not include point P , so point ~Q is therefore not

part of the contextual neighbourhood of point P .

Given the contextual neighbourhood, �i+1
P

is obtained by minimizing a functional implementing a locally

constant curvature constraint on the neighbours. The first step is to “transport” the Darboux frames at the

neighbouring points to the point to be updated. Given Qi
� 2 NP i , and its associated Darboux frame �i

Q�
,

the updating frame at P from Qi
�, denoted �i

P �
, is obtained as the Darboux frame of a point of the patch

s�. This point on the patch is obtained by projecting P on the patch along the direction of NQ�. In figure

3.2, where the iteration subscripts were omitted, point P is projected on the osculating paraboloid of point

Qi
�, along the normal ofQi

�, in order to obtain the updating frame �i
P �

. The transported frames are shown in

dashed lines for� = 1, 4, and 5. The arrows indicate the projection of pointP onto the osculating paraboloids

of points Q1 and Q5, along the normals of the neighbours.

The updated frame �i+1
P

is the one that minimizes the square of the euclidean normed distance to all

the updating frames �i
P �

.4 The components of �i+1
P

are found separately, as the quantities that satisfy the

following least-squared minimizations.

�i+1MP = min
�M

nX
�=1

(�M � �MP�)
2;(3.1)

�i+1mP = min
�m

nX
�=1

(�m � �mP�)
2;(3.2)

N i+1
P = min

N ;�

nX
�=1

(N �NP�)
2 + �(N 2 � 1);(3.3)

M i+1
MP = min

MM ;�1;�2

n̂X
�=1

(MM �MMP�)
2 + �1(M

2
M � 1) + �2(MM �N):(3.4)

The Lagrange multipliers �, �1, and �2 enforce the required conditions on the vector quantities. n̂ is the num-

ber of non-umbilic points in the contextual neighbourhood of P . The value of M i+1
mP is directly determined

4Actually, the frames �i
P�

that are determined to come from umbilic points do not contribute to the update of the principal directions.
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FIGURE 3.2. Obtaining the updating frames from the neighbours.

by cross product since it is required to form an orthonormal frame with M i+1
MP and N i+1

P . Although it is in-

dicated in Sander’s thesis [56, p. 34] that the set of trace points are also updated, it is not clear how this is

achieved (this is not important for the adaptation of Sander’s method to range images).

Although the energy minimizations are done locally at each point, and not globally over the entire image,

it is possible to conceive the total energy of the system as the sum of the local energies. The total residual

energy of a local least-squared fit is called the overall squared residual

R̂(�i+1
P

) =

nX
�=1

�
(N �NP�)

2 + (�M � �MP�)
2 + (�m � �mP�)

2
�

+
n̂X

�=1

(MM �MMP�):(3.5)

The total residual energy of the system at a given iteration is then given as

�(�i) =
X
Qi

R̂;(3.6)

where � is the set of Darboux frames andQi is the set of all the trace points in the image. Sander experimen-

tally deducted that the sequence �(�i); i = 1; 2; : : : converges, based on the observed local convergence of
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the residuals R̂(�i+1P ). The number of iterations to be performed by the algorithm can therefore automatically

be controlled by a test on the convergence of the global residual.

3. Adaptation of Sander’s method for range images

In this section, the method previously described is adapted to data presented as a two-dimensional graph,

where the trace of the unique surface is given explicitly. The text will specifically refer to data in the form of

range images, but the adapted algorithm can deal with other input data, such as surface orientation graphs

produced by shape-from-X algorithms [22]. Some of the modifications to the original algorithm are due to

the difference in the type of data. However, some modifications are to correct deficiencies that also apply to

the original algorithm. Whether modifications apply only to the adapted algorithm or to both will be specified

in the text. In any case, the modifications keep the method within the original paradigm, that is, an iterative

refinement of initial estimates of surface depth, orientation and curvature, using a locally constant curvature

constraint.

3.1. The general outline. The outline of the adapted algorithm is mostly the same as the original one.

First, initial estimates of the augmented Darboux frame must be found at every point of the map. The differ-

ence is that the trace points are already assumed to consist of all the discrete points of the two-dimensional

map. Then, the augmented Darboux frames are iteratively updated in parallel, as in the original method. The

main difference lies in how the contextual neighbourhood is determined. The transport and updating are con-

ceptually identical.

3.2. Initial estimates. In the case of range data, the initial estimates of the trace points are explicitly

given in the data. The initial estimates of surface orientation and curvature can be obtained by using finite

difference operations, or by performing local fitting of quadric surfaces, of which the differential properties

can be obtained analytically [6]. Fitting local quadrics is less sensitive to noise than using finite differences,

and using the smallest possible symmetric neighbourhoods does not overly smooth the data. Since the method

assumes the surface to be everywhere smooth, there is no need to use robust fitting methods [7], [66]; least

squared fitting is currently used in the implementation. The goal at this stage of the development does not

include the detection of discontinuities; however, in order ensure the validity of the smoothness assumption

in the experiments, the bounding contours of surfaces may be explicitly given, and the local neighbourhoods

are then restricted to smooth connected regions of the surface. The same explicit discontinuity information is

also used to prevent cross-boundary updating in the iterative updating.

3.3. Determining the contextual neighbourhood. In the original algorithm, which dealt with a three

dimensional grid of pseudo intensity data, the neighbours of the frame were taken from a sphere (actually a

cube) centered on the point to be updated. Furthermore, points within the sphere would be included in the
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(a) (b) (c)

FIGURE 3.3. Difference between an intensity surface and a range surface (illustrated with 2D curves).
In (a) is a continuous surface, together with the discrete intensities it could generate as the output of
an “intensity camera”. The neighbourhood relation existing at points of such an image is a sphere. In
(b) is the same surface sampled by a range camera in the direction of the arrow. The neighbourhood
relation for a point is now a cylinder of infinite extent. (c) illustrates that the sampling separation of a
regular surface by an intensity camera is bounded, while the sampling separation due to a range camera
is unbounded.

averaging only if the point to be updated was inside a thick trace of the extrapolating patch of the neighbour.

In the case of range data, the neighbourhood rather consists of a disk (actually a square) since the data are two

dimensional. If the data are seen as “2 � 1=2D”, the neighbourhood can be seen as a cylinder. There can be

no limit to the extent of the cylinder, because surfaces with a high slope have a sparse sampling of the surface.

This is not the case for sampling along three axes, in which case surfaces with any orientation are sampled

almost identically (surfaces at 45� are sampled more sparsely by a factor of
p
2), and the neighbourhood can

be constrained along every axis.

Also, the thick trace was not used in the implementation of the algorithm for range data. The only valid

purpose of the thick trace is to prevent frames coming from points that are in the same spatial neighbourhood

(which consists of a sphere in this case), but not in the same neighbourhood on the trace or the traces on which

they lie, to interact with each other. See figure 3.1 for such an example. Therefore, it is mostly to handle the

case of two parallel traces that are close to each other; it is not intended to handle discontinuities within the

same trace, as Sander assumes the surfaces are smooth. Range data samples the surface of objects as a graph,

thus providing a single trace covering the sampling grid. The case of two nearby but distinct traces cannot

occur.
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Sander cited, as another reason for the thick trace paradigm, the inclusion of spurious data points.5 Again,

in the case of range data, since the connectivity of points is assumed to correspond to the sampling grid, even

the initial estimates do not handle spurious points such as those created by shadow edges [30, p. 27].

4. Extrapolating patches

In his original algorithm, Sander used a parabolic patch to extrapolate the darboux frame of a neighbour

to the location of the point to be updated. This patch is one of the easiest to implement since it only involves

second order polynomials, but it has the disadvantage that the origin of the paraboloid is where curvature is

maximum; all other points of the patch have lower curvature. If extrapolation is done locally to the origin of

the paraboloid, curvature will only be approximately constant, and however small the bias, it will always be

towards lower values. A large cumulative bias is likely to occur if a large number of iterations is performed.

This is true for both the original method and its modification.

The equation of a paraboloid in a local coordinate frame based on the Darboux frame of the neighbour

is given below. The w axis is along the normal and the u and v axes are along the principal directions.

w =
1

2
(�M�u

2 + �m�v
2)(3.7)

Paraboloid patches for positive and negative Gaussian curvature are shown in figure 3.5(a).

One of the easiest possible extrapolations is not to extrapolate at all, i.e., the darboux frame of the neigh-

bour is simply used directly as the update frame. The principal curvatures are therefore considered locally

constant, as required, but the normal is not extrapolated either, while it obviously should, if the surface is to

remain consistent (if the surface has curvature, then the normal vector should not remain constant). In order

to satisfy the constant curvature constraint consistently, the normal should be extrapolated on an arc of a circle

with constant curvature. Although such an extrapolation is well defined for one component of the normal, one

does not know how to update the component of the normal in the direction perpendicular to the direction of

extrapolation. One component of the normal is undetermined because there is no knowledge of the underlying

surface to which the constant curvature arc belongs. It is like attempting parallel transport [19], [56, p. 38]

along a curve without knowing the embedding surface. Figure 3.4 illustrates this problem. That is why it is

necessary to use an extrapolating patch, to completely determine the extrapolated normal.

In an attempt to find a surface patch that satisfies a constant curvature constraint as much as possible by it-

self, we considered a torus patch, and another patch having a constant normal curvature property. A torus patch

with origin on the extremal outer or inner rim has constant normal curvature along the principal directions at

the origin. However, normal curvatures in other directions than the principal directions are not constant. Torus

5As another method of dealing with spurious data points Sander mentions cross-validation techniques [18]. But cross-validation does not
deal with spurious data point in the sense of “outliers”, it is rather aimed at estimating the “optimum” smoothness parameter of smoothing
splines for data with additive uncorrelated white noise.
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Pp

FIGURE 3.4. Transport of the normal on a constant curvature curve leaves one component undeter-
mined. The surface shown has normal curvature as indicated by the thick arc of circle, in the direction
in which the extrapolation is to take place. The extrapolated normal could lie anywhere in the normal
plane to the curve at the projected point Pp, unless the surface embedding the arc is known.

patches with positive and negative Gaussian curvature are shown in figure 3.5(b), and the equation is given

below. (In the equation found in [19], the w axis passes through the donut hole; in this equation, the w axis

passes across the plane of the donut.)

w =
1

�M

2
4
s�

1� �M
�m

�
1�

p
1� �2mv

2
��2

� u2�2M � 1

3
5(3.8)

It is simple to derive the equation of a surface patch which satisfies the requirement that every normal

section passing through the origin has constant curvature. This equation is presented below, and its illustration

can be found in figure 3.5(c).

w =
1

�Mu2 + �mv2

p
(u2 + v2) [(u2 + v2)� (�Mu2 + �mv2)2]� u2 + v2

�Mu2 + �mv2
(3.9)

It should be noted that neither of these two types of surfaces have umbilic points, whereas a paraboloid

patch with positive Gaussian curvature may have lemon umbilics [6]. Also, projecting the point to be updated

on the extrapolating surface may miss for these two, since they do not have infinite extent, as the paraboloid.

It is fair in this case not to consider the corresponding neighbour in the update, i.e., to exclude it from the

contextual neighbourhood.

5. Least square fit of curvature fields

A curvature field is not a vector field as such since it is not oriented. Only the direction matters. Further-

more, it is not possible in general to assign an orientation to every line of a direction field in order to obtain an

28



3.5 LEAST SQUARE FIT OF CURVATURE FIELDS

(A) (B) (C)

FIGURE 3.5. Possible extrapolation patches. For all patches, the top patch has negative Gaussian
curvature, while the bottom one has positive Gaussian curvature. (a) shows parabolic patches. Their
undesirable property is that the magnitude of normal curvatures is maximum at the origin. (b) shows
torus patches. The two surface curves passing through the origin in the principal directions are arc of
circles. They are therefore closer to enforcing a constant curvature constraint. However, other planar
surface curves passing through the origin do not have constant curvature. (c) shows patches for which
all planar surface curves passing through the origin are arcs of circles. It therefore enforces a constant
normal curvature constraint at the origin.

everywhere smooth vector field, because of the presence of umbilic points. Figure 3.6 illustrates such a case.

One would be tempted to think that this problem was avoided in the original method by detecting umbilic

points and not using them in the update of principal directions. However, as figure 3.6 shows, the disconti-

nuities in the vector field do not only occur at the umbilic point, but along complete contours on the surface.

Also, the detection of umbilics is not robust in the first iterations of the algorithm. We chose to include ev-

ery point of the contextual neighbourhood in the updating of the direction field, without attempting to detect

umbilics at this step. However, the updating rule for the principal directions has been modified to ignore the

orientation of the vectors representing the principal directions. This modification is presented in appendix B.

With the new updating rule, the results are very stable and preserve the umbilics without having to explicitly

detect them.
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FIGURE 3.6. A direction field cannot always produce a smooth vector field. The figure shows a di-
rection field (dotted lines) in the neighbourhood of a lemon umbilic. The two smoothest vector fields
produced from this direction field are shown as arrows. In both cases, there is a line of discontinuity
where the vector field is undefined. Note that the field can be undefined at points that are not umbilics.

As for other methods of refining the direction fields, those that consider only smooth vector fields, such as

[41], are not useful, because our vector fields may have discontinuities. Work as also been done on curvature

fields, for example, [62].

5.1. Extrapolation of the curvature magnitudes. In Sander’s updating of the principal curvatures,

the new principal curvature at a point was simply taken as the average of the principal curvatures of the ex-

trapolating patches at the projected neighbouring points. This has been modified, because it is felt that this

quantity does not represent the normal curvature along the principal direction at the point to be updated. Fig-

ure 3.7 demonstrates this point. The solid lines represent the extrapolated principal directions of the neigh-

bours of the middle point. The dashed lines at the middle point represent the updated principal directions.

Now, the updated principal curvatures at the central point should correspond to the normal curvature of the

surface along those principal directions. Therefore, the principal curvatures should be the average of the nor-

mal curvatures of the neighbours in the required directions (the dashed lines) rather than the average of their

extrapolated principal curvatures (in the direction of the solid lines). The updating of the principal curvatures

at a point must therefore be done after the update of the principal directions is known. Given the updated

principal directions M i+1
MP and M i+1

mP , the curvatures to be averaged are then

�iMP� = �iMQ� cos
2 �M + �imQ� sin

2 �M ; where �M = \M i+1
MP(3.10)

�imP� = �iMQ� cos
2 �m + �imQ� sin

2 �m; where �m = \M i+1
mP ;(3.11)
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FIGURE 3.7. The principal curvatures of the neighbours do not directly correspond to the principal
curvatures at the updated point.

instead of the principal curvatures themselves.

As for the modification of the updating of the principal direction fields, this modification is significant

only around umbilic points. Elsewhere, the direction field does not vary much in a neighbourhood, and both

methods give similar results. However, the consistency between the curvature magnitudes and the curvature

field at umbilic points is greatly improved. Figure 3.8 illustrates the improvement on an ellipsoid.

5.2. coordinate system and projection method. One detail that has not been discussed in detail yet

is how to determine the coordinate of the point at which we want the extrapolation. The method used by

Sander consists in projecting the point P to be updated onto the extrapolating surface along the local w axis

(in (u; v; w) coordinates) of the neighbourQ�, which is actually NQ�. Other choices are possible, however.

The projection used to obtain this coordinate should be either in a coordinate frame intrinsic to the surface, or

in a meaningful extrinsic frame. Figure 3.9 shows three possible choices.

The first choice, represented asP pw in the figure, is the one used by Sander. It consists in projecting along

the normal of the neighbour Q�. Another choice is to project perpendicularly on the interpolating surface.

This case is denoted as P pn. Finally, yet another choice is to project the point to be updated along the global

z axis onto the interpolating surface patch. This case is denoted by P pz . In the two first cases it makes a

difference whether the global z position of the point P is known or not. However, this value is not known

from the outset if the initial Darboux frames come from a shape from shading process [22] rather than from

a range sensor. These two projection methods can be qualified as intrinsic, since they do not depend on the

embedding of the surface in space. The first method, however, is extrinsic to the surface, and will give different
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k�M��mk
max(k�Mk;k�mk)

min max

analytic 0.064 (7,7) 0.691 (22,8)
old 0.301 (6,5) 0.649 (22,8)
new 0.014 (7,6) 0.647 (22,8)

(a) (b)

(c) (d)

FIGURE 3.8. Comparison between old and new extrapolation of curvatures for an ellipsoid. The
line segments indicates one of the principal direction, the intensities correspond to k�M �
�mk=max(k�Mk; k�mk). (b) are the results analytically computed from the equation of the ellip-
soid. (c) , the old method, uses the principal directions as updates. (d) uses normal curvatures in ap-
propriate directions. Both results correspond to 2 iterations of the updating process using torus ex-
trapolation and the new field update rule. (a) indicates the min and the max values, as well as the
coordinate at which they occur.
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P Qα

w

(u,v)

z

(x,y)

P

Ppw

Ppn

pz

FIGURE 3.9. Possible projections onto an extrapolating patch. The illustrations are in 2D, but they
generalize directly to 3D projections.

results if the surface is imaged at different orientations. The reasons for using such an extrinsic projection is

because it is nevertheless meaningful with respect to the sampling of the data and its noise contents (mostly

along the view axis of the range sensor). One choice that does not seem useful is projecting along the normal

of the point to be updated. Indeed, as Sander argues, one should not rely on the very information that is to be

updated, in principle.

