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ABSTRACT

Abstract

This thesis describes a new framework for parametric shape recognition. The key result

is a method for generating classi�ers in the form of conditional probability densities for

recognizing an unknown from a set of reference models. Our procedure is automatic. O�-

line, it invokes an autonomous process to estimate reference model parameters and their

statistics. On-line, during measurement, it combines these with a priori context-dependent

information, as well as the parameters and statistics estimated for an unknown object, into

a conditional probability density function, which represents the belief in the assertion that

the unknown is a particular reference model. Consequently, the method also permits the

assessment of the beliefs associated with a set of assertions based on data acquired from a

particular viewpoint. The importance of this result is that it provides a basis by which an

external agent can assess the quality of the information from a particular viewpoint, and

make informed decisions as to what action to take using the data at hand.

The thesis also describes the implementation of this procedure in a system for auto-

matically generating and recognizing 3D part-oriented models. We show that recognition

performance is near perfect for cases in which complete surface information is accessible

to the algorithm, and that it falls o� gracefully when only partial information is available.

This leads to a sequential recognition strategy in which evidence is accumulated over suc-

cessive viewpoints (at the level of the belief distribution) until a de�nitive assertion can

be made. Experimental results are presented showing how the resulting algorithms can be

used to distinguish between informative and uninformative viewpoints, rank a sequence of

images on the basis of their information (e.g. to generate a set of characteristic views), and

sequentially identify an unknown object.
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R�ESUM�E

R�esum�e

Cette th�ese d�ecrit une nouvelle approche pour la repr�esentation param�etrique des formes.

Le resultat principal est une m�ethode pour g�en�erer des classes sous la forme de fonctions

de densit�e de probabilit�e pour identi�er un inconnu parmi un ensemble de mod�eles de

r�ef�erence. Notre proc�edure est automatique. Dans sa phase d'apprentissage, elle fait appel

�a un processus autonome pour estimer les param�etres des mod�eles de r�ef�erence et leurs

statistiques. Dans sa phase d'identi�cation, elle combine les param�etres des mod�eles de

r�ef�erence avec d'autre information contextuelle ainsi qu'avec les param�etres et statistiques

d'un objet �a identi�er pour produire une fonction de densit�e de probabilit�e qui repr�esente

la con�ance en une hypoth�ese d'identi�cation de l'inconnu parmi les mod�eles de r�ef�erence.

Cons�equemment, la m�ethode permet aussi l'estimation de la con�ance associ�ee �a un ensem-

ble d'hypoth�eses bas�es sur les donn�ees obtenues d'un certain point de vue. L'importance de

ce r�esultat est qu'il procure une base par laquelle un agent externe peut estimer la qualit�e de

l'information provenant d'un point de vue et en cons�equence prendre une d�ecision �eclair�ee

quant �a l'action �a r�ealiser.

Cette th�ese d�ecrit aussi une r�ealisation concr�ete de cette proc�edure dans un syst�eme

pour g�en�erer et reconnâitre des mod�eles 3D repr�esent�es par leurs parties. Nous montrons

que la performance de la proc�edure de reconnaissance approche la perfection pour les cas o�u

une description compl`ete de la surface est disponible et que les r�esultats se d�egradent d'une

mani�ere pr�evisible et graduelle quand seulement une information partielle est pr�esent�ee.

Ceci d�ebouche sur une strat�egie de reconnaissance s�equentielle par laquelle les �evidences

sont accumul�ees sur plusieurs vues (au niveau des distributions de con�ance) jusqu'�a ce

qu'une hypoth�ese d�e�nitive puisse être �etablie. Des r�esultats exp�erimentaux d�emontrent

comment l'algorithme peut être utilis�e pour: distinguer entre les vues informatives et non-

informatives, classer une s�equence d'images sur la base de leur information (i.e. pour g�en�erer

un ensemble de vues caract�eristiques) et identi�er s�equentiellement un object inconnu.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

Object recognition represents the highest level of processing in a visual system, synthesizing

all the information provided by the lower level processes, and using the result to perform

reasoning tasks. However, interest in the problem of object recognition has generally been

restricted to identifying and locating an object in a visual scene (see survey paper by

Arman & Aggarwal 1993b). We argue that absolute identi�cations are limited in that they

are biased to a particular system's criteria as to what constitutes a \winning" hypothesis.

Furthermore, since no visual system works in complete isolation, external processes must

be completely informed about any ambiguities in the results of recognition to be able to

make knowledgeable decisions.

In this thesis, we focus our attention on model-based recognition. This implies making

use of object models that store a priori knowledge about the features essential for object

characterization. Recognition consists of matching an unknown object with a model in a

prede�ned database. We broaden the scope of the conventional recognition problem and

investigate the notion of the quality of the identi�cation. In our terms, this quali�cation

refers to determining the degree of con�dence in the classi�cation. Ideally, representation

of this information takes the form of a conditional probability density function, which we

will refer to as a belief distribution, describing the likelihood of correspondence between an

unknown model and each of the reference models. Such a measure is essential to an active

recognition process which can use it as feedback in the collection of further data to resolve

ambiguity.

Our process works as follows. On-line, we make measurements of an unknown object,

the task being to infer the model in the database which best represents it. Problems of

this type fall under the category of inverse problems, and are underdetermined. Rather

1



1. OVERVIEW OF THE APPROACH

than constrain the solution with prior assumptions about the world, we seek a general so-

lution to the inverse problem that makes the sources of knowledge explicit. To this end, we

must address the issue of how one systematically incorporates di�erent sources of knowl-

edge into the process of recognition, speci�cally ambiguities that arise from measurement

and representation. We seek a method that represents all relevant contextual information

by informative models, and encompasses these descriptions into the solution. Ideally, we

would like to represent these sources of knowledge as probability density functions, so as

to communicate all the uncertainties to the recognition engine and, in this manner, make

well-informed decisions.

1. Overview of the Approach

The application of this work is three-dimensional object recognition in which objects are

represented by parametric shape descriptors such as superellipsoids (Barr 1981, Bajcsy &

Solina 1987, Raja & Jain 1992, Ferrie, Lagarde & Whaite 1993), deformable solids (Darrell,

Sclaro� & Pentland 1990, Pentland & Sclaro� 1991), and algebraic surfaces (Subrahmonia,

Cooper & Keren 1992). We introduce a new framework for parametric shape recognition

based on a probabilistic inverse theory �rst introduced by Tarantola (1987). Application of

this theory leads to a Bayesian recognition strategy similar to that used in other approaches

(Subrahmonia et al. 1992). However, the important distinction of our methodology is that

it leads to a mechanism by which the belief distribution used to classify shape models can be

automatically generated. In doing so, important sources of contextual knowledge are taken

into account that are less obvious in traditional approaches. Such knowledge includes i) a

priori knowledge of the objects comprising the database, ii) information obtained from the

process of estimating model parameters for an unknown object, and iii) information from

the physical theories giving rise to the reference models themselves. We will show how the

theory systematically enumerates each of these sources of knowledge, and combines them

so as to create the desired belief distribution.