Projection normal to the extrapolating surface is non trivial, even for a parabolic patch. It is possible,

however, to use approximate methods, such as the one in [44].

The update of the depth of a point is obtained by averaging the z component of the projections on the

extrapolation patches. In the two first projection methods, the global x and y coordinates of the point may

also be modified by the projection operation, but those are ignored to preserve the initial format of the range

image, for computational simplicity.

6. Results

Results of some experiments are now presented for the modified method. These are limited to one range

image (taken from the CNRC database [53, image #139], and one analytically generated surface. Other results

can be found in [23]. Large range images (256� 256) are useful for qualitative evaluation of the method, and

for discovery of unsuspected behaviors. However, testing the convergence properties of the method on such

large images proves impractical due to the amount of time needed to execute the updating on a serial machine.

Furthermore, once a peculiar behavior has been observed, it is required to trace its source. Small numerically

generated surfaces were therefore used to test the method more rigorously. Small images have the advantage of

permitting a large number of iterations of the method. Numerically generated surfaces permit to compare the

differential quantities computed by the system with those computed analytically from the generating functions.
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(a) Raw range data. (b) Approximate shaded image.

FIGURE 3.10. Initial data – fluffy unicorn.

6.1. A fluffy unicorn. Figure 3.10(a) shows the initial range data presented as a mesh, and (b) shows

a shaded image generated from finite difference estimates of the surface normal (part of the initial Darboux

frame). This image was chosen among those we experimented with because of the very textured surface, the

richness of the shape, and the satisfaction of the smooth surface assumption at almost every scale of obser-

vation.6 A rough occluding contour of the unicorn was obtained beforehand by thresholding the range data,

and the algorithm was provided with this information so that it did not smooth over the boundary. The drops

in the range data caused by the specular surface of the eye, and by a shadow edge in the fold of the upper leg

were left as they were. Parts of the shadow edges also remained on the boundary of the shape.

Four iterations of the algorithm were performed on a Symbolics Lisp Machine. The projection method

was along the w axis. The new field update rule and the new principal curvature updates were used. The

extrapolating patch was a paraboloid, because using a torus patch considerably increases the running time of

6From the shaded image, we humans can detect some step discontinuities, even the ones on either side of the ribbon on the neck.
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(a) (b)

FIGURE 3.11. Refined depths for the unicorn. (a) shows the new depth map after refinement. The
initial data can be seen in figure 3.10. (b) is the difference between the two maps.

the algorithm, and four iterations were not sufficient to produce a significant bias in the curvature magnitudes.

The information contained in the initial estimates of the augmented Darboux frames and in those refined by

the algorithm is presented below in many forms.

Figure 3.11 shows the refined depth, and the difference with the

initial depth data. In the difference map, the bump on the lower leg is unexplained, and does not seem to

appear in the initial data. All the spikes correspond to the shadow boundaries and the specularity of the eye,

which produced step discontinuities in the original data. It is therefore normal that the algorithm deviated

considerably from the data to enforce the smoothness assumption of locally constant curvature. Note how-

ever that these effects have remained very localized.7 As for the rest of the difference map, it shows that no

significant warp of the shape occurred.

Figure 3.12 shows one of the principal direction field. It is clear that the initial estimate of the field does

not have any apparent structure, besides, maybe, on the horn and on the back. The results of four iterations

of the algorithm show a lot more structure. From our own qualitative appreciation of the curvature of the

surface of the unicorn, the field seems satisfactory on the legs, the front of the head, the neck and the body.

The structure of the ribbon has apparently been lost, but this is understandable since the algorithm assumes

7Using a neighbourhood size of 5�5 for 4 iterations can influence points within an 8 pixel radius, while we observe much more localized
spikes in the results.
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(a) (b)

FIGURE 3.12. Refined principal directions for the unicorn, sampling every three grid points. (a)
shows one of the initial principal direction field. (b) shows the same field after refinement.

the surface is smooth. The tail and the back of the head present noisier fields, but these areas were noisier in

the data itself.

The segmentation of smooth surfaces following regions determined by the sign of mean and Gaussian

curvatures has been proposed by many authors [8, 66, 15, 55]. Figure 3.13 shows the effect of the algorithm

on those regions. Qualitatively, the results are comparable to those obtained by [55] (the experiment has also

been run on the indian mask).

It has also been proposed to segment surfaces at local maxima of positive curvature (adopting the con-

vention that the surface normal points outside of the surface, or towards positive z values, in the case of range

data) [10]. Figure 3.14 shows how useless such a segmentation would be from the initial estimates, but that the

refinement would permit it. Note that by explicitly storing the principal directions, the local maxima of posi-

tive curvature are assigned a direction as well as a position. This facilitates their aggregation into continuous

surface curves, as was done in [23].

6.2. Experiments on a ellipsoid. An ellipsoid was used as a demonstration of the convergence prop-

erties of the algorithm. In this case, the augmented Darboux frame field of the shape can be computed from the
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(a) (b)

FIGURE 3.13. Refined KH sign map for the unicorn. (a) shows the map produced from the initial
estimates. (b) is after refinement.

analytic expressions of the surface derivatives. The initial estimates fed to the algorithm were these analyti-

cally computed ones. Hopefully, the algorithm should leave this data unchanged, since it is already consistent.

This is not the case at convergence, however, as the following figures show. This means that if the algorithm

forms an idempotent operator, then ellipsoids are not part of the corresponding constraint subset. Unless oth-

erwise noted, the same methods for the unicorn were used here.

First, we compare the effect of the choice of extrapolation patches. Figure 3.15 shows the results. That

the results at 100 iterations are close to the results at convergence can be seen from figures 3.17 to 3.21, which

shows the global residual energy of the system, and its breakdown over the individual terms of equations 3.5.

As expected, we see that using the paraboloid patch tends to flatten the surface at convergence. Recall that

this is due to the bias of a paraboloid patch towards lowering the curvature of its neighbours. The surface

obtained from torus extrapolations has comparable curvature magnitudes, but the shape of the surface has
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(a) (b)

FIGURE 3.14. Refined local maxima of positive curvature for the unicorn. (a) shows the trace seg-
ments produced from the initial estimates. (b) is after refinement.

obviously been warped considerably. The exact nature of this warp and the quantitative changes in curvature

have not been studied in detail.

As figure 3.16 shows, the structure of the principal direction field is totally lost after 100 iterations. From

the result after 10 iterations, we see that the umbilics are progressively pushed away until they disappear. The

corresponding drop in residual can be seen in figure 3.19(b). Considering that a torus patch does not have

umbilics, better results would be expected for a paraboloid patch, but the field behaves similarly when a pa-

raboloid patch is used (notice the same energy drop in figure 3.19(a)).

Figures 3.17 to 3.21 show the sums of the local residuals during the updating process. In figure 3.17, we

see that the total energy does not decrease monotonically in the case of the paraboloid, (there is a local max-

ima around the 40th iteration). In both cases, however, it is clear that the process will asymptotically converge

to some result. In figure 3.18, we see that the residuals of the least-squared fits for the curvature magnitudes

quickly go to zero. This is not surprising, considering that the update consists in a simple averaging of scalar

quantities. As was already noted, the residuals for the principal directions updates quickly converge to zero
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(a) (b) (c)

FIGURE 3.15. This figure compares the refined depth at convergence using paraboloid and torus ex-
trapolation patches. (a) is the original depth data. (b) is the result of 100 iterations using a paraboloid
patch, and (c) is the result of 100 iterations using a torus patch.

(a) (b) (c)

FIGURE 3.16. Loss of structure of the principal direction fields at convergence. (a) is the initial field,
as computed analytically from the equation of the ellipsoid. (b) is the field after 10 iterations (using a
torus patch). (c) is the field after 100 iterations.

once the umbilic structures have disappeared. Note also that these residuals form a significant part of the com-

pound residuals, which was not the case for the principal curvature residuals. The two last residual plots are

for the normals (figure 3.20) and for the depth (figure 3.21). The depth residuals are slightly more significant

than the normal ones, but both are less significant than the principal directions residuals. The convergence

of these residuals is much more eventful than the two previous ones. In general, we have not found any cor-

relation between the positions of the local extremas and the observable behavior of the augmented Darboux

frames, as was done in the case of the principal directions residuals. We noted, however, that the torus patch

extrapolation produced convergence sooner than with the paraboloid patch, as can be seen by observing the

position of the last local maximum, and the slope of the curve at the 100th iteration.
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(a)

(b)

FIGURE 3.17. Compound residuals
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(a)

(b)

FIGURE 3.18. Residuals of principal curvature updates
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Finally, we show the result of the updating process on the ellipsoid with 10% additive Gaussian noise in

the z direction. Figure 3.22 shows the initial data, as well as the refined depth after 5 iterations. The surface is

smooth, but is obviously badly warped compared with the noise free ellipsoid. The local features do disappear

after more iterations, but the global warping observed above takes place instead.

Figure 3.23 shows how the method can recover the structure of the principal direction field. In this case,

the initial augmented Darboux frames were computed numerically, with the result shown in 3.23(a). The next

figure shows the field corresponding to the fifth iteration. One of the umbilics has been recovered, but not the

other. In any case, as was shown above, even the recovered umbilic would disappear if the algorithm were

left to iterate to convergence.

7. Discussion

7.1. The hidden scale parameter: number of iterations. Let us discuss the effect of varying the

number of iterations on the updating process. From the experiment with the ellipsoid and other analytically

generated surfaces, it is obvious that the “locally constant curvature” constraint becomes a globally constant

curvature constraint at convergence. It is not clear at this point how the normal curvature can vary in different

directions on the surface at convergence, i.e., we do not expect the results to be always spheres. For example,

a cylinder already satisfies the constraints if a torus patch is used (note that the osculating torus to a point

on a cylinder degenerates into a cylinder), so a cylinder would not be warped by the process. Even then, the

constraint seems too restrictive if the process is ran to convergence. All the small scale features of the surface

will be lost. If the locally constant curvature constraint was applied to plane curves, then it is clear that the

result of the algorithm at convergence would always be a circular arc, the radius being the only free parameter

of the class of curves satisfying the constraint. It is not as straightforward to find the complete class of surfaces

that satisfies the locally constant curvature constraint, because the extrapolating surfaces (such as the torus)

are much more complex than the arc of circle that would be used for curves.

One apparent solution to the globality of the constraints is to control the number of iterations. The number

of iterations is at least in part a scale parameter, because the updating process is local, and the only means for a

point on the surface to influence a point further than its local neighbourhood is through a number of iterations.

However, we are now back to the same problem than with regularization theory: the choice of the scale (or

smoothness) parameter.

Another solution is to attempt to find a better set of constraints, that would not be as restrictive as the

constant curvature one. Then, the process could be run to convergence every time. However, this does not

solve the question of scale. Scale is an important component of perception, and if the updating process is

always run to convergence, a new scale parameter has to be found, possibly in the computation of the initial

estimates.
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(a)

(b)

FIGURE 3.19. Residuals of principal directions updates
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(a)

(b)

FIGURE 3.20. Residuals of normal updates
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(a)

(b)

FIGURE 3.21. Residuals of depth updates
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(a) (b)

FIGURE 3.22. (a) is the previous ellipsoid with 10% Gaussian noise added. (b) is the result of 5
iterations of the updating process.

(a) (b)

FIGURE 3.23. (a) is the initial estimates of the principal direction field. (b) is the result of 5 iterations
of the updating process.

7.2. Type of energy minimization. In the previous section, we saw that letting the iterations run

to convergence gives some globally simple surface as a result, and that controlling the number of iterations

amount to setting the value of a scale parameter. When the process is ran to convergence, it is obviously an

idempotent operator. Indeed, taking the result at convergence as the initial estimate for another application of

the process is the same thing as attempting another iteration on the first application of the process once con-

vergence has been reached. This will let the result unchanged. It is therefore possible to express this particular

application of the algorithm as a local energy minimization.
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The global residual energy computed to measure convergence is given by the sum of

R̂(�i+1
P

) =

nX
�=1

�
(N �NP�)

2 + (�M � �MP�)
2 + (�m � �mP�)

2
�

+
n̂X

�=1

(MM �MMP�):(3.12)

at every point of the surface. The function will be zero for surfaces that can be exactly fitted by the chosen

extrapolation patch, at every point. In the case of a torus patch, the function will be zero for spheres and

cylinders. These surfaces can be considered as part of the constraint subset of the idempotent operator. The

iterative process does not perform a local minimization on this function however, because the residual does

not monotonically decrease during the process, as can be seen in figure 3.17. Therefore, although the process

is idempotent, it is not the global residual energy computed by Sander that is the function to locally minimize.

When the number of iterations is controlled, then the operator is not idempotent. If a second application

of the process is attempted with the result of the first one as initial value, the second process will simply con-

tinue where the first one left off, to bring the result closer to the result at convergence. This operator cannot

therefore be expressed as a local energy minimization.

7.3. A secondary effect of the thick trace. In view of the considerable warping of surfaces after

a large number of iterations of the updating process, we wondered why such an effect was not detected in

Sander’s experiments. One possible reason is that a large number of iterations were never performed. An-

other reason is the use of the thick trace to determine the contextual neighbourhoods, in the case of Sander’s

original method. There were reasons to use a thick trace paradigm in the 3D case, but this thick trace does

not only perform the intended task, it may also prevent the algorithm from running to the intended conver-

gence. Because of the distortion introduced in the surface after a given number of iterations, the extrapolating

patches are less and less like their initial estimates, which were obtained by least-squared fit to the neighbours,

and therefore were necessarily passing close to the neighbours. As the surface distorts, less and less neigh-

bours will satisfy the thick trace constraint, and at some point, updating will cause no change in the Darboux

frame to be updated, because not a single neighbour satisfies the thick trace constraint. The thickness of the

thick trace will artificially limit the amount of distortion caused by the algorithm, and this distortion effect

may go unnoticed. By not having the thick trace constraint in this implementation, the distortions were no-

ticed more easily. Note that in this case, the thickness of the thick trace can be considered as another version

of a scale parameter.

7.4. Advantages of Sander’s approach. Because the iterative updating does not use finite difference

equations, it is easily extended to non regular, or non orthogonal grids. It was noted in section 5.2 that the

update of the depth was done along the global z axis. This was done because it was more computationally
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practical, and also because it is known that most of the image noise produced by the triangulation range sensor

used is in the depth measurements [3]. However, in principle, there is nothing requiring a regular sampling

grid or an update of the depth in the z direction. Even sparse sampling of the surface is acceptable, as long

as the surface is smooth and the sampling still gives sufficient information about the larger scale shape of the

object.

The method uses curvature constraints, which are view independent. Regularization methods, such as

the thin membrane or the thin plate models [59], [13], can be moved one order up to smooth the third derivative

of the surface, but the constraints will not be view independent. There are some regularization methods that

have approximately view independent constraints.

7.5. Possible improvements. The following improvements are meant to leave the philosophy of the

method intact, and are therefore mostly technical (as were those that were implemented and discussed above).

The following chapters discuss more fundamental problems of surface reconstruction.

One modification to the variational relaxation that would take it closer to relaxation labelling is to keep a

confidence value for each Darboux frame in the grid. When updating a point, the extrapolated Darboux frames

would be obtained in the same way, but they would be weighted by their confidence when doing the variational

updating (averaging). The new confidence in the update frame would be a function of the residual of the local

update. The original confidence value would be a function of the residual of the fit needed to find the initial

estimate of the darboux frames.

There should also be a confidence value associated with the principal directions, that would be based

on the closeness of the point to being an umbilic. Indeed, an umbilic point does not carry any directional

information on the curvature of the surface. Its confidence in its “principal directions” (which are computed

by the algorithm at every points) should therefore be zero. At points that are far from being umbilic, i.e., that

have a large absolute difference between their principal curvatures, the confidence in the principal directions

should be high. The confidence in the principal directions could therefore simply be the absolute value of

the difference between the two principal curvatures. It is not necessary to normalize this confidence, because

it will vary smoothly among neighbouring points of a smooth surface. But a normalized confidence could

always be formed by

k�M � �mk
max(k�Mk; k�mk) :(3.13)

We feel that this would be much better than trying to explicitly detect umbilics, as Sander did, in order to pre-

vent umbilics to contribute to an update. For example, a lot of umbilics are detected in the initial estimates

of a very noisy surface [56, p. 70 ]. Using Sander’s approach, a lot of points would be prevented from con-

tributing to the local updates. Using the confidence scheme, most points would have more or less the same
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(low) confidence, and would therefore contribute equally to the updates, which is what we want until some

structure is found in the data.

The reason for not having implemented these improvements is that it was clear that the approach is defi-

cient in more fundamental ways than such technicalities. It was decided to consider more theoretical subjects

rather. The next chapter considers other popular surface reconstruction methods, and attempts to unite them

along the energy minimization framework developed earlier.
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CHAPTER 4

Study of well known methods

Now that Sander’s method and my adaptation of it have been described in detail, I will compare it with a

number of other surface reconstruction methods. There is a need to study the methods in isolation and to

compare them together in various ways. I have decided to structure the chapter by placing the emphasis on

one method at a time, and to include in appendices any involved comparison between them. This permits the

discussion on one method to freely make cross references through the appendices.

The methods that I included are Terzopoulos’ regularization method [59], Geman and Geman’s

MAP method [26], Blake and Zisserman’s weak continuity method [13], Sander’s variational relaxation

method [56], Besl and Jain variable order surface fitting [9], and Leclerc’s MDL method [36]. These meth-

ods are only a selection of available ones, but they are considered representative of the principles that have

evolved in surface reconstruction. They are presented in their chronological order of appearance, in order to

show that evolution. These methods are preceded by a discussion on regularization methods in general.

For each method, a brief description of the problem is first given, followed by a description of how the

problem is solved. The adequacy of the problem itself is considered more important in this thesis, so the

method used to solve the problem, or even the feasibility of the solution will not be described in great depth.

The method is then compared to others, and the properties of the method are discussed in general. Finally,

the method is classified in the energy minimization formalism.

1. Regularization based approaches

1.1. Overview of regularization.

1.1.1. Problem description. Regularization, as used by [47], denotes:

: : : any method used to make an ill-posed problem well posed.

Since surface reconstruction is an inherently ill-posed problem [59],

[31, 47], and since the goal of any surface reconstruction method is to obtain a solution to a well-posed

problem (even those including the detection of discontinuities), any surface reconstruction method is a
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regularization method in that sense. In this section, we study the “standard regularization methods” [47]. In

standard regularization, the problem is to make well-posed (to regularize) the problem of solving the equation

Az = y for z, by introducing a norm k � k and a stabilizing functional kPzk. For standard regularization, A

and P are linear operators, and k � k is quadratic. The well posed problem is then to solve

min
z

(kAz � yk2 + �kPzk2);(4.1)

where � is the regularization parameter.

In computer vision, the data y is usually a discrete set of measurements. However, z can be either a

discrete set of values or a function to be evaluated at discrete points for comparison with y. In the text below,

the theory is usually presented in terms of functions, that will explicitly be denoted as such, e.g. z(xi). The

regularization functionals used in computer vision usually use the discrete case, which is explicitly denoted

using indices, e.g. zi.

1.1.2. Problem solution. The literature on solving convex optimization problems such as the ones

produced by regularization is extensive. The most practical methods in computer vision are iterative updating

of an arbitrary initial value by the use of some kind of gradient descent along the energy functional. [57] is

one of the many standard books on such methods.

1.2. Characterization of the method.

1.2.1. Comparison with other methods. Terzopulos’s method, when discontinuities are included a pri-

ori or are detected after the surface reconstruction process, is standard regularization. The stabilizing func-

tionalP is non-linear in Terzopoulos’ variational continuity control, in Blake and Zisserman’s weak continuity

method, and in Leclerc’s MLD method; these are therefore not standard regularization methods.

Similarities between Terzopoulos’ variational continuity control and Blake and Zisserman’s weak con-

tinuity are discussed in section 4.

1.2.2. Choice of stabilizing functional. The particular norms and stabilizing functionals used up to

now in the reconstruction of surfaces were often chosen rather ad hoc. Grimson [31, section 6.3] performed

an analysis of second order functionals, and has concluded that all may be expressed as a linear combination of

the square Laplacian and the quadratic variation. Boult [16] studied a large range of stabilizing functionals,

based on a subjective ordering of the functionals by human observers who rated the reconstructed surface

from what they personally perceived from raw (pointwise) data. One choice of stabilizing functional that I

consider particularly ad hoc is the use of physical model analogies such as thin membranes or thin plates under

tension.1 As Blake argues [11], there is no reason in favor of using such physical models for visual surface

reconstruction. In the same paper, Blake proposes a stabilizing functional based on curvature, which is an

intrinsic property of surfaces.

1Actually, the models are the small deflection approximations [58].
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1.2.3. Characterization of the solution to regularization problems. In this section, we will first con-

sider the one-dimensional regularization with stabilizing functional

J(z) =

Z xb

xa

(z(m)(x))2 dx:(4.2)

The regularization problem is to find z that minimizes

1

n

nX
j=1

(z(xj)� dj)
2 + �J(z):(4.3)

In general, the solution which minimizes this functional is a polynomial smoothing spline of order 2m � 1.

That is, every curve segment from xi to xi+1 is a polynomial of order 2m�1, where each polynomial is joined

such that the overall curve is C2m�2. There are well known particular cases [63]:

� If d can be interpolated exactly by some polynomial of degree less than m then that interpolating

polynomial is the solution of the minimization.

� If � ! 1 and d cannot be exactly interpolated by a polynomial of degree less than m, then the

solution is a single polynomial of degree m� 1 best fitting the data in a least-squares sense.

� If �! 0 and d cannot be exactly interpolated by a polynomial of degree less thanm, then the solution

is the polynomial spline of degree 2m� 1 that interpolates the data d.

The two last cases are very special in that the corresponding operators can be shown to be perpendicular

projections, and thus, idempotent. This is obvious for the first case, since a least-squares fit is by definition a

closest point problem [50, p. 197]. Proof for the other case can be found in [40]. As is shown in section 1,

however, the operator is not idempotent in general.

The two-dimensional case is slightly more complicated, especially if the sampling grid is not uniform.

Also, the solution to the minimization cannot be expressed as a piecewise polynomial surface in general. How-

ever, the same principles hold.

For the two-dimensional case, the stabilizing functional is given by

J(z) =

Z xb

xa

Z yb

ya

mX
l=0

�
@mz

@xl@ym�l

�2
dxdy;(4.4)

which corresponds to the thin membrane model for m = 1 and to the thin plate for m = 2. Models similar to

those were used by [31] and [59] for surface reconstruction.

We now generalize the remarks made earlier for the one-dimensional case. In general, the solution which

minimizes this functional is aC2(m�1) surface, which is part of the Sobolev spaceH2 of order two [58], and

is given by [21]:

nX
i=1

cir
2(m�1)
i ln(ri) + pm(x; y); m � 2;(4.5)
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where pm(x; y) is a polynomial of degree < m, and r2i (x; y) = (x � xi)
2 + (y � yi)

2. n is the number of

data points. Note that the solutions were C2m�1 in the one-dimensional case. Nevertheless, the three cases

above generalize directly to two dimensions [63]:

� If d can be interpolated exactly by some polynomial P (x; y) of degree less than m (P (x; y) =Pm�1
i+j=0 aijx

iyj) then that interpolating polynomial is the solution of the minimization.

� If � ! 1 and d cannot be exactly interpolated by a polynomial of degree less than m, then the

solution is a single polynomial of degree m� 1 best fitting the data in a least-squares sense.

� If �! 0 and d cannot be exactly interpolated by a polynomial of degree less thanm, then the solution

is the C2(m�1) surface given by equation 4.5 that interpolates the data d.

Again, the two last cases correspond to perpendicular projections [40], but the regularization operators

are not idempotent in general.

1.2.4. Choice of regularization parameter. In surface reconstruction, the stabilizing functional usu-

ally imposes a maximum order constraint on the surface. The value of � can then be seen as an arbitrator

between a “closeness to data” constraint and a “zero order m derivative” constraint, for some given integer

m. As was implied in the previous section, if � is very small, then the resulting surface will not necessarily

be very smooth, but it will closely interpolate the original data. If � is very large, the resulting surface may

poorly interpolate the data, but it will be C2(m�1) smooth. Setting � at one of these extremes is considered

uninteresting in terms of regularization (although it is seen as useful by other formalisms such as Leclerc’s

and Geman and Geman’s, as will be seen later). � has also been interpreted as a scale parameter [13]. This is

intuitively correct, since at one extreme, a global polynomial is fitted to the data, and as the value of � moves

toward zero, more and more local features are permitted, up to the point where every known local feature (the

sampled points) are interpolated.

The most important problem of regularization methods is to find the “optimal” value of the parameter,

and to define the meaning of optimality. In the particular case when the noise characteristics of the signal are

known a priori, optimality may mean to have the smoothest result that retains the known noise characteristics

of the data. There are theoretical results to handle this case [18].

If however the “noise” characteristics of the signal are not known (which I will claim later is always the

case in computer vision), they may be estimated by statistical means. [18] developed such a method, called

generalized cross-validation (GCV). The idea is to use the ability of regularized functionals done without one

of the data points at predicting the value of the missing point, as a measure of the goodness of the regularization

parameter. Another approach is the Min-Max principle, which is succinctly presented by the authors [27]:

The main difficulty in choosing� is that if it is either too low or too high, one of the objective

functions will be inadequately represented in the total cost, and the total cost will be too low.

53



4.1 REGULARIZATION BASED APPROACHES

One way to ensure that the total cost will not be too low is to pick (� giving) the maximum

cost solution.

Here, the “cost” is the residual of the solution of the regularization problem, and the objective functions cor-

respond to the closeness to data term and the smoothness term.

Here, I argue that knowing the acquisition model of the data is not sufficient to find an optimum value of

�. Furthermore, I claim that there is no single optimum value of � for the purpose of surface reconstruction.

The reasons for both these claims is the same. When using regularization as a data processing tool, the goal is

to ease the interpretation of the data by specialists, or to interpolate or extrapolate the signal. In that case, what

constitutes the signal is well defined, especially if the noise process is known. In the case of computer vision,

the goal is not only one of signal processing, but also of automatic signal interpretation. What constitutes the

signal (in the sense of the information we are interested in) is not as well defined in this case. For example, if

the surface under observation has some small scale texture (relative to the scale of interest), then this texture is

part of the signal in a data processing sense, but not in a surface reconstruction sense, where we may consider

the texture as insignificant. Estimating one optimal value of � is not necessarily good either. A surface may be

covered by a “mid-scale texture” itself covered by a small-scale texture, and we may consider any combination

of those as the signal of interest. Basically, this is the problem of scale-space [65]. It will be discussed in other

sections as well.

1.2.5. Method classification. In standard regularization, the choice of stabilizing functional and of a

quadratic norm is done to ensure the convexity of the functional to minimize. The standard regularization

methods therefore fall in the global minimization of convex energies class.

The attempts made at finding the right stabilizing functional for regularization were concerned in a large

part with the limitations of the regularization approach, such as the need for a semi-norm property [47]. What

is most important however is the knowledge of the constraint subset, if it exists, or as expressed by Terzopoulos

[60, p. 434]:

: : : the surface model can be related to expectations regarding the class of admissible surfaces.

It is true that there is a restricted class of surfaces that satisfy a particular regularization problem. For example,

the admissible class for thin plate splines is the Sobolev space of order two [58]. However, even when the

initial data can be interpolated exactly by one of the surfaces in the admissible class, the regularization operator

may choose another (approximating) function of the admissible class instead of the interpolating one. More

generally, it is shown in section 1 that an operator defined by standard regularization (with fixed values of �

and other parameters) is not idempotent. The class of admissible functions is therefore not a constraint subset

in the sense of section 3.
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However, we have seen in a previous section that when the regularization parameter is either 0 or 1,

the regularization method becomes a perpendicular projection. In these extreme cases, then, the method is

idempotent, and can be expressed as a local minimization.

2. Terzopoulos’ controlled continuity splines

2.1. Overview of the method.

2.1.1. Problem description. In his method, Terzopoulos wanted to be able to handle the presence of

known step and crease discontinuities on the surface. In order to achieve this, the stabilizing functional may

be locally

� disabled,

� the thin membrane functional, or

� the thin plate functional.

Therefore, the value of the stabilizing functional at a point depends not only on the differential properties of

the solution surface at the point, but also on the knowledge of the desired continuity at that point.

The regularization is discrete, and is the solution of the minimization of

E�� (v) = S�� (v) + P(v)(4.6a)

where S�� (v) is a combination of the thin membrane and of the thin plate energies, where � and � control

the local continuity of the surface. P(v) is the closeness to data term. It can also include surface orientation

information, but this is not included here for simplicity.

S(v) = 1

2

X
i;j

�i;j

8<
:�i;j

h
(vi+1;j � 2vi;j + vi�1;j)

2

+2 (vi+1;j+1 � vi;j+1 � vi+1;j + vi;j)
2

+(vi;j+1 � 2vi;j + vi;j�1)
2
i

+ [1� �i;j ]
h
(vi+1;j � vi;j)

2
+ (vi;j+1 � vi;j)

2
i9=
;;(4.6b)

P(v) = 1

2
�
X
i2D

(vi;i � di;i)
2:(4.6c)

Depending on the required continuity at point i; j, the values of � and � are set as

�i;j = 0; at a C0 discontinuity;(4.7)

�i;j = 1;�i;j = 0; at a C1 discontinuity;(4.8)

�i;j = 1;�i;j = 1; otherwise:(4.9)
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Terzopoulos also introduced a variational continuity control method, in which the energy functional is

minimized with respect to � and � as well as with respect to v. A new term D(�; � ) is added to the energy

functional in order to penalize the introduction of discontinuities:

E(v; �; � ) = S(v; �; � ) + P(v) +D(�; � )(4.10a)

where

D(�; � ) =
X
i;j

[�dDi;j(�) + �OOi;j(�)] :(4.10b)

Di;j(�) and Oi;j(�) are weights that depend on the structure of the discontinuities near the central point, and

�d and �O are scaling parameters. The configuration of those weights is similar to Geman and Geman’s line

process, although in this case, discontinuities can be either steps or creases. Steps and creases do not interact

with each others in these weighting functions. Such interactions should be included if all possible surface

intersections are to be considered.

If one does not want to consider the structure of discontinuities, the simplest expression ofD is

D(�; � ) =
X
i;j

[�d[1� �i;j ] + �O[1� �i;j ]] :(4.10c)

Even then, the energy function is not convex anymore, and the problem cannot be considered one of standard

regularization.

2.1.2. Problem solution. The first method presented by Terzopoulos produces a convex minimization

problem. Therefore, all the standard methods of convvex optimization can be used. The variational continu-

ity control produces a non convex functional, for which the global minimum has to be found. Terzopoulos

attempts to find the global minimum by performing a number of minimizations over a family of functionals

E�d;�O (v; �; � )(4.11)

that are controlled by the values of �d and �O . These values are first set very high, disabling discon-

tinuities, and making the functional convex. This functional is minimized using a gradient descent method,

and the result is used as the initial value for a gradient descent on a new functional with lower values of �d

and �O (first lowering �d in steps and then lowering �0 in steps), and so on, until a result is obtained for the

desired functional. Although this approach was not formulated as a continuation method by Terzopoulos, this

updating process is very similar to the graduated non-convexity solution of the first order plate of Blake and

Zisserman.
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2.2. Characterization of the solutions.

2.2.1. Comparison with other methods. The first method presented by Terzopoulos is standard regu-

larization, where � is the regularization parameter. Since this is discrete regularization, the result of the algo-

rithm is not a surface, but a new set of discrete points. The intent of Terzopoulos’ method was to interpolate

in between sparsely sampled data points, such as those produced by feature based stereo [28, 39]. If the reg-

ularization parameter is set at the high extreme, then the solution will exactly interpolate the initial data, and

will also provide depth estimates at the grid points where no data was available. In the case of dense data, i.e.

every grid point has a value, then discrete regularization with �!1will behave as an identity operator. For

either dense or sparse data, setting � close to zero will fit planes to the data within these regions delimited by

the known discontinuities. As was said earlier, this produces an idempotent operator.

In the variational continuity control method, two other parameters, �d and �O , control the formation of

discontinuities. As a variational method, the weak continuity constraint of Blake and Zisserman comes closest

to this method. However, the weighting of discontinuities based on their local structure has more similarity

with Geman and Geman’s method (as acknowledged by Terzopoulos).

3. Geman and Geman’s MAP estimate and stochastic relaxation method

3.1. Overview of the method.

3.1.1. problem statement. Geman and Geman use a Markov Random Field (MRF) model of the un-

derlying image and formulate the problem as a maximum aposteriori probability (MAP) estimation. Because

of the equivalence between the MRF model and a Gibbs distribution for the probability of the underlying sur-

face, the problem is equivalent to minimizing a Gibbs energy functional dependent on the sampled data and

the known data acquisition process.