In our context, object models are constructed through a process of autonomous ex-

ploration (Whaite & Ferrie 1991, Whaite & Ferrie 1993b, Whaite & Ferrie 1994) in which

a part-oriented, articulated description of an object is inferred through successive probes

with a laser range-�nding system. Figure 1.1a shows the set-up used to perform experi-

ments | a two-axis laser range-�nder mounted on the end-e�ector of an inverted PUMA-

560 manipulator. For any particular viewpoint, such as the one shown in Figure 1.1b,

a process of bottom-up shape analysis leads to an articulated model of the object's shape

2



1. OVERVIEW OF THE APPROACH

(a) (b) (c)

Figure 1.1. (a) Mobile laser range-�nding system used to construct object models.
(b) Laser range-�nder image of a pencil sharpener rendered as a shaded image. (c)
An articulated, part-oriented model of the sharpener using superellipsoid primitives;
8 superellipsoids are used, one corresponding to each of the parts of the object.

(Figure 1.1c) in which each part is represented by a superellipsoid primitive (Ferrie, Lagarde

& Whaite 1993). Associated with each primitive is a covariance matrix C which embeds

the uncertainty of this representation and which can be used to plan subsequent gaze posi-

tions where additional data can be acquired to reduce this uncertainty further (Whaite &

Ferrie 1991, Whaite & Ferrie 1993b). A system which automatically builds object models

based on this principle is reported in (Whaite & Ferrie 1994, Lejeune & Ferrie 1993).

Applying the inverse theory to our context is straightforward. O�-line, a database

of object models is generated by presenting each object prototype to the model building

system. Each object is in turn represented by several sets of parameters, one corresponding

to each part of the object. On-line, the recognition phase proceeds identically to model-

building except for one key di�erence. On each iteration (gaze-point calculation ! data

acquisition ! data merging (fusion) ! parameter estimation), the belief (in the form

of a conditional probability density function) for each reference object given the current

parameter estimate of the unknown object is calculated. If a clear winner stands out in

terms of maximum likelihood, the process is terminated. Otherwise the process is allowed

to continue and the beliefs in each reference model are updated on the basis of the newly

3



2. OVERVIEW AND ORGANIZATION OF THESIS

acquired data. In this way, evidence can be incrementally gathered during the process of

exploration.

Because the inverse solution to the recognition problem is in the form of a belief dis-

tribution, it provides not only descriptions of the results, but of the ambiguities in them

as well. This quali�cation is important in that visual processes rarely work in complete

isolation, and external processes using the results of recognition should be fully informed

before making decisions. For example, consider an external agent searching for a particu-

lar object with limited resources. It must be able to assess what it sees from a particular

viewpoint and quickly determine if the extracted information describing the characteristics

of the objects in the scene is useful in identifying the target, so as to be able to evaluate

alternate strategies. These strategies may include making assessments based on the current

information, or using it to decide where to look next. It must do all this while taking into

account prior knowledge about the environment. In this thesis, we will show how the re-

sulting belief distributions can be used to (i) assess the quality of a viewpoint based on the

assertions it produces, and (ii) sequentially recognize an object by accumulating evidence

at a probabilistic level.

Finally, we note that to be able to solve a large number of problems in vision, we need

to be able to model what we know about the world. The inverse theory, which tells us how

to represent prior knowledge, and how to combine the knowledge to obtain the solution, is

therefore an ideal candidate for the solution of a wide variety of vision problems. Although

in this thesis, we concentrate on the problem of object identi�cation, the theory can easily

be applied to the problems of object classi�cation or object representation. We will briey

discuss other possible applications of the theory in Chapter 8.

2. Overview and Organization of Thesis

Very few recognition schemes have attempted recognition based on the parameters of

volumetric models. One reason for this has been due to the shortage of e�cient bottom-up

systems capable of building stable representations for multi-part objects. In Chapter 2, we

present an overview of the many recognition strategies introduced over the past decade.

We will classify the di�erent schemes in terms of the features used to describe the objects,

as well as the matching schemes used to compare the unknown object to the models in

the database. We will focus our attention on the recognition schemes that do attempt to

recognize parametric models (Pentland & Sclaro� 1991, Keren, Cooper & Subrahmonia

4



2. OVERVIEW AND ORGANIZATION OF THESIS

1992, Raja & Jain 1992), and illustrate the main di�erences between those approaches and

ours.

The proposed recognition strategy raises a number of fundamental issues. First, how is

parametric uncertainty used and communicated between the processes of model building and

recognition? Clearly they are not independent. Furthermore, the recognition process must

take both the uncertainties in the database, as well as the measurement uncertainties of the

unknown object, into account. In Chapter 3, we present an overview of the inverse theory

(Tarantola 1987), and in Chapter 4, we show how the appropriate belief distributions used

for recognition can be determined from such information by applying the inverse theory to

the problem of model recognition. This leads to a method of deriving, for each object model

instance, the conditional probability of that model given the current estimated parameters

of the unknown and their covariances.

Second, which parametric model would provide the most useful descriptions for recog-

nition? We have chosen to use the parameters of superellipsoid models as features for the

purposes of recognition. Representations based on superquadrics, however, pose a number

of problems due to degeneracies in shape and orientation. Other parametric forms, e.g.

algebraic surfaces (Keren et al. 1992), are sometimes less problematic and can o�er a more

stable basis for recognition purposes. Nonetheless, it is still desirable to choose forms in

which physical attributes can be ascribed to model parameters in an intuitive manner. The

�nite-element representations introduced by Pentland and his colleagues are a case in point

(Darrell et al. 1990, Pentland & Sclaro� 1991). For our purposes, where shape is initially

partitioned into part-oriented segments, superellipsoids are attractive both in the range of

shapes they can represent as well as their computational simplicity. In Chapter 5, we de-

scribe a method of avoiding degeneracies in the case of the superellipsoid, which permits the

use of this convenient parametric form without incurring undue computational overhead.