Given a degraded image G, the method seeks the image f that has the MAP probability of being the

underlying image F that has producedG. Using Bayes rule, this probability, for any f , is given by

P (F = f jG = g) =
P (G = gjF = f)P (F = f)

P (G = g)
:(4.12)

Because we want to maximize this expression with respect to f , we can ignore the denominator on the

RHS, since it does not depend on f . The second term in the numerator on the RHS depends on some a priori

assumptions made on the probability of existence of an underlying image. Geman and Geman use a MRF

model to determine this probability. In such a model, the probabilit that a pixel has a certain value, given the

values of all the other pixels in the image, is only a function of the pixels in a finite neighbourhood of that

pixel. This probability is given by
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P (F = f) =
e
�U(f )

T

Z
(4.13)

where Z is a normalizing factor, T is a temperature parameter used to control the simulated annealling

process, and U(f) is an energy function based on local properties of the image f .

In order to compute the conditional probability in the numerator on the RHS of equation 4.12, the image

formation process must be known. If the original image is given as F , the degraded image, G, is given by

G = 	(�(H(F )); N)(4.14)

whereH is a blurring matrix, � is some non-linear transformation,N is some arbitrary noise, and	(a; b)

is some invertible function with inverse �(g; �(H(f ))). If the noise is known to be additive white noise, the

conditional probability function is given by

P (G = gjF = f) = (2��2)�M=2e�(���(g;�(H(f ))))2(4.15)

where M is the number of pixels in the image, � and � are the known mean and variance of the white

noise. If we multiply this conditional probability with P (F = f), we obtain

P (F = f jG = g) =
e
�UP (f )

T

ZP
(4.16)

where ZP is a normalizing factor, and

UP (f ) = U(f) +
(���(g; �(H(f ))))2

2�2
:(4.17)

It is equivalent to maximizing the Gibbs distribution of equation 4.16 and to minimizing the Gibbs energy

of equation 4.17.

3.1.2. problem solution. The Gibbs energy to minimize is not convex in general, so gradient descent

methods are not sufficient to find the global minimum. Geman and Geman’s formulation of the problem as a

MAP estimate permits to directly use a stochastic relaxation method to find the global minimum. This method,

as for the continuation methods used by Blake and Zisserman and Leclerc, produces a sequences of images

that converges to the global minimum. In this method, the sequencing parameter is the temperatureT , which

is first set at a high value, and then gradually lowered towards zero. When interpreted as a statistical sampling
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method, the process evolves from a purely random sampler (T = 1) to a purely deterministic one (T = 0).

Geman and Geman have given a lower bound on the cooling schedule of T for which they have shown that the

MAP estimate will be found by the method. [12] compares the stochastic relaxation method with the graduated

non-convexity method.

3.2. Characterization of the method. The three models used to compute the a priori probability in

[26] have been admittedly chosen ad hoc by Geman and Geman. The first of these models, the “blob process”,

is shown to give an energy functional equivalent to the piecewise constant case of Leclerc in section 1. In this

comparison the data acquisition model was assumed to be additive Gaussian noise, but both Geman and Ge-

man’s and Leclerc’s formulations can accept more complex image formation models in the energy functional.

Since Blake and Zisserman’s energy with �!1 has been shown to be equivalent to the piecewise constant

case of Leclerc, it is also equivalent to the blob process of Geman and Geman.

The blob process does not make use of line processes at all. When such a model is used in the second ex-

ample of Geman and Geman, consisting of constant intensity rectangles (with sides aligned with the sampling

grid) degraded by additive Gaussian noise, the result of their algorithm gives rather jerky sides. Application of

Leclerc’s algorithm on similar data (also with additive Gaussian noise), also gives jerky sides at low contrast

boundaries.

The addition of a line process in the a priori model permits the use of knowledge about the types of images

processed. If the Gibbs energy is expressed algebraically (as in appendix C), it results in the addition of more

Kronecker deltas to the function for the blob process. The energy, corresponding to the a priori model used

in their second example, is presented in section 2. Since the line variables have only a few discrete values, it

would not make much sense to use Leclerc’s continuation method on the Kronecker delta terms involving the

line variable. But this is a detail of how to solve the problem. On the study of the problem statement alone,

one should note that the line process used fits very well with the data in the example. A more complex line

process has to be used for the third example, which consists in a more natural “roadside scene” [26]. Among

other things, line elements with different orientations must be allowed to take into account diagonal lines.

It is not obvious if a line process could be found that would be more useful than no line process at all if

no priori assumptions can be made on the contents of the image. For example, it would have been interesting

to see the result of using the blob process on the roadside scene.

One should note that the number of discrete intensity levels handled by the method is rather small (Due

to having to sample a probability density), contrary to other methods such as Blake and Zisserman an Leclerc,

where the intensity can be practically considered continuous.

The a priori models used by Geman and Geman in their examples are very restricted in that they assume

piecewise constant images. There is nothing preventing the use of higher order models, but this would in
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turn require the distinction between different types of line processes, one for each type of discontinuity (as

Terzopoulos does). This would involve rather complex expressions.

Because it can be expressed as the minimization of a gibbs energy functional, the method enters the cat-

egory of global minimizations. Due to the equivalence between the blob process and the piecewise constant

case of Leclerc, the method with the blob process gives an idempotent operator, as is proven for Leclerc in

section 3. This method could therefore be expressed as a local minimization problem. Idempotency has not

been demonstrated for the other line processes, but we are tempted to think that these methods are idempotent

as well.

4. Blake and Zisserman’s weak continuity method

4.1. Overview of the method. This method is very well described in the book [13]. The method

is very similar to the variational continuity control of Terzopoulos, but it facilitates the determination of the

global minimum by a clever combination of the smoothness functional and of the line process functional. How

this is done will be shown here for the detection of step discontinuities in 1D, using a weak string model.

Detection of 1D creases and of step and creases in 2D, using the same approach, are also discussed in the

book.

In the weak string model, the energy to be globally minimized is

E = D + S + P;(4.18)

where

D =

NX
i=0

(ui � di)
2;(4.19)

S = �2
NX
i=1

(ui � ui� 1)2(1� li);(4.20)

P = �
NX
i=1

li:(4.21)

(4.22)

and li is one if there is a discontinuity between site i�1 and i, zero otherwise. The energyE is to be minimized

with respect to u and l.

This problem is equivalent to minimizing an energy F with respect to u alone, where

F = D +

NX
i=1

g(ui � ui�1)(4.23)
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where

g�;�(t) = minl2f0;1g
�
�2(t)2(1� l) + �l

�
(4.24)

The energyF is not convex in general. Blake and Zisserman attempt to find the global minimum to F by

using a continuation method they call graduated non-convexity. It consists in sequentially finding the minima

of the family of functions

F (p) = D +
NX
i=1

g(p)(ui � ui�1)(4.25)

starting at p = 1, and using the result of one minimization as the starting point for the next. The family of

functions is chosen such thatF (1) is convex, and such that F (p), p!1 tends to F . This is achieved by using

g
(p)
�;�(t) =

8>>><
>>>:

�2t2; if jtj < q

�� c(jtj � r)2=2; if q � jtj < r

�; if jtj � r

(4.26)

where

c =
c�

p
; r2 = �

�
2

c
+

1

�2

�
; and q =

�

�2r
:(4.27)

and c� is chosen such that F (1) is convex.

4.2. Characterization of the results.

4.2.1. Relation with other methods. The graduated non-convexity introduced by Blake and Zisser-

man, although not a novel concept (see [1] for a review of continuation methods), introduces a useful for-

malism in the domain of automatic discontinuity detection for surface reconstruction. Besides the formalism,

however, their method is very similar to the variational continuity control of Terzopoulos, at the algorithmic

level. The difference is mostly that Blake and Zisserman do not mix membrane and plate energies, whereas

Terzopoulos does. Although it is not presented as formally as in Blake and Zisseram’s work, Terzopoulos also

uses some kind of a continuation method in order to find the global minimum of the regularizing spline with

step and crease line processes. Indeed, the scaling factors for depth and orientation discontinuities are first

set to a high value [59, P. 49]. The depth discontinuity factor is then gradually lowered, a minimization being

performed each time, the preceding result used as a starting point for the current minimization. Only after

the depth discontinuity factor is low enough is the orientation discontinuity factor lowered in steps, repeating

the same sequential minimization process. Practically, the sequential lowering of the discontinuity factors is

similar to the lowering of p in graduated non-convexity, and keeping the orientation discontinuity factor high
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during the detection of steps is very similar to the 1st order plate approach of Blake and Zisserman [13, p.

106].

Leclerc’s method and Geman and Geman’s method are still to be presented, but we state at this point

that Blake and Zisserman’s method is very similar to those methods when the regularization parameter tends

to infinity. These similarities between the methods are presented in sections 1 and 2.

4.2.2. Stability measure. Although it is not stated explicitly in their book, the discontinuities found

in Blake and Zisserman’s method can be assigned a stability measure. Indeed, at any given minimization

while the graduated non-convexity parameter p is lowered from 1 to a very small value, a discontinuity will be

either unambiguous or ambiguous [13, p. 139]. A discontinuity that is unambiguous at a given step will never

disappear during subsequent minimizations, while an ambiguous one may disappear. It is therefore natural to

assign the value of p at which a discontinuity becomes unambiguous as its stability. This measure of stability

is similar to the one described in [36].

4.2.3. Computational feasibility. Blake and Zisserman have extensively studied the feasibility of their

method. They have showed that their algorithm did find the global minimum of the energy function in the case

of the weak string with non-interacting discontinuities [13, appendix E]. They have not been able to prove that

the global minimum is found in other cases, however.

4.2.4. Gearing a problem statement from the available solution method. The approach of Blake and

Zisserman is an example of producing problem statements geared towards a particular method of solution.

The graduated non-convexity method was naturally introduced for a weak string. A number of concessions

had to be made however, to apply the functional to higher order energies, or in two dimensions. For example,

the smoothing energy of the membrane is separated into thex and y components of the gradient, so that the one

dimensional function g(t) can be used [13, p.115]. The method of Blake and Zisserman is therefore limited

in the choices of regularizing functionals and of line processes, due to the requirements of the graduated non-

convexity process.

5. Sander’s variational relaxation method

5.1. Overview of the method. The variational relaxation method of Sander is described in detail

in chapter 3. Recall that the method consists in iteratively satisfying a locally constant curvature constraint,

starting from an initial estimate of an augmented Darboux frame at every image point, and iterating until a

convergence criterion is satisfied. However, it was noticed that iterating to convergence removed most of the

local information content of the data. In experiments with computer generated and real data, it was observed

that best results are obtained when the iterations are stopped possibly well before convergence. The number

of iterations performed were interpreted as a scale parameter.
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5.2. Characterization of the method. When using the parabolic extrapolation patch, we saw in chap-

ter 3 that the result at convergence is equivalent to the least square fit of a plane, globally, to the data points.2

As was noted in chapter 3, the parabolic patch does not implement the constant curvature constraint anyway,

after a large number of iterations. At least, it serves the purpose of disproving the possibly intuitive conclu-

sion that the surface at convergence is a gobal instantiation of the local extrapolating surfaces (a plane is a

parabolic patch, but it is not as general).

When using the torus patch, the constant curvature constraint is better implemented, but what constitutes

the constraint subset is not clear anymore. All spheres and all cylinders are obviously elements of the subset,

because a torus patch may degenerate into a sphere and into a cylinder, and also because of the symmetry prop-

erties of these shapes. It is equally trivial to show that planes are included in the constraint subset. Besides

these, it is not even obvious if torus surfaces are part of the constraint subset. This is because the torus patch

osculating a general point of another torus does not necessarily osculate the torus everywhere else. Even with-

out knowing the constraint subset exactly, we can nevertheless say that its element surfaces may have nonzero

second partial derivatives, from the inclusion of sphere and cylinders, as well as intuitively. If we associate

the effect of running Sander’s algorithm to convergence with the effect of regularization with � ! 1, then

the stabilizing functional of the equivalent regularization method should involve at least third order partial

derivatives of the surface, which is one order higher than for the thin plate.

Experimentally, the method gives good results when it is not iterated to convergence. Only a few it-

erations are usually sufficient to remove noise from the principal direction fields. Also a local minimum of

the overall residual, over the number of iterations, usually occurs after a few iterations, but what these local

minima correspond to has not been found yet.

5.2.1. Comparison with other methods. As was mentioned in chapter 3, controlling the number of

iterations of Sander’s algorithm can be seen as controlling a scale parameter. The parameter � of regulariza-

tion methods can also be interpreted as a scale parameter [13]. The way in which the number of iterations of

Sander’s iterative updating and the regularization parameter control the scale is not quite the same, however.

An attempt at comparing these controls is presented in appendix C. In the appendix, we note that using sim-

pler constraints than constant curvature, we can find similarities between the iterative updating formulas of

Sander and the iterative solution of regularization by traditional relaxation methods. In that sense, Sander’s

iterative updating is somewhat equivalent to the iterative solution of regularization problems with � ! 1,

which as we know is an idempotent operation. Then, controlling the number of iterations of Sander’s algo-

rithm would be similar to the iterative solution of regularization problem, where the initial value is taken as

the data (which usually does not matter in the iterative solution of regularization problems), and the algorithm

2This is a pretty expensive way of doing a least square fit!
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is prevented from running to convergence. The effect of preventing the iterative solution of a regularization

problem from approaching convergence is not discussed in the mathematical literature.

5.2.2. Method classification. Sander’s variational relaxation, since it starts from an initial estimate of

the augmented Darboux frame at every surface point, and iteratively progresses toward a set of frames that

satisfy the constraints, is by definition an idempotent operator, if it is ran to convergence. The process could

therefore be expressed as a local minimization, but the functional to locally minimize is not expressed explic-

itly in this method, since it consists of a number of convex minimizations at every point rather than a global

one. A global energy functional is nevertheless defined in order to examine the convergence of the algorithm.

This functional is defined as equation 3.5. This energy function does not describe a constraint surface that has

an obvious geometrical meaning. Among other things, it has not been found yet if the constraint surface is

convex or not. Examination of this global energy shows that is is not strictly decreasing as the algorithm pro-

gresses. That may be explained in part because the computed energy is not necessarily the one being implicitly

minimized, at least not before a large number of iterations.

The operator corresponding to running Sander’s algorithm without waiting for convergence is not idem-

potent. Indeed, if the algorithm is ran again on a previously obtained result, the iterations will simply pick up

the minimization of energy were they left off, and the result after a given number of iterations will be closer

to the result at convergence.

6. Besl and Jain’s variable order surface fitting

6.1. Overview of the method.

6.1.1. Problem description. The goal of Besl and Jain’s variable order surface fitting [8] is to recover

a piecewise-smooth surface from noisy samples of it. The smooth regions of the recovered surface are mod-

eled by polynomial patches in their paper. The order and distribution of these patches is to be adapted to the

underlying surface, such that the number of regions is small (minimizing the number of discontinuities), and

such that the difference between the reconstructed surface and the data is small. This is about as formal as the

problem description of this method can be. The authors have purposefully not attempted to weight the close-

ness to data and the minimization of discontinuity terms, so no formal functional minimization is possible.

Rather, the method seems to have been developed more as a series of procedures, that are described in the

following section.

6.1.2. Problem solution. This method consists of two distinct steps. The first one consists in obtain-

ing a preliminary surface segmentation (an initial guess) based on classifying surface regions in one of eight

surface curvature types: peak, ridge, valley, saddle ridge, saddle valley, flat, and minimal. The curvature prop-

erties of the surface are determined by estimations of partial surface derivatives using convolution operators.
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These initial regions are then used as seeds for a region growing process, based on function approxima-

tion over the regions being grown. The process proceeds iteratively one surface region at a time, starting with

the largest region in the initial guess, and ending with the smallest one that has not been merged with some

other one.

For a given region from the initial guess, the following steps are performed: First, the region is eroded to

a size sufficient to perform the polynomial fits. Then polynomial surfaces are fitted to the seed region, starting

with the lowest order surface (a plane), and continuing up to a maximum order, until a fit satisfies some error

criteria. By proceeding in this way, the lowest order surface that gives satisfactory results will be used. Once

the order of the polynomial has been selected, the seed region is grown by adding connected neighbouring

pixels that are compatible to the fitted surface, under some criteria.

In this iterative procedure, regions that are grown at a given point may include a pixel that had previously

been included in another region, if the surface fitted to that region better represents that pixel. The image

segmentation process is therefore reversible while the iterations are taking place.

After the iterative region growing process, the authors of the method mention some other steps that are

used to tidy up the results. Among other things, non adjacent regions that have compatible surface patches

may be merged to become a single region.

6.2. Characterization of the method.

6.2.1. Comparison with other methods. This method is one of the few one presented in this thesis

that does not permit to directly express the problem as an energy minimization. The method of Leclerc gives

an end result that is very similar to this one, that is, a segmentation of the surface into polynomial patches of

the minimum possible order. Leclerc’s method is stated as an optimization, and the parameters that control

it are clearly defined. However, by freeing themselves of an optimization approach, Besl and Jain can more

easily include more global concepts in their method, such as the inclusion of non adjacent regions into a single

surface patch model.