Finally, what is the best manner in which to accumulate information? The model-

building process is expensive, the merging of data from di�erent viewpoints in particular

(Soucy 1992). While this might be acceptable for database generation, recognition tasks

must often be performed rapidly. An alternative is to consider the use of partial information

obtained independently from di�erent viewpoints. Because recognition from one view is not

always reliable, key to this idea is the ability to assess the quality of the hypotheses from a

particular view. In Chapter 6, we illustrate how to use the belief distributions to distinguish

between informative and uninformative viewpoints by application of an external threshold.

Furthermore, we show how the resulting ambiguities can be resolved without the need for

5
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data fusion by accumulating evidence in the form of the belief distributions from sequential

viewpoints.

In Chapter 7, we describe and compare the performance of the recognition procedure

using beliefs computed from complete and partial surface information respectively. We show

that the beliefs generated from partial data retain their selectivity and result in a minimum

number of false-positive indications. We illustrate this for single-part objects as well as for

parts of complex, articulated models. We show that the majority of the incorrect states are

accompanied by very low beliefs, and can be removed by applying a simple threshold. We see

that the distributions of the beliefs from di�erent viewpoints are bi-modal, indicating a clear

distinction between the informative and uninformative viewpoints. This justi�es the use of

the threshold to distinguish between them. In addition, we perform a series of incremental

recognition experiments that illustrate that the maximum likelihood hypothesis1 prevails in

a largely view-invariant manner. Therefore, we show that, by tabulating the votes for each

hypothesis, after a sequence of trials, the correct winner emerges. Finally, we indicate how

the system's success at recognizing primitives of articulated models, even with only partial

information available, paves the way for recognition of multiple-part objects.

We conclude in Chapter 8 with some general observations on our current work and

points for future research.

3. Contributions

In this work, we claim the following contributions:

1. We present a clear and structured recipe for recognition of volumetric models based

on a generalized inverse theory.

2. The procedure for both database generation and identi�cation is completely auto-

matic.

3. The method explicitly enumerates its sources of contextual knowledge so it can easily

be modi�ed to work elsewhere.

4. The result is in the form of a conditional probability density function so ambiguities

can be communicated to external processes to evaluate and base decisions upon.

5. The result is a basis by which an external agent can assess the quality of the in-

formation from a particular viewpoint by distinguishing between informative and

uninformative viewpoints.

6. An incremental recognition scheme is presented.

1This refers to the hypothesis that the correct answer is the one with the highest belief.
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7. The method is highly discriminant, capable of recognizing models despite wide vari-

ations in their size and shape.

8. The system paves way for multiple-part recognition based on graph-matching, by

outlining a way to compare the nodes.

9. Strategies for solving other problems in vision such as object classi�cation, and active

recognition are outlined.
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1. INTRODUCTION

CHAPTER 2

Object Recognition Schemes

1. Introduction

Over the years, much research has been devoted to solving the problem of object recog-

nition. In general, the connotations of the terminology in the �eld have been fairly wide-

spread. As a result, many classi�cation and model-based representation methods have fallen

under the category of object recognition. In this chapter, the �rst thing we wish to do is

clarify the terminology and distinguish model-based object recognition schemes from the

others. In doing so, we will restrict ourselves to comparing our work to those methods

that extract a series of features from an unknown model, and compare them to a series of

models stored a priori in a database. The result we require of the method is a hypothesis,

or a group of hypotheses, about the likelihood of the unknown object matching each of the

models in the database.

We wish to distinguish recognition schemes from object classi�cation schemes, where

the goal is to classify the unknown object into one of a series of predetermined categories.

Examples of these schemes include work done by Raja & Jain (1992), where objects are

represented by superquadric models, and then placed into into one of twelve predetermined

categories of 3D shapes (geons). In this case, classi�cation is based on low level features

derived from the superquadric model, such as bent or straight axis, and straight or curved

edges. Other classi�cation schemes include (Hutchinson, Cromwell & Kak 1989).

Within these classi�cation schemes are those methods that attempt to represent an

object by a descriptive model, while restricting the possible models to a �nite group. These

schemes fall under the category ofmodel-based representation schemes. Here, measurements

of an object are taken and then an attempt is made to recover a higher level representation

from them. However, rather than adhere to a strict bottom-up strategy, these methods

constrain the search by only permitting the representation to be one of a few possible types
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of models, stored in a database prior to the experiment. The goal is a model of the object,

generated by using top-down information. This di�ers substantially from the goals ofmodel-

based recognition, where the descriptive model of the unknown object has already been

computed prior to the experiment without the use of top-down information. The goal here

is, therefore, not to compute an object model, but rather to hypothesize a match between

the computed model and each of a series of prede�ned models in a database. Examples of

model-based representation methods include those that measure the object, and attempt to

�t the data to each of the model types stored in the database. The model chosen is the one

that �ts the data with the smallest overall error (Kriegman & Ponce 1990, Newman, Flynn &

Jain 1993, Wu & Levine 1994). Other examples can be found in (Pentland 1987, Dickinson,

Pentland & Rosenfeld 1992).

A wide variety of model-based object recognition schemes have been developed over the

past thirty years (Chin & Dyer 1986). In this chapter, we wish to review various methods,

and distinguish them by the type of features they use to characterize the objects (Section 2)

and the way in which they represent the objects in the database (i.e. in what form should

the features be combined into object models), as well as the method used to match an

object to a model in the database (Section 3). These traits are inherently linked in that

the type of representation chosen dictates the features used for recognition, as well as the

type of matching strategy chosen, its robustness, and the system's e�ciency. The survey

will illustrate the problem that in many recognition strategies, implicit assumptions about

the nature of the world are applied. These assumptions may include constraints on the

kinds of objects that will be recognized (i.e. specialized methods that look for particular

features, such as the number of holes in a block), the kinds of features that are interesting

(i.e. methods that characterize objects by curvature or boundary features), or the values

of the features themselves (i.e. methods that look for sizes within a particular range of

values). As a result, the methods may work well in a particular context but, because of the

hidden nature of the assumptions, cannot be easily modi�ed to work elsewhere.

2. Features

Most of the previous work in object recognition have used low-level or intermediate level

features in order to characterize objects. Low-level schemes look to match edges, corners,

curves, lines, silhouettes, contours, boundaries, holes and other predetermined features in

their attempt to recognize objects. For example, linear edge fragments, and circular arcs

are used in (Grimson 1987, Grimson 1989, Grimson & Lozano-Perez 1987). Line segments,
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corners, zeros of curvature, other 2D perceptual structures are used in (Lamdan, Schwartz

& Wolfson 1988, Thompson & Mundy 1987, Lowe 1985, Huttenlocher & Ullman 1987).

Intermediate schemes extract features of surface patches. For example, Flynn & Jain

(1991a) use surface area, surface type (cylindrical, spherical or planar), and other surface

attributes as features for recognition. Other such schemes use surface normals, centroids,

direction of axes of surfaces, centers of sphere (Kim & Kak 1991), or edge adjacency types,

i.e. convex, or concave (Fan, Medioni & Nevatia 1987, Fan, Medioni & Nevatia 1989, Fan

1990). Jain & Ho�man (1988) describe models by the area and diameter of the surface

patches. They also incorporate the minimum and maximum distances to the adjacent

patches.

Some methods incorporate \global" features in their recognition schemes. To date, the

majority of the global features have referred to general descriptions such as the number of

parts of the object, or the number of local features the objects have (such as the number of

edges or corners). Methods that use these kinds of features exclusively are quite ine�cient

in that these descriptions are generally unstable. For example, the number of object parts

depends, quite heavily, on the resolution of the segmenter, and is very sensitive to occlusion.

For this reason, the majority of the schemes that use global features, use them in conjunction

with other types of features, and use them only to help prune the search space.

Chin & Dyer (1986) state that in order to be able to recognize a wide variety of rigid

parts, independent of viewpoint, one needs to be able to extract view-invariant 3D features

and match them with features of 3D models. The problem with the majority of low,

intermediate, and global features is that they are often unstable, view-variant, and highly

susceptible to noise. The shortage of \high-level" features (or stable, global descriptors)

features restricts the capabilities of most recognition schemes to a limited class of objects,

seen from a few, �xed viewpoints. Examples of such high level features used in recognition

schemes are the intrinsic properties of parametric models such as algebraic surfaces (Keren

et al. 1992), or superquadrics (Pentland & Sclaro� 1991, Arbel, Whaite & Ferrie 1994a).

Here, the intrinsic properties used are the parameters of the models themselves. These

descriptors will be discussed in more detail in the next section.

3. Matching Strategies

Many methods attempt to �nd a corresponding match between features of the object

models and features extracted from the unidenti�ed object. The matching scheme chosen by

a recognition system should be able to achieve this task while accounting for the possibility
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of missing information due to partial occlusion, measurements from single viewpoint, etc. In

many schemes, the dimensionality of the features extracted forces much of the computational

burden to be shifted to the matching procedure. As a result, much of the focus of the current

literature is to reduce the arduousness of this process. Schemes that represent objects by

robust, and stable models, and use rich, global features implicit to their descriptions, reduce

the job of the matching process and render it more e�cient. In this section, we will discuss

the various types of matching strategies that have emerged over the past decade.

3.1. Tree Search Approach. One general category of matching schemes has been

the tree search approach. Here, after object features are extracted, a tree of possible model-

to-object feature matches is built. Each path from root to leaf represents one possible

solution to the correspondence problem. The idea is to search for the path that would ensure

a consistent matching between object and model. Many people have developed methods

to prune the search tree in order to reduce the search time. These include constraining

the range of unary feature values (such as the length of an edge), as well as the range

of binary feature values describing the interrelationships between unary features (such as

the angle between normal vectors) (Grimson 1987, Grimson 1989, Grimson & Lozano-

Perez 1987, Flynn & Jain 1991a, Flynn & Jain 1991b). Swain (1988) developed a decision

tree approach to object recognition, employing topological, relational and view-dependent

information in its decision rules.

3.2. Relational Schemes. Another category of matching schemes is the relational

approach. Relational matching schemes attempt to establish correspondence by represent-

ing both the sensory data and the model data as graphs, where the nodes represent features,

and the arcs represent the geometric relationship among the features. The recognition

problem is then a matter of establishing graph isomorphism. Once again, many prun-

ing techniques have been introduced to reduce the search space (Kak, Vayada, Cromwell,

Kim & Chen 1987, Faugeras & Hebert 1983, Bhanu 1982). In (Fan et al. 1987, Fan

et al. 1989, Fan 1990), objects are represented as attributed graphs, and the approach

is to look for the model graph with the largest set of matched nodes. They use low, in-

termediate, and global level features to prune the search space. Jain & Ho�man (1988)

arranged the features described above into groups: shape features, object face features,

and boundary information. Range images are represented using these groups as \evidence

conditions". The images, along with the weights indicating the uncertainty in the features

corresponding to the models, are stored in a database. Matching is performed by computing
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a similarity measure describing the degree of support for a hypothesis. Bolles, Horaud &

Hannah (1984) extended previous work (Bolles & Cain 1982) to develop a 3D local-feature-

focus technique. The method uses a graph-matching technique to identify the largest cluster

of image features that matches a cluster of model features. It works by selecting one feature

in the image around which it tries to �nd a cluster of consistent secondary features. After

creating a list of all possible image-feature-to-model-feature assignments, it creates a graph

of all possible pairwise assignments. Connections between nodes are established if the two

assignments they represent are mutually consistent.

3.3. Pruning the Database byModel-Based Indexing. A major problem facing

object recognition schemes has been the enormous complexity involved in searching the

database to select the possible candidate models. Many methods have been introduced to

reduce the computational complexity. One such method has been the geometric hashing

scheme (Lamdan & Wolfson 1990, Grimson & Huttenlocher 1990, Flynn & Jain 1992). In

these schemes, a hash table, containing surface-surface pairing constraints for all the models

in the database, is constructed. Surface pairing measurements are derived from the scene,

and the corresponding values are located in the appropriate entry in the table. This results

in many possible matches, which are resolved by using prede�ned sets of rules.

Flynn (1992) investigated the case of large databases. His approach was to reduce the

number of prototypes needed to be considered by excluding all redundant feature groups

that result from object symmetry. As well, a measure of saliency was assigned to each group

in the scene, so that \uninformative" groups are not considered. Other �ltering schemes

were introduced in (Kim & Kak 1991, Stein & Medioni 1992).

3.4. Automatic Schemes. Many of the schemes described involve a substantial

amount of on-line model analysis due, in part, to the additional constraints and conditions

computed with the introduction of each new model to the database. In order to reduce

the expense of run-time calculations, interest has grown in automatic recognition schemes,

with much of the database processing performed o�-line. New methods were introduced

that performed much of the \precompiling" prior to recognition, improving the e�ciency of

the task at run-time (Goad 1983). One such scheme uses a representation called an aspect

graph, �rst introduced in (Koenderink 1976, Koenderink 1979). These are graphs where each

node represents a topologically distinct 2D viewpoint of a 3D object. The arcs, referred

to as \visual events", describe transformations from one viewpoint to another. Essentially,

the graph divides the view-sphere into stable regions de�ning \characteristic views", where
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small changes in viewing position do not a�ect the topological structure of the set of visible

features. (Recent work on aspect graphs can be found in (Sripradisvarakul & Jain 1989,

Eggert & Bowyer 1989, Eggert, Bowyer, Dyer, Christensen & Goldgof 1992, Kriegman &

Ponce 1989, Bowyer & Dyer 1990).) Precomputing an aspect graph for each model in the

database can improve the e�ciency of the recognition task at run time, by prede�ning the

possible interpretations of the models in the database. The major disadvantages of the

representation are the high storage requirements, and large construction times.