6.2.2. Classification of the method. Obviously, because it is not stated as a minimization problem, it

is not straightforward to classify this method as one type of energy minimization. Because of the amount of

steps in the process, and of the number of parameters and estimations involved, it was not attempted here to

classify the method or to determine if it was idempotent

7. Leclerc’s Minimum Description Length method

7.1. Overview of the method. The principle behind Leclerc’s method [36] is to achieve the mini-

mum description length (MDL) of a degraded and sampled image. Informally, it is much more efficient to

describe the structured contents of a signal using a structured language, and to describe the noise contents of

the signal using a statistical language. By obtaining the MDL description of a signal, the structure and noise
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contents of the signal will be naturally separated by the choices of descriptive language. Practically, the avail-

able languages to be used for the description must be enumerated beforehand, because there exists an infinity

of possible languages in theory.

Leclerc chose to describe the structured parts of images with a polynomial model in which each image

pixel is assigned a polynomial patch. Leclerc used from 0th (piecewise constant) to 2nd (piecewise quadratic)

models. Leclerc does not use explicit line processes in [36]. Discontinuities are implicitly represented by

discontinuities between neighbouring polynomial patches. The description language used by Leclerc for the

non structured parts of images (the “noise”) includes Gaussian blur, sampling, quantization, and additive white

noise.

The goal of the method is therefore to describe a “real” image z as the sum of an underlying image u

and of noise r, such that the choice ofu (and implicitly the choice of r) minimizes the total description length

of z. The problem is then another one of global energy minimization, where the functional to minimize with

respect to u is

jLu(u)j+ jLr(z � u)j;(4.28)

where Lu and Lr are the languages used to describe the underlying image and the noise, respectively.

7.1.1. Problem solution. The above energy is not convex in general. Leclerc uses a continuation

method which replaces Kroneker delta terms in the original energy by exponentials of the form

exp

� �t2
(s�)2

�
:(4.29)

Note that this expression tends to �(t) when s tends to zero. The parameter s is therefore varied to pro-

vide a sequence of minimizations, from a convex one, to the desired one. Leclerc has not proven that his

continuation method finds the global minimum in general, but he showed that his method did find the global

minimum of problems that could manageably be solved exactly by dynamic programming.

7.2. Characterization of the method.

7.2.1. Comparison with other methods. As was already stated in the preceding sections, it is shown

in appendix C that the piecewise constant case of Leclerc with known additive white noise is equivalent to

Geman and Geman’s blob process, and to Blake and Zisserman’s process when � tends to 1. In terms of

the understanding of the parameters of the weak continuity methods, this would seem to say that the contrast

sensitivity threshold h0 =
p
2�=� of the piecewise constant case is 0, but let us not forget that the contrast

sensitivity of steps a apart, where a � � is increased by
p
�=a, and that this is always the case for � !1.

It is therefore consistent that the contrast sensitivity of MDL be in a useful range. The same argument can be
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used to predict that the gradient limit gl is not zero. As for the immunity to noise, Blake and Zisserman found

that no spurious discontinuities will be generated when � > 2�2, approximately. Under the proportionality

relation � = (b=a)�2 of section 2, and using the values of a = 1=(2 log2) and b = 2 derived in Leclerc’s

thesis [36, p. 86], we obtain � = 1:44�2, which shows that the two methods are in close agreement on that

point.

The variable order surface fitting of Besl and Jain [9] is similar to the work of Leclerc in that the un-

derlying surface is to be described by a small number of lowest possible order polynomial graph surfaces.

However, the method used to obtain this result is very different from the one of Leclerc, and its bases are

much less formal. Basically, a locally computed sign of curvature segmentation is used as the initial estimates

for a region growing process that finds the boundaries of the final polynomial patches. The order of a polyno-

mial patch is increased as the algorithm progresses, if the current order does not describe the data adequately.

There is no explicit control of the continuity between the patches. That may cause the algorithm to produce

interpatch discontinuities of a lower order than required by the maximum order of the polynomial patches.

The algorithm does permit non connected regions to be represented with the same polynomial patch, which

is a feature not yet implemented in the method of Leclerc. Finally, Besl does not seem to make a distinction

between underlying discontinuities and model discontinuities, as described below.

7.2.2. Underlying discontinuities and description discontinuities. Leclerc’s descriptive language is

composed of two parts: One describes the underlying surface, the other describes the noise (including in one

bag sensor noise, model induced distortion, surface noise, etc.), which is basically what the first part of the de-

scription cannot account for. He does not distinguish, however, between underlying discontinuities and model

discontinuities. My claim is that if a piecewise polynomial surface of order n is used to describe the underly-

ing surface, then the underlying discontinuities are those of order 0 � m < n, and the model discontinuities

are those of order n.

If an order n discontinuity is detected, then there is no way to know if it was caused by a discontinuity in

the underlying surface, or by a too low order of the model. If it is known a priory that the model is adequate

(piecewise), and only then, can the nth order discontinuities be considered to reflect discontinuities of the un-

derlying surface. Also, in the former case, the position of nth order discontinuities is likely to be arbitrary

and unstable. Examples of this can be found in the results presented in [36]. In the piecewise constant exam-

ples, the underlying surfaces are piecewise constant, so it is expected that the discontinuities will be located

accurately. In the description of a face with piecewise first order polynomials, there are a number of unstable,

apparently meaningless discontinuities which I assume are first order discontinuities due to the inadequacy

of this model. These discontinuities should obviously not be considered as features of the image. A support

of this interpretation is that these meaningless discontinuities disappear when a second degree description is

used.

67



4.7 LECLERC’S MINIMUM DESCRIPTION LENGTH METHOD

As for lower order discontinuities (n), those are necessarily reflexive of discontinuities in the underlying

surface, because the model has one or more degrees of freedom that could be used to model the data instead

of introducing a discontinuity.

7.2.3. Where is the scale parameter? Scale relates to rejecting the insignificant and keeping the sig-

nificant in visual data. What is considered significant and what is considered insignificant depend in part on

the scale of observation. At some extreme, even the “noise” may be considered a significant part of the data.

In the description languages used by Leclerc, one part of the language describes the significant – the part using

piecewise continuous polynomials – and another part accounts for the insignificant – which is considered as

noise even if there actually is structure in it. An example of this last statement is the application of the piece-

wise constant case on a plane with a small enough slope for no discontinuities to be detected. In that case, the

description of the data will consist in an horizontal plane, and the “noise” will be the inclined plane with zero

average value.

In Leclerc’s method, the various coefficients a, b, c, etc., are determined from an information theoretic

point of view. The noise variance �, however, may either be specified or determined as part of the problem, in

the unknown noise case. In the case where the spatially dependent noise variance is automatically determined,

the resulting values depend on how adequate the language for the description of the underlying surface is. In

a sense, relating to the previous paragraph, the values of �i are found that leave as little structure as possible

in the noise part of the description language. However, if we intend the underlying surface to be described at

possibly different scales of interpretations, we might want some small scale structure to actually be included in

the description of the noise. There are therefore reasons for using different values of the �i’s for the description

language.

Nevertheless, not all scales of observation are informative of the contents of the data. There exists a

finite set of discrete scales at which the data presents some meaningful structure. This discrete segmentation

of the scale axis must be combined with a segmentation of space to be the most useful. For example, while

observing a wall with a plaque, one may simply consider the wall itself, ignoring the presence of the plaque.

One may consider the plaque as a raised rectangle on the wall, and one may consider the writing on the plaque.

It is useless to use the scale required to segment the writing from the plaque on the rest of the wall. We are

therefore considering a discrete area in space and in scale at the same time.

Although it seems feasible to find the smallest informative scale, as does Leclerc, it is more difficult to

automatically find the complete set of interesting scales (and spatial regions). Witkin [65] attempts to obtain

a meaningful segmentation of the scale-space of a signal by generating an interval tree of the features tracked

through scale-space, and by introducing a measure of stability of an interval. Uses of this automatic segmen-

tation method of scale-space have not appeared yet. In the case of the MDL problem with unknown noise, it

would be interesting to study the behavior of the local minima of the description length as the values of �i are
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changed. Hopefully, the value of these local minima seen as a function of �i, may have themselves a number

of local minima that correspond to the meaningful scales of observation of the image. How to search for these

local minima is not obvious though.

Finally, one note on the decision of using a constant � within a continuous region. It has been noted in

section 7.2.2 that the discontinuities in the highest order of the description language for the underlying data

cannot be considered as discontinuities in the underlying data. Therefore, there should be no segmentation of

� due to these highest order discontinuities.3

7.2.4. Classification of the method. As it is stated in is PhD thesis, the method of Leclerc falls in the

global minimization category. Also, in section 3, we prove that the method gives an idempotent operator for

the piecewise constant description language with known noise process. It is therefore possible that the method

can be represented as a local energy minimization.

3This introduces a problem, however. Although the discontinuities found by Leclerc’s process form closed contours, these contours are
not necessarily composed of the same order of discontinuity. By not considering order n discontinuities, regions may not be closed
anymore. What to do with the value of � in this case is not obvious.
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CHAPTER 5

Conclusion

Computer vision research balances between specific techniques being developed, implemented and tested,

and a kind of research brainstorm, where questions are asked about what has been achieved and what should

be done next. In this thesis, the first part consisted in the adaptation of Sander’s method to range data. In

the other part, an organizing framework was established, methods were compared, and questions were asked.

This chapter is mostly a summary of this second part, followed by suggestions on what to do next.

1. Summary of framework

It was proposed to use an energy minimization framework as a tool to compare surface reconstruction

methods. The two main minimization problems are global minimizations, where the problem data is part of

the functional to globally minimize, and local minimization, where the problem data is used as an initial point

for the local minimization. Global minimizations can be convex, when the problem does not involve decision

making. It is believed, but has not been proven, that all local minimization problems can be expressed as global

minimizations. However, we know that not all global minimizations can be expressed as local minimizations.

Finally, local minimizations have the desirable property of being idempotent.

2. About surface reconstruction methods

Standard regularization methods (more particularly Terzopoulos’ controlled continuity splines), Terzo-

poulos’ variationally controlled continuity splines, Blake and Zisserman’s weak membrane and plate, Geman

and Geman’s MAP estimate, and Leclerc’s MDL method can all easily be expressed in terms of a global en-

ergy minimization. The first method, which does not detect discontinuities, gives convex minimizations. The

three last methods are related in the following way: The weak membrane, when the regularizing parameter

tends to infinity, solves the same problem as Geman and Geman’s MAP estimate, and as Leclerc’s piecewise

constant case with known noise. Also, because it was proven that this configuration of Leclerc’s method is

70



5.3 DIRECTIONS FOR RESEARCH

idempotent, the two other method configurations are as well. This also means that they could possibly be

expressed as local minimization problems.

Sander’s variational relaxation method and Besl and Jain’s variable order surface fitting cannot easily

be expressed in terms of an energy minimization. Due to the updating process used, we know that Sander’s

method is idempotent (if iterated to convergence), but because we have not been able to express it as an energy

minimization, we have not been able to completely identify the constraint subset of the method. We know

only that it contains spheres, cylinders, and probably other less known surfaces with some globally constant

curvature properties. In the case of variable order surface fitting, the only similarity with other methods is in

the form of the resulting surface, which is similar to Leclerc’s method and its equivalent.

The goal of the comparison was to obtain a bette understanding of the problems they were attempting to

solve, it was not to find a best method out of those compared. Because of the argument presented for idem-

potency, however, we think that more research should be done on those methods that are idempotent.

3. Directions for research

The result of applying Sander’s method is still very much misunderstood. In particular the behaviour of

the overall residual, as the iterations progress, is not understood. Are the local minima in this residual caused

by numerical instabilities, or by the propagation of conflicting constraints from one surface neighbour to the

other?

The energy minimization framework needs to be studied in much more depth and more formally. Most

importantly, it should be determined if this formalism can in theory describe every surface reconstruction

method possible. (That Sander’s method and Besl and Jain’ method were not found an equivalent represen-

tation within our framework does not mean that one does not exist.) It would be interesting to determine the

relative complexity of using local or global minimizations to actually solve an idempotent problem. Current

idempotent methods use global minimization. The problems would be easier to solve by local minimization

if the local energy functional was available, but it is expected that this functional would be very expensive to

compute and to store (although it need be computed only once since it does not depend on the data).

More formal reasons for the idempotency requirement are needed. The informal reason presented in this

thesis is that a valid interpretation of some data should not be changed by another application of the interpre-

tation process. Also, the other properties required by an idempotent operator for it to be expressible as a local

minimization problem should be identified.
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It is hoped that the questions raised in this thesis, on the similarity of surface reconstruction methods, on

the establishment of a standard framework for their comparison, and on the requirement for idempotency of

surface reconstruction methods, will contribute to foster more work in this field.
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A.2 NOTATION

APPENDIX A

Review of differential geometry concepts

1. Introduction

In this appendix, we will review concepts of classical differential geometry, which is the study of local

properties of curves and surfaces [19]. Differential geometry takes singularities, or critical points, of curves

and surfaces into consideration, but a general theory of critical points is a field by itself [eells: ?]. Global

differential geometry links differential geometry and topology.

The concepts will not necessarily be presented in all their formality. The reader is referred to [19] and

[48] for a more formal and complete treatment. Besl [6] presents a nice summary of differential geometry

from the point of view of computer vision research. It is also only intended to cover those parts of the field

that are of interest for this thesis.

The appendix is organized in the following way. First, definitions are given for the representation of

curves and surfaces. Then, those differential properties that are of use in this thesis are presented. Singularities

are first defined, followed by the properties of regular patches.

2. Notation

The following notational conventions apply to the whole thesis:

Inner Product: The general inner product will be denoted by <;>. However, the inner product in Eu-

clidean space will be denoted by �.
Cross Product: � will denote the vector cross product.

Derivatives: The derivatives of a function of a single variable will be given by f 0(t) to denote a first

derivative, f 00(t) for a second derivative, etc.

Partial Derivatives: The partial derivatives of a function of several variables f(u; v) will be given by

fu for the first partial derivative with respect to u, fuv for the second order partial derivative in u and

v, etc.
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Orientation and Direction: To be sure that there are no confusions, we will adhere to the convention

that a direction is defined by a line, and that an orientation is defined by a vector. This is the convention

usually used in mathematics.

3. Representing curves and surfaces

Although curves and surfaces are represented in similar ways, it is impractical to discuss both at the same

time. The representation of curves will first be discussed, followed by the representation of surfaces. The

section on surfaces, however, will directly generalize from the one on curves, where it applies. The reason for

considering curves at all is twofold. First, the differential geometric concepts are more easily introduced with

curves, and second, even if this thesis is about surfaces, we might want to consider curves embedded in these

surfaces.

3.1. Curve representation.

DEFINITION A.1. An elementary curve [48] may be considered as the image of a one-to-one and bicon-

tinuous mapping r : I ! <3 of an open interval I = (a; b) of the real line < into <3.

If the image of a curve is a planar subset of <3, i.e., r : I ! <2, then the curve is furthermore called a

plane curve.1 A curved defined by such a mapping is called a parametric curve and is written as

r(t) = (x(t); y(t); z(t)) ;(A.1)

or, for a plane curve,

r(t) = (x(t); y(t)) :(A.2)

One talks of r(t) as the equation of the curve, and of x = x(t), y = y(t), and x = x(t) as the equations of

the curve.

DEFINITION A.2. A simple curve has the same definition as an elementary curve, except that the map-

ping may be from either an open interval or a circumference, i.e., the curve may be closed.

DEFINITION A.3. A general curve is the image of a simple curve under a continuous and locally one-

to-one mapping.

A curve that does not have a globally one-to-one mapping will have self intersections in its image.

DEFINITION A.4. Finally, a regular curve (of class Ck) is one for which the parametric equation is k-

times continuously differentiable (k � 1) and r 0(t) 6= 0 for all t 2 I .

1There is more similarity between a plane curve and a surface than for a general curve, because the plane curve is a mapping from <n

to <n+1, as for a surface. For example, there is no torsion associated with a surface or a plane curve, but there is one for 3D curves.
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M

Elementary Simple General Regular

FIGURE A.1. Different types of curves. The first three are each subsets of each others, and they do
not need to be C1. A regular curve must be at least C1, but it may be elementary, simple, or general,
as the one pictured here.

A regularC1 curve is called smooth.2 A curve which isC0 is not regular, but is called continuous. Figure

A.1 gives examples of the types of curves defined above.

DEFINITION A.5. The image set r(I) � <3 is also called the trace of r[19].

One must make the distinction between the mapping that produced the curve and the curve itself, which

is only the image of the map. It is important to consider the trace of curves and surfaces in detail, because

a sensor will at most be able to produce a sampling of the trace of a curve or surface; the parametrization is

meaningless in this context. An infinity of mappings may produce the same trace. In the case of elementary

and simple curves, curves that have the same trace are considered equivalent; the parametrization is therefore

not important in the geometric interpretation of the curve. For general curves, however, two curves with the

same trace may be considered as distinct curves depending on their parametrization. For example the middle

of the loop in figure A.2 may be seen as two crossing lines, as in A.2(a), or as two parts of the curve touching,

as in A.2(b). Depending on the parametrization, the differential properties of the curve will change, and the

curves will be considered distinct.

DEFINITION A.6. As a convention, when context is not sufficient, a geometric curve will specifically

refer to the trace of a curve, while an analytic curve will refer to its analytic representation, which is usually

understood as parametric, although it could also be implicit, or otherwise.

It is sufficient to consider only parametric representations in this thesis.

Note that the difference between a simple curve and a general curve has to do with global geometry, but

the distinction is necessary to ensure that the trace of the simple geometric curve has only one corresponding

analytic curve.

2Here, we use the definition of smooth found in [48], because of its qualitative appeal in the context of perception. Indeed, as long as a
curve is C1, it will be qualified as smooth by humans [koend2: ?]. [19] defines a smooth (or differentiable) curve as one which is C1.
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α β
a

b

FIGURE A.2. These two curves have the same trace, but the arrows, indicating the direction of tra-
versal of the domain circles, show that the parametrization are different. In particular, points a and b
are singular, where points � and � are regular.

3.1.1. special parametrizations. A particular parametric representation which is useful in the context

of computer vision is a graph representation. If a planar curve can be expressed parametrically in the form

x = t; y = �(t); t 2 I(A.3a)

(allowing for the choice of coordinate axes), then the equation of the curve can be written in the graph form

y = �(x):(A.3b)

Note that for a regular curve, it is always possible, in a small enough neighbourhood, and with the appropriate

choice of coordinates, to represent the curve in graph form [48].

Although it was said before that the parametrization of simple curves is irrelevant to the geometry of

the curve itself, it is possible to make the parametrization relevant. For example the unit speed, or natural,

parametrization identifies the parameter with the arc length of the curve. This other special parametrization

will be presented in section A.4.1. Other ways to represent curves will not be discussed here.

3.2. Surface representation.

DEFINITION A.7. An elementary surface [48], similarly to an elementary curve, is the image of a one-

to-one and bicontinuous mapping r : U ! <3 of an open set (or elementary region) U 2 <2 into <3.
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Its equation is usually written as

r(u; v) = (x(u; v); y(u; v); z(u; v)) :(A.4)

A simple surface cannot be defined as simply as was done with curves. A simple curve can always be

expressed as either the image of an open segment, or as the image of a circle. However, a simple surface may

not be representable as the image of a disk or of a sphere.

DEFINITION A.8. A surface is a simple surface if it is connected and if at every of its points there is a

neighbourhood such that the neighbourhood and the point form an elementary surface.3

A simple surface may be closed, but the set difference between simple and elementary surfaces does not

only consist of closed surfaces, as was the case for curves [48].

DEFINITION A.9. The definition of a general surface generalizes directly from the one of a general

curve.

DEFINITION A.10. A regular surface (of class Ck) is one for which the parametric equation is k-times

continuously differentiable (k � 1) and ru�rv 6= 0 for all (u; v) 2 U , i.e. ru; rv form a linearly independent

set.

Figure A.3 shows different types of surfaces.

DoCarmo [19, P.54] defines a regular surface in terms of a subset of <3 with conditions on the set

preventing self-intersection, but then he mentions (P. 78) that regular parametric surfaces could have self-

intersections. We rather keep the parametric definition, and qualify the so defined regular surface as elemen-

tary, simple, or general (in which case self-intersections are permitted).

The image set r(U) � <3 will also be called the trace of the surface. The same comments as for curves

apply, that is, the geometry of simple surfaces is completely characterized by their trace, but this is not true for

general surfaces. Two simple surfaces are considered the same if their image set correspond, but a one-to-one

and bicontinuous correspondence must also be established between the domain sets for two general surfaces

to be considered equivalent. Geometric surface and Analytic surface will be used to explicitly differentiate

between a surface defined by its trace, and one defined as a mapping.

Because surfaces in the world are usually not perceived as self intersecting, as witnessed in our every-

day visual experiences, we will assume we deal with simple regular surfaces (as opposed to general regular

surfaces), unless stated otherwise.

3From now on, when speaking of a neighbourhood on a surface, it will be understood to be that neighbourhood that forms an elementary
surface.
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Elementary Simple General Regular

FIGURE A.3. Different types of surfaces. The first three are each subsets of each others, and they do
not need to be C1. A regular surface must be at least C1, but it may be elementary, simple, or general,
as the one pictured here.

3.2.1. Special parametrizations. The generalization of the graph representation for curves applies to

surfaces represented as

x = u; y = v; z = �(u; v); (u; v) 2 U(A.5a)

which can also be written as

z = �(x; y):(A.5b)

It is always possible to represent a neighbourhood of a simple surface in graph form, with the appropriate

choice of coordinates. A graph representation of a surface is often called a Monge patch.

The implicit representation of a surface, defined as the set of points (x; y; z) which satisfy the equation

f(x; y; z) = 0, is often useful as a compact definition of closed simple surfaces, and was often used to generate

test data for this thesis.
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4. Singularities

Singularity theory [eells: ?] is required in many fields, and the one of computer vision is not spared.

Indeed, curves and surfaces in the world are not always perceived as regular, or smooth.4 Recall that one of

the conditions for the regularity of curves and surfaces was that r 0 6= 0 and ru � rv 6= 0, respectively. If

this condition is not met at a point, then this point is called a singular point of the curve or surface (for a more

rigorous definition of surface singular points, see [48, p. 76]. In the case of surfaces, a set of connected singular

points forms a singular curve on the surface. In general, we will consider surfaces that are simple piecewise

regular surfaces. A piecewise Ck regular curve is a curve r defined on an open interval [a; b] such that the

curve isCk regular on every open interval [si; si+ 1], for a finite set of points a = s1; s2; : : : ; b = sn. Fractal

curves and surfaces, which are studied in the context of computer vision [pent,ben:frac: ?, pent,ben:frac: ?],

are not piecewise regular, but we rather consider the fractal nature of a surface as a texture that is to be separated

from an underlying regular surface at a given scale of observation. Finally, note that we often talk of almost

everywhere regular curves and surfaces in computer vision. This is an important distinction which summarizes

the practical expectation that a surface has “not many” singular points. This expectation is enforced in one way

or another in all surface reconstruction methods that permits singularities, for example [26, 13, 56, 9], to name

a few.

5. differential properties

We are now ready to specifically discuss the differrential geometric properties of simple regular curves

and surfaces. As before, the discussion will be separate for curves and surfaces.

5.1. differential properties of curves. The unit tangent vector � (t) of a curve at point t is given by

the equation

� (t) =
r 0

kr 0k :(A.6)

The unit tangent vector is unique, up to its orientation, which is dependent on the parametrization of the curve.

Therefore, the tangent line, or tangent, is independent of parametrization for simple curves. The tangent is the

line passing through r(t) and parallel to � (t). The meaning of the tangent can be intuitively understood in

many ways; here, we will note that the tangent is itself a curve, and that it is the best linear approximation to

the curve at point t. We can see that the tangent of a curve is defined only at regular points, where r 0 6= 0.

4The qualifying “perceived” is necessary, because, curves and surfaces are only mathematical concepts. After all, a physical surface is
really mostly composed of “empty” space, at the sub-atomic scale.
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We already introduced the arc-length of a curve when we talked about special parametrizations. The arc

length of a segment ~(a � t � b) of a simple regular curve  : r(t) is given by

s(~) =

Z b

a

kr0(t)kdt:(A.7)

The arc length can be interpreted as the length of a polygon inscribed in the curve, as the number of polygonal

arcs tends to infinity [48]. Since the arc length is independent of parametrization, and defines a metric on

the curve, it is possible to use a standard parametrization, called the natural parametrization, to represent

any given geometric curve. This parametrization is the one that satisfies s(~) = (b � a), or equivalently,

kr 0(t)k � 1 8t. A standard notation is to change the parameter t for s if the curve is naturally parametrized.

The natural parametrization of a regular geometric curve always exists and is unique up to a sign difference

in the parameter.

We shall now introduce the concept of curvature of a curve. The curvature measures the rate of change of

the angle of the tangent line in terms of a displacement on the curve. Because the second derivative kr 00(s)k
measures the rate of change of the tangent vector, and because the parameter s precisely measures displace-

ment on the curve (which is not the case for other parametrizations), the curvature� of a naturally parametrized

curve is simply

�(s) = kr 00(s)k:(A.8)

Curvature is an unsigned quantity by definition but a sign is sometimes assigned to the curvature of a plane

curve, because the orientation of such a curve can be defined.

Since the graph parametrization of a plane curve is another parametrization that can be considered spe-

cial, we shall show how curvature is interpreted in the context of a graph representation. First, note that the

graph parametrization of a straight line segment parallel to the parameter axis is equivalent to the natural

parametrization of the curve. Also, the graph parametrization of a straight line segment in general is only

a constant factor away from the natural parametrization (for the curve x(t) = t; y(t) = a, s = t
p
1 + a2).

These cases may seem uninteresting, since the curvature of a straight segment is zero everywhere. However,

these remarks also apply to the instantaneous orientation of the curve, as given by the tangent vector. Indeed,

at a point t0 where the tangent vector of a plane curve parametrized as in equation A.3b is parallel to the pa-

rameter axis, the curvature will be

�(t0) = kr 00(t0)k =
@2y@x2

 :(A.9)

Therefore, the curvature of a curve at any point t0 may be seen as the magnitude of the second derivative of

the graph parametrization of the curve in a coordinate frame such that the tangent of the curve at point t0 is

parallel to the parameter axis. The idea of assigning a different graph parametrization at every point of a curve
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is implemented by a moving frame. One such moving frame, the Frenet trihedron, is very useful in differential

geometry. Explaining the Frenet trihedron, as well as the torsion of a curve, will be presented here for the sole

purpose of introducing the Fundamental theorem of the local theory of curves.

A point s such that r 00(s) = 0 is called a singular point of order 1. At all other points of a curve, there

is a well defined unit vector N(s) = r 00(s)=kr 00(s)k, called the normal vector to the curve at s. The plane

spanned by n(s) and t(s) = r 0(s) (which are always perpendicular for a naturally parametrized curve) is

called the osculating plane at s. These two vector define a third vector b(s) = t(s)�N (s) called the binormal

vector at s. These three vectors form an orthonormal moving frame parametrized by arc length, called the

Frenet trihedron. The torsion �(s) = �b0(s) �N (s) of a curve measures the rate of change of the osculating

plane in terms of a displacement on the curve. The vectors t0(s), N 0(s), and b0(s) are all interrelated through

the curvature and torsion, by the use of the Frenet formulas, which will not be presented here. We are now

ready to present the following theorem, cited from [19], which sums up our geometric knowledge of a curve.

FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES. Given arbitrary regular

functions �(s) > 0 and �(s), s 2 I , and �(s) > 0, there exists a unique (up to position in space) curve

r : I ! <3 such that s is the arc length, �(s) is the curvature, and �(s) is the torsion of r. [48]

What this theorem says, basically, is that the geometry of a curve can be uniquely characterized in terms

of its curvature �(s) and torsion �(s), parametrized by arc length. In some other parametrization, we would

need the three quantities �(t), �(t), and s(t), that we will call the intrinsic equation of the curve. It is not

surprising that we need three parametrized quantities in general, since the extrinsic parametrization of a curve

is represented by three quantities x(t), y(t), and z(t), and three bases are required to represent manifolds in

3D space. What is interesting is that we are able to use a basis where each base expresses a specific intrinsic

geometric concept about the curve , rather than extrinsic coordinates, which depend on the representation of

the embedding space. Finally, note that having discrete measures of curvature and torsion of a curve (even of

arc length) does not characterize the curve uniquely, no more than having discrete measures of its coordinates

in space.

5.2. Differential properties of surfaces. As for curves, we will begin this section with the notion of

tangency. The tangent plane to a surfaceS at a pointP (u; v), denoted byTP (S), is the plane troughP spanned

by the basis (ru(u; v); rv(u; v)), which are two linearly independent vectors tangent to the surface (recall the

regularity requirements). Any linear combination of this basis lies in the tangent plane, and is called a tangent

vector to the surface at P . The vectorN = (ru � rv)=kru � rvk perpendicular to the tangent plane is called

the unit normal to the surface at P . The tangent plane of a surface does not depend on its parametrization.

The set (ru; rv ;N) forms a moving frame on the surface, but it is not necessarily orthonormal, and more

importantly, it is not completely intrinsic to the surface.
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A curve C lies on a surface when every of its points belongs to the surface. Since the curve is embedded

in a two-dimensional space (the surface), it can be expressed by only two equations, even if it is not planar in

space. A practical way of doing this is to express the curve in terms of the parameters of the surface, in the

following way. Let C : r(t) be a curve on the surface S : r(u; v). Then, the path of the curve on the surface

can be given as r(t) = r(u(t); v(t)), which is often simply denoted r(t) = (u(t); v(t)). The parametric

curves of a surface are given by r(u; b) and r(a; v), a and b constants.

Now that there is a unique tangent space assigned to every point of a simple regular surface, we can

introduce an operator, the first quadratic form, which is defined in this tangent space. This operator simply

performs the inner product of vectors that lie in the tangent space of a point P of the surface, i.e., vectors that

can be expressed in the basis (ru; rv) of the tangent space. This quadratic form is defined as:

IP (d; �) � du�u ru
2 + du�v ru � rv + dv�u ru � rv + dv�v rv

2(A.10)

= E du�u+ F du�v + F dv�u+Gdv�v(A.11)

=
�
du dv

�0@ g11 g12

g21 g22

1
A
0
@ �u

�v

1
A ;(A.12)

and let IP (d) denote IP (d;d). In this equation, we use the notation of [48], which interprets the form as a

differential operator. Indeed, IP (d) measures the infinitesimal distance covered on the surface at point P in

the direction d, and is called the element of arc length ds on S. The coefficients of the first quadratic form are

usually denoted by E,F , and G, and (gij) is called the metric tensor of the surface at P . The form itself is

independent of parametrization, but the individual coefficients are dependent. The first quadratic form permits

to measure the length of curves on the surface, the angle of intersection of curves on the surface, and the area of

the surface bounded by a closed curve on the surface. The curves of parametrization of a surface are orthogonal

when F = 0 in this parametrization. The first quadratic form, alone, does not uniquely characterize a surface;

more than one geometric surface may have the same first quadratic form.

There is another quadratic form of interest that is also an inner product of two vectors in the tangent

space of S. However, this quadratic form, called the second quadratic form, restricts one of the vectors to be

dNP (v), the differential of the normal at P in the direction of a vector v of the tangent space of the surface.

The form is defined as

IIP (v) � �dNP (v) � v(A.13)

= (ruu �N )du2 + 2(ruv �N )dudv + (rvv �N )dv2(A.14)

= Ldu2 + 2Mdudv +Ndv2(A.15)
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P

FIGURE A.4. Normal curvature from the normal section of a surface.

When v is a unit vector, IIP measures the rate of change of the surface normal in the direction v on the sur-

face. This quantity looks a lot like the intuitive definition of curvature for a curve, and it is called the normal

curvature �n of the surface at P in direction v. Figure A.4 shows an intuitive interpretation of the normal cur-

vature, in term of a normal section. A normal section is the intersection of the surface with a plane spanned

by the surface normal and a tangent vector v at point P. This section is a plane curve, and its curvature at point

P is the absolute value of the normal curvature of the surface at this point and in this direction. The sign is

determined from the orientation of the surface normal. By rotating the intersecting plane about the normal,

one obtains all possible values for the normal curvature at point P . The directions of that plane at which the

normal curvature is minimum and maximum are called the principal directions of the surface at point P . The

actual value of the normal curvature at these directions are the principal curvatures of the surface, and are

respectively denoted by IIP (Mm) = �m and IIP (MM ) = �M , Mm and MM unit vectors. These two

directions are always perpendicular. A curve C in S is a line of curvature if at every of its points, its tangent

is a principal direction of the surface. The lines of curvatures form an orthogonal net on S, except at umbilic

points, where no lines of curvature ever pass. An umbilic point of a surface is a point where �m = �M , i.e.,

where the surface is locally spherical, or locally planar. The Gaussian curvature K is equal to �m�M . The

mean curvature H is equal to �m+�M
2 . The

We end this section with the following theorem:

86



A.5 DIFFERENTIAL PROPERTIES

FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF SURFACES (Bonnet). Suppose

Edu2 + 2Fdudv +Gdv2(A.16)

Ldu2 + 2Mdudv +Ndv2(A.17)

are two arbitrary quadratic forms the first of which is positive definite. Suppose the coefficients of these forms

satisfy the Gauss and Peterson-Codazzi equations [48] Then there exists a surface, unique to within position

in space, for which these forms are the first and second quadratic forms respectively. [48]

Because the six coefficientsE, F , G, L,M , andN must satisfy the Gauss formula and the two Peterson-

Codazzi formulas, there are really only three independent coefficients in the first and second quadratic forms.