Interpretation trees (Ikeuchi 1987a, Ikeuchi 1987b) are similar to aspect graphs, in that

the Gaussian sphere is tessellated into possible viewing positions. This technique includes

the additional step of computing a tree containing the possible interpretations of each model

in the database. All possible shapes of the model, at the root, are generated, and the similar

shapes are grouped into clusters at the leaves of the tree. Di�erent divisions of the aspects

form di�erent paths from the root of the tree to the leaves.

Another o�-line scheme is the prediction hierarchy method. Here, the 2D appearance

of some 3D objects is predicted in advance, and merged into a tree-like structure which

is traversed during recognition (Burns & Kitchen 1988). Similarly, Dickinson, Pentland

& Rosenfeld (1990) introduced hierarchical aspect graphs. The method entails extracting

object features, such as the convexity of the contours of the faces, from 3D volumetric prim-

itives. These features, assessed from many viewpoints, are arranged in a hierarchical graph

that links facial features to faces to face structures to primitives. In addition, the statistical

relations between the features are also stored. On-line matching includes generating hy-

potheses about the identity at the lowest possible level of the tree. Other automatic schemes

have been investigated by (Hansen & Henderson 1988, Hansen & Henderson 1989, Arman

& Aggarwal 1993a).

3.5. Matching Parametric Models. The �nal set of matching schemes examined

includes those methods that �nd correspondence by matching the parameters of parametric

models. A parametric model refers to a representation built by taking measurements of an

object, and �tting the data to a model represented by a mathematical equation. These

models can be volumetric models, such as superellipsoids and generalized cylinders, or

surface descriptors, such as splines, and fourth order polynomials. The parameters of these

equations describe implicit, global characteristics of the object, and are therefore stable

descriptions for recognition. However, very few schemes �nd correspondence based on

the high-level descriptions themselves. Rather, the majority of the current work in 3D

object recognition consists of building the models and extracting externally chosen features
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from them. An example of this trend is Dickinson et al.'s (1990) choice of convexity of

contours of volumetric primitives (see previous section) as features for recognition. In

general, extrinsic features are usually much more sensitive to noise, occlusion and viewpoint

than the intrinsic ones, such as the parameters themselves (this includes their associated

covariances). They usually consist of geometrical (low or intermediate) features, or rather

unstable global features (see Section 2). By avoiding using the parameters themselves

as features for recognition, limitations on the robustness of the recognition scheme are

introduced, especially with complex objects.

There are many reasons for the shortage of recognition schemes based on the parameters

of these models. One reason has been the shortage of e�cient bottom-up systems capable of

building stable representations for multi-part objects. This is due, in part to the shortage of

e�ective segmentation schemes, as well as methods that combine information from di�erent

viewpoints. Because of this, it has been thought that recognition of these models is only

suitable for single-part objects that are simple in shape, measured from only one viewpoint

(see survey paper by Arman & Aggarwal 1993b).

In addition, because the uncertainties associated with the parameters are rarely calcu-

lated, it is not not generally considered feasible to compare models based on them alone.

This is because when �tting a model to data that is noisy, there is an inherent lack of

uniqueness in the parameters that describe the model. In these cases, it is impossible to

make a de�nite statement as to which model �ts the data best (Whaite & Ferrie 1991).

Therefore, matching based on one set of parameters alone would not give accurate results.

For this reason, rather than choose external constraints that would force one model over the

other, it would be more instructive to embed the uncertainty in the chosen description into

the feature set. In Chapter 4, we will show that taking the uncertainties in the measure-

ment parameters into account (as well as the uncertainties of the parameters of the models

in the database) in the distance metric permits greater variations in the measured feature,

while still maintaining high selectivity in the discrimination between models. We will also

show that matching without taking the uncertainties into consideration would cause many

false identi�cations. An example of such a method is that proposed by Pentland & Sclaro�

(1991). The authors introduce a method for the recognition of deformable superellipsoid

models based on their parameters alone. Using their scheme, proximity is measured by

evaluating the normalized dot product of the parameter vectors of the unknown object and

of each of the models in turn. The model with the highest dot product value is considered
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to be the one closest to the unknown, and is the model chosen. We will illustrate the weak-

nesses of methods such as these later in Chapter 4. Methods that do include uncertainties

in the features can be found in (Hutchinson et al. 1989, Kwong & Kim 1993, Subrahmonia

et al. 1992).

Often it is the case that problems associated with the parametric model are misunder-

stood to be insurmountable. For example, using the parameters of superquadrics for the

purposes of recognition has been avoided, because the problem of non-uniqueness of param-

eters has never been addressed. As a result, the power of these representations, namely that

they can provide accurate, global descriptions of objects over a wide variety of sizes and

shapes with relatively few parameters, has not yet been fully exploited. This has limited

their uses to modelling tasks (as in CAD design), and to the recognition of simple objects

(see Boult & Gross 1988).

As well, few schemes use a probabilistic approach to the solution. Bayesian recognition

of algebraic surfaces has been examined by Subrahmonia et al. (1992). They represent

objects by fourth order polynomials (Keren et al. 1992), and measure similarity between

the unknown and the models in the database by employing a Mahalanobis distance mea-

sure between the coe�cient vectors. This distance measure includes the uncertainties in

the measured model as well as in the stored models (see (Subrahmonia et al. 1992), Ap-

pendix, p.39). Recognition is achieved by choosing the model that results in the smallest

Mahalanobis distance. The key di�erence between their approach and ours (Arbel, Whaite

& Ferrie 1994a) lies in the techniques used to obtain the solution. They have used strict

Bayesian techniques to derive the solution. We have structured the problem within the

framework of an inverse problem theory, which o�ers a clear and structured formula for

representing all prior knowledge, as well as a global recipe for combining this knowledge

to obtain the posterior information. The result is a general solution, which, in our speci�c

case, degenerates to a Bayesian solution similar to theirs. In addition, this framework lends

itself to the problem of model-based object recognition, but can be applied to various other

problems such as object classi�cation and generic recognition (see Chapter 8).