This makes sense, since three coordinates must be used to represent surfaces.
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APPENDIX B

Finding the principal direction updates

As its name indicates, the principal direction of maximum or minimum curvature on a surface is only a di-

rection – it is not oriented. If one uses vector notation to represent these directions, care should be taken to

ensure that the orientation of the vectors is always treated as irrelevant. The updating formula for the prin-

cipal directions originally used by Sander [56] uses the same minimizing norm as the one used to update the

normals. The constrained minimization seeks the minimum of

J =

nX
�=1

kM �MP�k2 + �1(M
2 � 1) + �2(M �N );(B.1)

where the two Lagrange multipliers introduce the constraints that the principal direction vector be unit

length, and that it be perpendicular to its associated normal (which was previously found from another mini-

mization). The minimization of J with respect to M gives

M = �
�
S � (S �N )N

kS �Nk
�
;(B.2)

where

S =

nX
�=1

MP�:(B.3)

It is simply the normalized vector average of the principal directionsMP� extrapolated from the neigh-

bours, and projected on the plane defined by the corresponding normalsNP�. Because a vector average treats

the orientation of the vectors as relevant, the resulting vector will not necessarily be directed along the aver-

age direction of the vectors, as is required. Figure B.1 demonstrates this fact with a simple example involving

only two vectors.
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FIGURE B.1. Vector averages are not the same as direction averages. The dotted vector is the nor-
malized vector average of the two solid ones. The dashed line is along the average direction of the
two solid vectors.

The reason why the vector average gives an inadequate result in the example above is that the vector

field (composed of only two vectors in this case) is discontinuous in its orientation, while the direction field1

is continuous. It is not possible in general to produce a globally smooth vector field by assigning an orientation

to the principal direction field of a surface. Figure 3.6 shows an example where any choice of orientation would

produce set of discontinuities, and not only at the umbilic point itself, even if the umbilic is the cause of the

non-orientability of the field. Therefore, the minimizing functional was reformulated to take only the direction

of the vectors into account.

J =
nX

�=1

1� (N �MP�)
2;(B.4)

which only measures the difference in directions, assuming all vectors are unit length.

Using Lagrange multipliers to enforce the required constraints on M proved impractical when J had to

be minimized. Instead, the constraints were explicitly enforced on the answer by expressing M as

M(�) = b1 cos � + b2 sin �;(B.5)

where b1 and b2 satisfy

b1
2 = b2

2 = 1;(B.6)

b1 � b2 = b1 �N = 0:(B.7)

Minimizing J with respect to � then gives the update rule

1A direction field assigns to each P 2 U a line r(t) in <2 passing through P [19].
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� = tan�1

"
(A22 �A11) +

p
(A22 �A11)2 + 4A2

12

2A12

#
(B.8)

M(�) = b1 cos � + b2 sin �;(B.9)

where

Aij =

nX
�=1

(MP� � bi)(MP� � bj):(B.10)

Results of using the old and the new updating rule on two iterations of the curvature consistency algo-

rithm on an ellipsoid are shown in figure B.2. The new updating rule is clearly better at preserving the structure

of the principal direction field.

(a) (b) (c)

FIGURE B.2. Figure (a) shows the analytically calculated principal direction field of an ellipsoid.
This field is provided to the updating process as initial data. Figure (b) shows the result of two iter-
ations of the algorithm using Sander’s original update rule, which take orientation information into
account. Figure (c) shows the result of two iterations using the new update rule presented in this ap-
pendix.

90
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APPENDIX C

Details of comparisons between methods

This appendix contains a collection of detailed analyses of surface reconstruction methods, in completion of

the discussion of chapter 4

1. Equivalence between piecewise constant MDL and Geman and Geman’s “blob process”

The a priori Gibbs energy used in the first example of [26] used the eight-neighbor system and cliques

C = fr; sg of size two, for which the potential was

VC(f) =

8<
:

1
3 ; fs = fr

� 1
3 ; fs 6= fr

9=
; =

1

3
(2�(fs � fr)� 1):(C.1)

There is no line process, so the Gibbs energy of the a priory probability distribution is given by

U(f) =
X
C

VC(f )(C.2)

=
2

3

nX
i;j=1

n
[2� (fi;j � fi�1;j)� 1] + [2� (fi;j � fi;j�1)� 1]

+ [2� (fi;j � fi�1;j�1)� 1] + [2� (fi;j � fi+1;j�1)� 1]
o

(C.3)

=
4

3

nX
i;j=1

n
[� (fi;j � fi�1;j)� 1] + [� (fi;j � fi;j�1)� 1]

+ [� (fi;j � fi�1;j�1)� 1] + [� (fi;j � fi+1;j�1)� 1]
o

�8n2

3
;(C.4)

(C.5)

where the 2=3 term is due to every clique being counted twice, one for each pixel site. If we assume that the

noise model is additive Gaussian noise with zero mean and variance �, without blurring or nonlinearities, the
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a posteriori Gibbs energy is given by

UP (f) = U(f ) +
X
i;j

(gi;j � fi;j)
2=2�2;(C.6)

where g is the data. This energy is linearly proportional to the energy of the piecewise constant case of MDL,

under the requirement that a=b = 3=8 = 0:38. The parameters used by Leclerc were a = 1=(2 ln 2) and

b � 2, such that a=b � 0:36. The energies to minimize, and therefore the operators, are very similar.

2. Equivalence between piecewise constant MDL and Blake and Zisserman’s weak membrane

The solution to the piecewise constant minimum description length problem (with known constant vari-

ance) [36] is the minimizer of the functional

EpcMDL =
a

�2

X
(i;j)2I

(zi;j � ui;j)
2

+
b

2

X
(i;j)2I

X
(k;l)2N(i;j)

(1� �(ui;j � uk;l))(C.7)

=
a

�2

X
(i;j)2I

(zi;j � ui;j)
2

+b
X
i;j

(1� �(ui;j � ui�1;j)) + b
X
i;j

(1� �(ui;j � ui;j�1));(C.8)

when Ni;j = f(i � 1; j); (i + 1; j); (i; j � 1); (i; j + 1)g (4 neighbours are used here, but Leclerc uses 8

neighbours).

The solution to the weak membrane model is the minimizer of the functional

Eweak membrane =
X
i;j

(ui;j � di;j)
2

+
X
i;j

g�;�(ui;j � ui�1;j) +
X
i;j

g�;�(ui;j � ui;j�1);(C.9a)

where

g�;�(t) =

8<
: �2t2 if jtj < p

�=�

� otherwise
(C.9b)

First, we observe that

lim
�!1

g�;�(t) = �(1� �(t))(C.10)

Proof: First, �2t2 evaluated at jtj = p
�=� is equal to �. Second, lim�!1

p
�=� = 0. therefore, g�;�!1

is equal to � everywhere except at t = 0. �
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Therefore,EpcMDL / Eweak membrane when� = (b=a)�2 andNi;j = f(i�1; j); (i+1; j); (i; j�1); (i; j+

1)g.

Proof: By using equation C.10, we directly obtain

Eweak membrane;�!1 =
X
i;j

(ui;j � di;j)
2

+�
X
i;j

(1� �(ui;j � ui�1;j))(C.11)

+�
X
i;j

(1� �(ui;j � ui;j�1));(C.12)

and the proportionality relation is straightforward to compute. �

3. Comparison between Sander’s iterative updating and regularization

As explained previously, Sander’s algorithm is based on a constraint of locally constant curvature [56].

This constraint is enforced by iteratively taking local neighbourhoodaverages of the magnitude of the principal

curvatures, of extrapolated normals, and of extrapolated principal directions, where the extrapolations take

place on a surface patch that satisfies the constant curvature constraint. This approach earned the name of

variational relaxation in section 2.4. The proof of convergence of such an algorithm is not obvious, because

of the many interpolated quantities being averaged. It is even less obvious to describe what the algorithm is

expected to converge to if it does.

In this appendix, we compare Sander’s iterative updating approach with a discrete solution to regulariza-

tion problems. In order to keep the complexity of the comparison down, we lower the dimensionality and the

order of the constraints of Sander rather than formulating more complex regularization problems. We there-

fore consider the one dimensional string and rod models as regularization problems, and we compare their

solutions by finite element methods with iterative updating methods comparable to the one used by Sander.

The goal of this comparison is not to measure the effectiveness of the constraints used by Sander, since we

use lower order constraints here. It is rather to gain an understanding of the iterative updating process he uses:

Local averaging of quantities extrapolated from neighbouring patches instantiating a set of local constraints.

3.1. Comparison between a string model and a constant depth assumption. For the Sander-like

updating to be of the same order as the iterative solution of a string model, let us use a constraint of locally

constant depth (instead of locally constant curvature) in one dimension. Then, following Sander’s approach,

the algorithm would iteratively take local averages of the depth of neighbours (implicitly using an horizontal

line as the extrapolating patch in this case). Using a neighbourhood of size 3, the update formula would be

u
(k+1)
i =

u
(k)
i�1 + u

(k)
i+1

2
:(C.13)
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Now, we will show that enforcement of a continuous string model gives a similar iterative solution. The energy

of the string model is given by

E = D + S(C.14)

=

nX
i=1

(ui � di)
2
+ �2

nX
i=1

(ui � ui�1)
2
;(C.15)

where D is the faithfulness to data (d) measure, and S is the smoothness measure. Since this energy function

is convex, its only minimum with respect to u can be found using the checkerboard Gauss Seidel iterative

relaxation method. Using this method, the updating formula is given by

u
(k+1)
i = u

(k)
i � 1

Ti
(@E=@ui) ;(C.16a)

where Ti = @2E=@u2i in order to ensure convergence. Computing the partial derivatives, we obtain

u
(k+1)
i = u

(k)
i � 1

(1 + 2�2)

�
u
(k)
i

�
1 + 2�2

�� �2u
(k)
i+1 � �2u

(k)
i�1 � di

�
(C.16b)

=
�2u

(k)
i�1 + �2u

(k)
i+1 + di

1 + 2�2
:(C.16c)

This is a weighted average that is very similar to equation C.13. The main difference is that the data at

node i is not included in the average of equation C.13, and that there is therefore no weighting of the terms.

However, if we let �!1, then the updating rules C.13 and C.16c are identical.

It is now clear that a solution to satisfying a locally constant depth assumption can be reformulated as a

local energy minimization. In the case of equation C.13, the energy function would simply be

E =

nX
i=1

(ui � ui�1)
2(C.17)

which only has, as its local minima, surfaces satisfying ui =constant, i = 1 : : : n.

Applying a locally constant depth constraint iteratively, without constraining the answer to stay near the

initial data, achieves a globally constant depth at convergence. Thus, although things are not so simple for a

locally constant curvature constraint, it appears that it will also be applied globally at convergence.

There is a final point that can still be discussed using the simpler constant depth assumption. This is the

effect of varying the neighbourhood size in Sander’s algorithm. Let the neighbourhood size be 2m+1. Then,

the updating rule will be

u
(k+1)
i =

u
(k)
i�m + � � �+ u

(k)
i�1 + u

(k)
i+1 + � � �+ u

(k)
i+m

2m
(C.18)

= u
(k)
i �
1

2m

�
2mu

(k)
i � u

(k)
i�m � � � � � u

(k)
i�1 � u

(k)
i+1 � � � � � u

(k)
i+m

�
:(C.19)
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FIGURE C.1. Update values of ui using a constant slope assumption.

We attempt to find a global energy functional E such that

@E

@ui
= 2mui � ui�m � � � � � ui�1 � ui+1 � � � � � ui+m(C.20a)

and

@2E

@u2i
= 2m:(C.20b)

The corresponding functional (up to the integration constant) is given by

E =

nX
i=1

(ui � ui�1)
2
+ � � �+

nX
i=1

(ui � ui�m)
2
:(C.21)

Applying the iterative updating rule C.18 will find the ui’s that minimize this energy functional. If the squared

terms are to be interpreted as estimates of the squared gradient at ui, then the estimates are less accurate as the

value ofm increases. Indeed, the first term is a true finite difference, but all the other terms are not normalized

properly and are not as well localized.

3.2. Comparison between rod model and constant slope assumption. Moving one level up, we

can attempt to compare the updating rule of the Gauss Seidel solution to the rod model and the updating rule

of a constant slope constraint, where the data being updated is again the depth itself.

In that case the updating of the depth values follows a method similar to the one used to update the

normals and the depths in Sander’s algorithm. First, interpolated ui’s are produced by assuming a constant

slope line passing through the neighbours. The projection is along the global z axis, as shown in figure C.1.

Then, these interpolated depths are averaged in order to produce the updated ui. Taking a neighbourhood

size of 3, and taking the slope estimate at ui+1 to be (ui+2 � ui�1)=3 and the slope estimate at ui�1 to be
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(ui+1 � ui�2)=3, the interpolated ui’s would be as follows (we omit the superscripts up to the final updating

rule): uiR interpolated from ui+1 satisfies

ui+1 � uiR =
ui+2 � ui�1

3
) uiR =

3ui+1 + ui�1 � ui+2
3

(C.22a)

and uiL interpolated from ui�1 satisfies

uiL � ui+1 =
ui+1 � ui�2

3
) uiL =

3ui�1 + ui+1 � ui�2
3

:(C.22b)

Taking the average of these two values gives

uk+1i =
4uki+1 + 4uki�1 � uki+2 � uki�2

6
:(C.22c)

We would now want to compare this to the Gauss Seidel solution of the rod model. The energy of the

rod model is given by

E = D + S(C.23)

=

nX
i=1

(ui � di)
2
+ �4

nX
i=1

(ui�1 + ui+1 � 2ui)
2(C.24)

where the smoothness term is now a quadratic term. The Gauss Seidel solution to minimizing this energy

function (refer to the more detailed derivation for the string model) is given by

u
(k+1)
i = u

(k)
i �(C.25)

1

(1 + 6�4)

�
u
(k)
i

�
1 + 6�4

�� 4�4u
(k)
i+1 � 4�4u

(k+1)
i�1 + �4u

(k)
i+2 + �4u

(k+1)
i�2 � di

�

=
4�4u

(k+1)
i+1 + 4�4u

(k)
i�1 � �4u

(k)
i+2 � �4u

(k+1)
i�2 + di

1 + 6�4
:(C.26)

Again, this iterative solution is very similar to the one satisfying a constant slope assumption by local

averagings, as in equation C.22c. Again, the only difference lies in the absence of the closeness to data term,

which disappears if we let � ! 1. This comparison of the rod model and of the application of a constant

slope assumption using Sander’s approach is not quite perfect. Indeed, if Sander’s approach was to be followed

exactly, the value of the slope of the curve would be explicitly stored at every point, and this slope value would

be explicitly updated, rather than being implicitly updated by the depth updates. The slope would be estimated

from finite differences only at the first iteration, not at all subsequent iterations, as was done here. Also, the

projection of the point to be updated onto the extrapolation line would be done perpendicularly to the line.

The goal of the above comparisons was to demonstrate the similarity between Sander’s approach and

regularization method, when the regularization parameter tends to infinity. Finding a regularization expression
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which is technically closer to Sander’s locally constant curvature constraint is surely possible, but it was not

considered necessary here for the purpose of showing the similarities between the two methods.

4. Comparison between Sander’s method and regularization in terms of constraint subsets

In the previous section the approach of Sander was lowered to a constraint of locally constant depth and

of locally constant slope, in order to compare this constraint with the one of a string model. Here, we relate

the methods in the context of a constraint subset.

The constraint subset of a constant depth assumption is the one parameter hypercurvev(t) = t. The data

vector d is considered as the initial value for Sander’s constant depth constraint algorithm. The value of the

solutionu to Sander’s constant depth algorithm is the perpendicular projection of d onto the hypercurve v(t),

and is given by

1=n

nX
i=1

di:(C.27)

The solution to the string model for � = 0 is u = d [63, P. 366], which is equivalent to stopping Sander’s

algorithm before doing any iterations at all. The solution for � =1 is 1=n
Pn

i=1 di [63], which is equivalent

to letting Sander’s algorithm iterate to convergence. There are four major ways in which one can get interme-

diate results between these two extremes (a scale-space of some sort). One is to vary the � parameter between

0 and 1 in the case of the string model. The second, also in the case of the string, is to use some numerical

method (such as Gauss-Seidel) to achieve the minimum, but not to let the algorithm run to convergence. Nor-

mally, the initial value used in iteratively finding the global minimum is unimportant. However, if the initial

value is taken as the data point, the intermediate results trace a path from the data to the global minimum of

the regularisation problem. It is likely that the scale of the results increases along this path, but the proper-

ties of this particular scale-space are unknown. Similarly, and thirdly, the number of iterations performed by

Sander’s algorithm can be controlled, with the same question being asked: what do these intermediate val-

ues correspond to? Finally, in view of the perpendicular projection interpretation, one could take intermediate

values along the straight hyperline joining the initial data vector to its perpendicular projection onto the con-

straint surface. In all these cases, pictured in figure 4, the intermediate solutions are obtained by moving along

a one parameter hypercurve joining the initial data and its perpendicular projection onto the constraint surface,

except in the case of regularization solved by a numerical method.

The values obtained along the perpendicular projection to the constraint surface are given by

upi =
di

1 + �
+

(�=n)
P

di
1 + �

;(C.28)

where the parameter � is zero when upi = di and is infinity when upi = ui. Interpreting the formula shows

that these intermediate solutions are not very interesting. Indeed, the first term performs a uniform scaling
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FIGURE C.2. Intermediate values between initial data and its perpendicular projection on a constraint
surface. The data is composed of a vector of n points d. The constant depth constraint is embodied
in the hyperline v(t) = t. The value corresponding to projecting d perpendicularly on the constraint
surface, or to applying the string model with � =1, or to running Sander’s algorithm with a constant
depth assumption up to convergence, is the point u on the constraint surface. The intermediate values
along the perpendicular projection are up; the intermediate values obtained by varying � for the string
model are u�; the intermediate values obtained by running Gauss-Seidel for the string model and a
given �, but stopping the iterations before convergence are ur�; the intermediate values obtained by
iterating a limited amount of times using Sander’s algorithm are uS .

for all the points, and the second term is the translation required to ensure that the average depth of the points

of the intermediate value is the same as the average depth of the initial data. As for the other two cases, the

behavior they have on the surface is not clear, but it seems obvious that the intermediate values will be closer

to the constraint surface than the initial value. Knowing what happens when limiting the number of iterations

of Sander’s method is important, because it is clear that this is the only way in which the method will give

interesting results. The result of stopping the iterative solution of the string model before convergence, is

also not discussed in the standard literature, but it would be interesting to kown how such results differ from

changing the value of the regularization parameter.
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D.1 A CLASS OF NON-IDEMPOTENT MINIMIZATIONS

APPENDIX D

Supplementary detail on surface reconstruction methods

1. A class of non-idempotent minimizations

We claim that the operator

f(d) = min
u

nX
i=1

(ui � di)
2 + S(u); S(u) > 0;(D.1)

is not idempotent in general (with some continuity restrictions on S(u)).

Proof: First, apply the operator once on some data y, obtaining the result z.

z = min
u

Ey(u) = min
u

 
nX
i=1

(ui � yi)
2 + S(u)

!
(D.2)

Whether Ey(u) is convex or not, as long as its first partial derivatives are defined in the neighbourhood of

the solution,

@Ey(u)

@ui

����
u=z

= 0(D.3)

for every ui in u.

Now, let us use the result as the argument to the same operator. The operator is then to minimize the

energy (with respect to u)

Ez(u) =
nX
i=1

(ui � zi)
2 + S(u)(D.4)

= Ey(u)�
nX
i=1

(ui � yi)
2 +

nX
i=1

(ui � zi)
2(D.5)

= Ey(u) + 2
nX
i=1

ui(yi � zi) +
nX
i=1

(z2i � y2i ):(D.6)
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Again, at the minimum of this function, the following equation must be satisfied for i from 1 to n

@Ez(u)

@ui
=

@Ey(u)

@ui
+ 2(yi � zi) = 0:(D.7)

From equation B.15, the only way that this equation can be satisfied at u = z is if yi � zi = 0 for i from

1 to n which is not true in general. Since idempotence of the operator requires that u = z, these types of

minimizations are therefore not idempotent. �

Methods that fall in this category are the standard regularization methods and the weak continuity meth-

ods of Blake and Zisserman. The functional to minimize is similar to equation D.1 in the case of Leclerc’s

MDL with known spatially varying noise. However, the partial derivatives of S(u) are not defined at the lo-

cal minima of the functional, because of the kroneker delta functions. Therefore, the above proof does not

apply for this case. In fact, we present a proof in section 3 that Leclerc’s MDL piecewise constant operator is

idempotent. Finally, note that using the continuation method in MDL problems makes the intermediateS(u)‘s

differentiable, which means that these intermediate operators are not idempotent.

2. Gibbs energy of an a priori model with a line process

In this section, we express the Gibbs energy of the a priori model used in example two of [26]. Although

it is not specified in the paper, I assume they use a four-neighbour system for the pixel sites, because this is in

accordance with the neighbour system for the line sites.

The line site between two pixel sites (i1; j1) and (i2; j2) is denoted by l(i1;j1);(i2;j2), and the value of a

line site is either 0 or 1, signifying the absence or presence of a line (with fixed orientation).

UP (f; l) = U(f jl) + U(l) +
X
i;j

(��� (gi;j ; � (H(fi;j))))
2
=2�2;(D.8a)

where the energy of the underlying surface (dependent on the line process) and the energy of the line process

(which together constitute the Gibbs energy of the a priori probability of f ) are given as

U(f jl) = 2
X
i;j

n
�(l(i;j);(i�1;j)) [2� (fi;j � fi�1;j)� 1]

�(l(i;j);(i;j�1)) [2� (fi;j � fi;j�1)� 1]
o
;(D.8b)
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and

U(l) = 0:9
X
i;j

n
3�(l(i;j)1 + l(i;j)2 + l(i;j)3 + l(i;j)4 � 4)

2�(l(i;j)1 + l(i;j)2 + l(i;j)3 + l(i;j)4 � 3)

3�(l(i;j)1 + l(i;j)2 + l(i;j)3 + l(i;j)4 � 1)

2�(l(i;j)1 + l(i;j)2 + l(i;j)3 + l(i;j)4 � 2)�
1� �(l(i;j)1 + l(i;j)3)� �(l(i;j)2 + l(i;j)4)

�o
;(D.8c)

l(i;j)1 = l(i;j);(i�1;j);(D.8d)

l(i;j)2 = l(i;j);(i;j�1);(D.8e)

l(i;j)3 = l(i;j�1);(i�1;j�1);(D.8f)

l(i;j)4 = l(i;j);(i�1;j�1);(D.8g)

which is the sum of the potentials for all the four element cliques in the neighbourhood system of the line

process.

3. MDL problems are idempotent

It is intuitively understandable that the standard regularization methods are not idempotent, because these

methods smooth the data only by a finite amount: Subsequent applications of a method just keeps on smooth-

ing the data further. However, Leclerc’s MDL method smooths all the noise out of the data in one application.

Section 1 does not prove or disprove that Leclerc’s method is idempotent, because Leclerc’s energy func-

tional is discontinuous at the global minimum. Let us consider the piecewise constant case with known vari-

ance white noise. By definition, the result of the minimum description consists of constant value patches (plus

the description of the noise that has been removed). Therefore, if the operator that produced this data is ap-

plied again and none of the previously detected discontinuities disappear, then it is obvious that nothing will

change within the regions either, since these can be fitted perfectly by the constant patch models. That means

that no new discontinuities can be created within the continuous regions by a second application of the op-

erator. The only possiblity for non-idempotency is that previously detected discontinuities are removed at

subsequent applications of the operator. If we can show that previously detected discontinuities are not re-

moved by subsequent applications of the operator, then we will have proved that the operator is idempotent.

This is what we do below.
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Given a vectorx of initial data, Leclerc’s method seeks the vectory that minimizes an energy of the form

Ex(y) =
X
i2I

(xi � yi)
2 + �

X
i2I

X
j2Ni

(1� �(yi � yj))(D.9)

If y is the global minimum of this functional, and if y0 is a vector identical to y except for m less discontinu-

ities, then

Ex(y
0) =

X
i2I

(xi � y0i)
2 + �

X
i2I

X
j2Ni

(1� �(yi � yj))� 2m�(D.10)

(the 2 in 2m� is due to each discontinuity being counted twice) and

Ex(y) < Ex(y
0))

X
i2I

(xi � y0i)
2 � 2m� >

X
i2I

(xi � yi)
2(D.11)

Since we assumed thaty is the global minimum of the energy function. To verify if the operator is idempotent,

we perform another minimization with y as initial data. In that case,

Ey(y) = �
X
i2I

X
j2Ni

(1� �(yi � yj))(D.12)

Ey(y
0) =

X
i2I

(yi � y0i)
2 + �

X
i2I

X
j2Ni

(1� �(yi � yj))� 2m�(D.13)

One of the conditions for the global minimum to be y0 is that

Ey(y
0) < Ey(y)(D.14)

or, from equations D.10 and D.11

X
i2I

(yi � y0i)
2 � 2m� < 0(D.15)

Assuming that the vectors (x � y) and (y � y0) are perpendicular (this will be shown later) we can write

Phytagorean theorem:

X
i2I

(xi � y0i)
2 =

X
i2I

(xi � yi)
2 +

X
i2I

(yi � y0i)
2:(D.16)

Subtracting 2m� on either side of this equation, we obtain

X
i2I

(xi � y0i)
2 � 2m� =

X
i2I

(xi � yi)
2 +

"X
i2I

(yi � y0i)
2 � 2m�

#
:(D.17)
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We know from equation D.15 that the term in square brackets is negative. If we remove this term, we obtain

the relation

X
i2I

(xi � y0i)
2 � 2m� <

X
i2I

(xi � yi)
2(D.18)

but this equation contradicts equation D.11, which shows that any y0 with less discontinuities than y is not the

global minimum of a second application of the operator, which proves that the operator is idempotent.

This proof is valid only under the assumption that (x�y) and (y�y0) are perpendicular. This assumption

will be shown to hold in general here.

In the piecewise constant case, the resulty of MDL consists of a partition of the image, with each partition

a constant value patch which is the average of the pixel values in the original image. If some of the partitions

are merged together in a second application resulting in y0, the merged partition will then be further averaged.

Assume that the elements of a vector x of length k are segmented in m groups of ni elements per group,

i = 1 : : :m:

x = (x1;x2; : : : ;xm)(D.19)

= (fx1;1; x1;2; : : : ; x1;n1g; fx2;1; x2;2; : : : ; x2;n2g; : : : ; fxm;1; xm;2; : : : ; xm;nmg) :

If we perform an averaging in each of the m groups, we obtain the vector

y =

��
x1 � i
n1

; : : : ;
x1 � i
n1

�
;

�
x2 � i
n2

; : : : ;
x2 � i
n2

�
; : : : ;

�
xm � i
nm

; : : : ;
xm � i
nm

��
(D.20)

where i is the identity vector. Finally if we average all the groups together, we obtain

y0 =
(y � i)
k

:(D.21)

The path taken in vector space during these two averaging steps is given by

x� y =

0
@�x1;1 � x1 � i

n1
; x1;2 � x1 � i

n1
; : : : ; x1;n1 �

x1 � i
n1

;

�
;

�
x2;1 � x2 � i

n2
; x2;2 � x2 � i

n2
; : : : ; x2;n2 �

x2 � i
n2

;

�
;

...(D.22) �
xm;1 � xm � i

nm
; xm;2 � xm � i

nm
; : : : ; xm;nm �

xm � i
nm

;

�
;

1
A
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and

y � y0 =

0
@�x1 � i

n1
� y � i

k
(�n1 times)

�
;

�
x2 � i
n2

� y � i
k

(�n2 times)

�
;

...(D.23) �
xm � i
nm

� y � i
k

(�nm times)

�1A:
These two vectors are perpendicular, because their dot product, given below, is zero:

(x� y) � (y � y0) =

�
x1 � i
n1

� (y � i)
k

�
(x1 � i)�

�
x1 � i
n1

� (y � i)
k

�
(x1 � i) +�

x2 � i
n2

� (y � i)
k

�
(x2 � i)�

�
x2 � i
n2

� (y � i)
k

�
(x2 � i) +

...(D.24) �
xm � i
nm

� (y � i)
k

�
(xm � i)�

�
xm � i
nm

� (y � i)
k

�
(xm � i)

= 0:

4. Constraint subset for the piecewise constant case of Leclerc’s method in a two point config-

uration

In this section, we give an illustration of how such a local minimization can be used through a trivial

example with an image composed of only two points, under the piecewise constant description. The functional

to minimize over the two variables is then

E(u1; u2) =
a

�2
(z1 � u1)

2 +
a

�2
(z2 � u2)

2

+b[1� �(u1 � u2)]:(D.25a)

Equivalently the energy can be reformulated as

E(h) =
a

�2
(z0 + h=2� u1)

2 +
a

�2
(z0 � h=2� u2)

2

+b[1� �(u1 � u2)]:(D.25b)

There are obviously two possible solutions to this minimization. Either u1 = u2 = (z1 + z2)=2, or u1 = z1

and u2 = z2. By comparing the energies of these two cases, we find that the second case will occur if h >
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FIGURE D.1. Leclerc’s MDL method seen as a local minimization problem. The left figure shows
the constraint subset of the valid combinations of u1 and u2, including the line passing through the
origin. The right shows one possible energy surface used for a local minimization statement of the
global minimization problem.

h�
p
2b�2=a. We can easily express this problem as a local energy minimization, as illustrated in figure D.1.

The energy function in the figure is simply

min(ju1 � u2j;
r

2b�2

a
):(D.26)

The absolute value could as well have been replaced by (u1 � u2)
2.

By adding more pixels to the image, the dimensionality of the energy functional would increase, and

the topology of the constraint subset would be much more complex. However the energy functional of the

equivalent local minimization problem has same dimensionality as the global one, and the topology of the

global energy is also very complex. Also, the local energy functional is likely to be much more symmetric,

since it includes only the constraints, not the data. In section 5 the constraint subset and a local energy function

are found for a three point case.
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5. Constraint subset for the piecewise constant case of Leclerc’s method in a three point con-

figuration

If the “image” consists of three points arranged in a triangle (i.e. all points are neighbours), then only

three categories of solution may occur. Either the three points are averaged, only two are averaged and the

other one is left unchanged, or all three points are left unchanged. The description length of such an image is

given by

E =
a

�2
(z1 � u1)

2 +
a

�2
(z2 � u2)

2 +
a

�2
(z3 � u3)

2

+b[1� �(u1 � u2)] + b[1� �(u2 � u3)] + b[1� �(u3 � u1)]:(D.27)

The first case is for three points separated by an equal height h1

z1 = z0 + h1;(D.28)

z2 = z0;(D.29)

z3 = z0 � h1:(D.30)

The value of h1 for which the description of the tree distinct points and of a single region is equal is h1 =p
(3b�2)=(2a).

The second case is when one point as a value very different from the two others

z1 = z0 + h2=2;(D.31)

z2 = z0 � h2=2;(D.32)

z3 = z0 +1:(D.33)

The threshold h2 for merging z1 and z2 is given by h2 =
p
(2b�2)=a.

Finally, if two points already have same value, but the third one does not,

z1 = z2 = z0 + h3=3;(D.34)

z3 = z0 � 2h3=3:(D.35)

The threshold for merging the third point is h3 =
p
(3b�2)=(2a).

Figure D.2 shows the constraint subset for this case. It consists of a line corresponding to the case u1 =

u2 = u3, 3 pairs of (coplanar) half planes corresponding to the cases where only two points have same value,

and subsets of 3-space corresponding to the cases where the points keep their initial values. The distances

h0i correspond to the three thresholds computed above (the primes are because the distances as shown are at

an angle, and are therefore not equal to the actual thresholds). The right figure is a slice of the local energy
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D.5 CONSTRAINT SUBSET FOR THE PIECEWISE CONSTANT CASE OF LECLERC’S METHOD IN A THREE POINT CONFIGURATION

u2

u1

u3 u1=u2

u1=u3

u2=u3

u1=u2=u3

u1=u2

u2=u3

u1=u3

h 2
’

h’
3

h’1

(a) (b)

FIGURE D.2. Constraint subset and local energy for a three point case. The left figure is the constraint
subset, consisting of a line, planes, and regions in three space. The right figure is a slice out of a
possible four dimensional local energy functional.

function given by

E = min(ju1 � u2j+ ju1 � u3j+ ju2 � u3j;

k2ju1 � u2j+ k1; k2ju1 � u3j+ k1; k2ju2 � u3j) + k1;

k3);(D.36)

k1 = 2
p
(3b�2)=a;(D.37)

k2 = (2�p2)
p
3;(D.38)

k3 = 4
p
(3b�2)=(2a)(D.39)

taken on a plane perpendicular to the line u1 = u2 = u3. Note that the vector from the initial value to the local

minima will always be parallel to that plane anyway, because the average intensity of the image is preserved

everywhere within the plane.
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