The other important di�erence in our schemes is that they, and most others, (see survey

papers by Arman & Aggarwal 1993b, Chin & Dyer 1986) are interested in the constructing

a discriminant that makes an absolute identi�cation of the measured object. In accordance

with Marr's (1982) \Principle of Least Commitment", we feel that it is more instructive

to retain several possible explanations, rather than choose a single one. This is especially

true when the hypotheses are comparable in accuracy. We will demonstrate that making
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assessments about identity from single measurements can be erroneous, especially when

made from viewpoints that provide little information about the characteristics of the object.

Rather than make claims about the object's absolute identity, our method communicates

the belief in the possible hypotheses as feedback to the recognition procedure, in order to

further reduce the ambiguity using an active strategy.

In the next chapter, we will introduce the general inverse theory �rst proposed by

Tarantola (1987). We will explain the reasoning behind explicitly enumerating all sources

of knowledge available. As well, we will show how, by representing this knowledge as

probability density functions, we can easily combine the information to obtain a solution

to the inverse solution in the form of a conditional probability density function. Finally, we

will illustrate how the general solution reduces to the classical Bayesian solution, providing

the desired posterior information. In Chapter 4, we will show how we use this framework

within the context of a model-based object recognition system that matches parametric

models.
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CHAPTER 3

The Inverse Problem Theory

1. Introduction

The recognition problem requires us to infer from measurements of an unknown object

that model which best represents it in a data base of known objects. Like all inverse prob-

lems, the recognition problem is ill posed in that, i) several models can give rise to identical

measurements and, ii) experimental uncertainty gives rise to uncertain measurements. As

a result it is not possible to identify the unknown object uniquely. There are various ways

of conditioning ill posed problems, but these all require strong, and often implicit, a priori

assumptions about the nature of the world. As a result a method may work well only in

speci�c cases and, because of the hidden implicit nature of the conditioning assumptions,

cannot be easily modi�ed to work elsewhere.

For this reason we have adopted the very general inverse problem theory of Tarantola

(Tarantola 1987). It makes the sources of knowledge used to obtain inverse solutions explicit,

so if conditioning is required, the necessary assumptions about that knowledge are apparent

and can be examined to see if they are realistic. Also, and importantly, the question of

whether a solution is ill-posed or not is shown correctly to be an operational issue. The

theory tells us how the knowledge we have can be combined to obtain a solution, but leaves

any decision about the its usefulness up to the tasks that require it. For example, when

attempting to recognize objects we would ideally want the unknown model be identi�ed

correctly all the time. Because of experimental uncertainties this can never happen, and

there is always the possibility that an object will be identi�ed incorrectly. Only the task

can know if the likelihood of errors is acceptable.

This raises the interesting question of what we should do if the level of errors is not

acceptable. Because the sources of knowledge are explicit they are not only visible to the

operational tasks, but are also potentially open to manipulation by them. In principal
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it should be possible for the task to condition or actively acquire the a priori knowledge

required to make the solution acceptable. We have already demonstrated that what we

call autonomous exploration functions well at the model building level (Whaite & Ferrie

1993a, Whaite & Ferrie 1994) and we now intend, with the aid of this theory, to incorporate

feedback from the recognition task as well.

We begin in Section 2 with the introduction of the concept of formal knowledge repre-

sentation. Section 3 will go on to explicitly enumerate the sources of a priori information

used to constrain the inverse problem. Finally in Section 4, we discuss the way the sources

are combined to obtain the solution to the inverse problem.

2. States of Information

In a physical system inverse problems are conveniently visualized as a mapping between

two di�erent spaces: the model space M and the data space D. We will assume throughout

that M and D are vector spaces with a �nite number of real valued parameters. We will

de�ne M as an abstract space of points, each representing a conceivable model of the

system, and D will refer to the space of all possibly \observable" instrumental responses.

A model in M is represented by m = (m1; m2; : : : ; mm), and a measurement in D by

d = (d1; d2; : : : ; dn).

The view taken by Tarantola is that our knowledge of a physical parameter (model or

measurement) is subjective in that it varies from observer to observer depending upon the

data in their possession. We can quantify this subjective knowledge by a rule, called the

state of information, which assigns a positive number reecting our belief that the true value

of the parameter lies within some given range. Mathematically such a rule is a probability1

(Pfei�er 1978). For a vector space the rule is represented by a probability density function.

Thus the �rst postulate of the theory is that our knowledge about a set of parameters

is described by a probability density function over the parameter space. This requires us to

devise appropriate density functions in order to represent what we know about the world.

However, probability theory tells us nothing about the way in which to choose the rule that

assigns probabilities. In general the form of these distributions depends on the the interpre-

tation one wishes to place on mathematical probability in the context of a physical system.

In some cases, for example a measuring instrument, we can histogram the measurements of

a known input and arrive at a rule based on the relative frequencies of measurements oc-

curring within di�erent ranges. In others, for example theoretical knowledge, we must rely

1Really a measure { a probability is a normalizable measure.
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on our intuition, imagination, and experience to formulate a rule that assigns probabilities,

and then verify it through experimental procedure. There are two special and important

cases which reect the fact that our knowledge falls between two extremes: i) the state of

perfect knowledge and ii) the state of null information.

The state of perfect knowledge is appropriately represented by the Dirac delta function

�(x�x0), and shows we believe totally that x = x0, but not at all that it is any other value.

It is the state of information we aspire to but can never attain. In practice we can use it

when sources of error are negligible in comparison with others.

The state of null information �(x) on the other hand is used to represent the fact

that we have absolutely no knowledge about the parameters at all. It plays the role of

the reference state in the theory, in much the same way that noise is used when measuring

information in terms of signal to noise ratios. An obvious choice for �(x) is a uniform

distribution which, because all parameter values are equally likely, implies no particular

belief in any of them.

A uniform �(x) is not necessarily correct, especially when dealing with di�erent

parametrizations of the same physical system. For example if we are interested in �nding

the location of some feature in 3D space a uniform distribution over the space of Cartesian

coordinates seems a reasonable choice. However a uniform distribution over the space of

polar coordinates will result in higher belief values for those features closer to the origin.

For our purposes, we will usually assume that �(x) is uniform. We claim that this is a

reasonable approximation of the true form as we are only dealing with a single class of

models, and the same parametrization.

3. Sources of A Priori Information

The second part of Tarantola's theory is a division of the sources of a priori knowledge

into two speci�c categories: the knowledge given by a theory which describes the physical

interaction between models and measurements, and knowledge obtained independently of

that theory. For our purposes the latter can be broken down into two more independent

categories: information we have about the model from measurements, and information from

unspeci�ed sources about the kinds of models which exist in the world.

Note that although the theory assumes this information can be represented by prob-

ability density functions, it does not tell us their form. Choosing an appropriate form for

the a priori distributions can only be done in the context of the problem we are attempting

to solve and is largely an intuitive matter. As to whether the form of the distribution is
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appropriate once chosen, this can only be veri�ed in a scienti�c manner by experimentally

con�rming predictions. We are bound by the nature of the scienti�c method.

3.1. Information Obtained from Physical Theories. A physical theory is a so-

lution to the forward problem. It tells us how to predict the error-free values of the observed

data d obtained when observing a given model m,

d = g(m):(1)

However, no theory is ever exact and there are always \modelization" uncertainties. In the

theory these shall be represented by the conditional probability density �(djm) of observing

d given a modelm. When the modelization uncertainties are insigni�cant we may be able to

assume an exact theory, �(djm) = �(d� g(m)). Otherwise �(djm) e�ectively places \error

bars" on the theoretical relation. Figure 3.1 illustrates these di�erences in the forward

modelization.

g (m )d =

m

d

ba

m

d

Θ (d |m)

Figure 3.1. Forward modelization. (a) If the uncertainties in the forward mod-
elization are neglected, d = g(m) gives the predicted data values, d for each model
m. (b) If we cannot neglect the uncertainties in the forward-modelling, they can
be described by the conditional probability density function, �(djm), which gives,
for each model m, a probability density for d. This corresponds to placing \error
bars" on the theoretical relation d = g(m).

Because we are using information in both the data and model spaces we require an ex-

pression of the theoretical knowledge in the joint spaceM�D. Because the non-informative

density in the data space �D(d) is independent of the models and by de�nition contains no

information about the data, the joint distribution �(d;m) = �(djm) �M (m) must contain

exactly the same information that �(djm) does, and can therefore be used to represent the
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3. SOURCES OF A PRIORI INFORMATION

theoretical information over the joint model and data space. Figure 3.2(b) illustrates the

joint distribution �(d;m).

3.2. Information Obtained fromMeasurements and A Priori Information on

Model Parameters. Much of the knowledge we have about a problem comes in the form

of experimental measurements of observable parameters. All instruments are subject to

varying degrees of uncertainty so our knowledge of the observable parameters is imperfect.

The probability density function representing the information obtained from measurements

will be designated by �D(d). Let dout denote the value delivered by the instrument at each

measurement of a given value of d. The most useful and general way of conveying the results

of the statistical analysis of the instrument errors is by de�ning a probability density function

for the value of the output, dout, when the actual input is d. The conditional probability

density function conveying this information is denoted �(doutjd). If the actual result of the
measurement dout = dobs (what we have observed is actually the data outputted by the

instrument), then we can use Bayesian reasoning and conclude:

�D(d) =
�(dobsjd) �D(d)R

D�(dobsjd) �D(d) dd
(2)

In speci�c situations it is often the case that we know something else about the models

which can be usefully applied. For example in some industrial applications there may only

be a �nite number of known objects, and these might always be supported by a conveyer

belt. Knowledge like this is a powerful constraint and can be used to eliminate many of

the unconstrained solutions. The problem is that this kind of knowledge often appears in

the form of ad-hoc selection criteria applied at a late stage of processing, or as conditioning

constraints embedded in the formulation of the model. Here it is made explicit as another

source of knowledge and represented by the probability distribution �M(m).

For our purposes we will assume that the measurements and the a priori model con-

straints are obtained independently. In that case the knowledge they represent can be

combined to give a probability density function

�(d;m) = �D(d) �M(m)(3)

over the joint space M �D.

Figure 3.2(a) illustrates the two a priori sources of information represented by their

probability density functions: �D(d) and �M(m). Here, they are seen projected onto data

and model space. The combination of these sources of information is represented by the

probability function �(d;m) lying in joint M �D space.
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4. SOLUTION TO THE INVERSE PROBLEM

4. Solution to the Inverse Problem

The solution to the inverse problem is in principal quite straight forward | it is simply

a matter of combining the sources of information, i.e. the theory, the measurements, and

the a priori constraints. The complication is the manner in which they are to be combined.

This is the third part of Tarantola's theory. He takes the approach that the classical

theory of logic gives rules by which humans handle information. In particular the logical

operation of conjunction is appropriate, i.e. the solution to the inverse problem is given

by the theory and the measurements and any a priori information about the models.

The notion of logical conjunction is extended to de�ne the conjunction of two states of

information (Tarantola 1987, pages 29{31).

Definition 1 (conjunction of states of information). Let f1(x), f2(x) be probability

density functions representing the states of information P1 and P2 respectively, and �(x)

be the probability density function representing the state of null information. Then

�(x) =
f1(x) f2(x)

�(x)
(4)

where �(x) is the a posteriori probability density function representing the conjunction of

states of information (P1 and P2).

With this de�nition we can combine the information from the joint prior probability

density function �(d;m) and the theoretical probability density function �(d;m) to get the

a posteriori state of information

�(d;m) =
�(d;m) �(d;m)

�(d;m)
(5)

where �(d;m) is the joint non-informative probability density function (the reference state

of information). According to Tarantola, this equation is more general that those obtained

through traditional approaches, but degenerates to them in speci�c cases. Under the con-

ditions mentioned, the solution is identical to the Bayesian solution (Tarantola 1987, page

61).

Figure 3.2(c) illustrates the combination of the prior information:�(d;m) and �(d;m)

displayed in (a) and (b) respectively. One can see that the conjunction of information,

represented by the joint posterior distribution �(d;m), localizes the knowledge provided by

the each of the distributions separately.
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4. SOLUTION TO THE INVERSE PROBLEM

What we require however is the a posteriori information about the model parameters,

and this is simply given by the marginal probability density function

�(m) =

Z
D
�(d;m) dd

=

Z
D

�(d;m) �(d;m)

�(d;m)
dd(6)

When it is assumed that the model and data non-informative densities are independent, i.e.

that �(d;m) = �D(d)�M(m), the equation for the marginal a posteriori density function

becomes

�(m) =

Z
D

�D(d) �M(m) �(djm) �M (m)

�D(d) �M (m)
dd(7)

This reduces to:

�(m) = �M(m)

Z
D

�D(d) �(djm)

�D(d)
dd:(8)

Equation (8) is the solution to the general inverse problem. From �(m) it is possible to

obtain any sort of information we wish about the model parameters: mean values, median

values, maximum likelihood values, errors, covariances, con�dence intervals, etc.

Figure 3.2(d) illustrates the solution to the inverse problem. The resulting distributions

representing the posterior model information, �(m), as well as the posterior data informa-

tion, �(d), are seen projected onto the model and data spaces respectively. By comparing

the posterior density function, �(m), to the prior one, �M(m) (displayed in (a)), one can see

that some information on the model parameters has been gained. Prior to the conjunction

of information, there was only vague information about the kinds of models that exist in

the world. After, one can see that a degree of certainty about the model parameters has

been gained. This is due to the addition of the prior data information, �D(d), and the

theoretical information �(d;m).

While the probability density �(m) allows us to estimate the posterior values of the

model parameters, the density function �(d) is also useful in that is permits the estimation

of the posterior values of data parameters (i.e. \recomputed data"). The posterior data

information is computed as follows:

�(d) = �D(d)

Z
M

�M(m) �(djm)

�D(d)
dm:(9)

By comparing �D(d) and �(d) in Figures 3.2(a) and (d) respectively, one can see that

knowledge has also been gained about the data parameters.
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4. SOLUTION TO THE INVERSE PROBLEM

The existence of the solution to the inverse problem simply means that �(m) is not

identically null. If it were then this would indicate incompatibility between the theory, the

experimental results, and what is assumed a priori about the model parameters.

The uniqueness of the solution refers to the fact that there is one and only one solution.

This is evident when, by the solution, we mean the probability density �(m) itself. �(m)

could be pathological (non-normalizable, multi-model, etc.) but that only indicates the

nature of the information possessed on the model parameters. The information itself is

uniquely de�ned as a consequence of the the uniqueness of the conjunction of states of

information.

In this chapter, we have introduced the general inverse theory as a framework for

solving the recognition problem. We have illustrated how to obtain the solution to the

inverse problem in the form of a conditional probability density function, by explicitly

naming all sources of knowledge and representing each by a probability density function.

We have also shown how the posterior information is obtained under conditions that reduce

the general solution to the classical Bayesian solution. In the next chapter, we will show

how to apply the theory to the recognition of parts of articulated, parametric models.
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Figure 3.2. The probability densities in combined model and data
space (Tarantola 1987, page 54). (a) The probabilities �D(d) and �M (m)
represent the a priori information on the observable parameters (data) and the a
priori information on model parameters respectively. �(d;m) represents the joint
a priori information in the D � M space. Since the a priori data information is
independent of the a priori model information, we have �(d;m) = �D(d) �M (m).
(b) �(d;m) represents the information on the physical correlations between d and
m, as predicted by a physical theory. (c) �(d;m) represents the joint posterior
information, which is the conjunction of the two states of information �(d;m) and
�(d;m), such that: �(d;m) = (�(d;m) �(d;m))=�(d;m). (d) From �(d;m), we
can obtain the marginal probability density functions �(m) =

R
D
�(d;m) dd and

�(d) =
R
�(d;m) dm. By comparing the the posterior probability density, �(m),

to the prior one, �M (m), we can see that some information on the model parameters
has been gained. This is due to the addition of the prior data information, �D(d),
and the theoretical information, �(d;m).
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1. INTRODUCTION

CHAPTER 4

The Part Recognition Problem

1. Introduction

In the previous chapter, we have presented the general inverse theory as a framework

for solving the part recognition problem. In this chapter, we will illustrate how to apply

the theory to the recognition of parts of articulated models obtained through a classical

bottom-up system. We will show how to use the parameters of the models as descriptors

for recognition.

In the system we have constructed, articulated object models are created by succes-

sive probes of a laser-range�nder through a process of autonomous exploration (Whaite &

Ferrie 1991, Whaite & Ferrie 1993b, Whaite & Ferrie 1994). For any particular viewpoint,

range measurements are taken, surfaces are reconstructed then segmented into parts, and

individual models are �t to each part. Each part is represented by a superellipsoid primitive,

where points on the surface (x; y; z) satisfy the following implicit equation:

f(x; a) =

 ���� xax
����2=�2+

���� yay
����2=�2

!�2=�1

+

���� zaz
����2=�1 = 1(10)

where ax; ay; az indicate extent in the x, y, and z directions respectively, �1 and �2 are the

shape descriptors, and tx; ty; tz and �x; �y , and �z indicate the translation and rotation in

the x; y; and z directions. Associated with each primitive is a covariance matrix C which

embeds the uncertainty of this representation which can be used to plan subsequent gaze

positions where additional data can be acquired to reduce this uncertainty further (Whaite

& Ferrie 1991, Whaite & Ferrie 1993b). Currently, the �rst �ve superellipsoid parameters,

ax, ay , az, �1, �2, and their associated covariances, are used as part descriptors for object

recognition.

Usually, the model �tting process is treated as the solution to an inverse problem where

the forward problem is the prediction of the range data that will be gathered from some
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2. INFORMATION OBTAINED FROM PHYSICAL THEORIES

known volumetric model. However, we will take a larger view and treat the whole system

as a measuring instrument.

We will let M be the space of volumetric models to be recognized. Given some model

m in the scene, range measurements are taken and from these an estimate of the model is

obtained, d, which we call a measurement of the model in the scene. We denote the space

of possible model estimates D.

Given this scenario, we solve the inverse problem (Section 5) by examining the sources

of information: the information obtained from physical theories (Section 2), information

available through measurement (Section 3), and the a priori information on models (Sec-

tion 4).

2. Information Obtained from Physical Theories

We �rst formulate an appropriate distribution to represent what is known about the

forward problem. If the entire system were treated as a perfect measuring instrument (free of

all uncertainties), the vector function g(m) introduced in (1) would be the identity function.

This would mean that measuring the model would always generate its true parameters:

d = m. However, measuring instruments are never perfect. Formulating a physical theory

that enables us to predict estimates of the model parameters given a model in the scene

is too di�cult given the complications of the system. We therefore collect these estimates

empirically through a process called the training or learning stage of the recognition process.

Here, measures of a known model, m, are collected N times. The measures, d1;d2; : : : ;dN ,

are used to calculate the conditional probability density function �(djm) for each model by

assuming a multivariate normal distribution. These Monte Carlo experiments are exactly

like those found in traditional statistical pattern classi�cation methods (Nilsson 1965, Mood

& Graybill 1963). A mean, �m, is computed for each known model:

�m =
1

N

NX
j=1

dj(11)

The covariance matrix, CT , describing estimated modelling errors for a model �m, is calcu-

lated as follows:

CT =
1

N � 1

NX
j=1

(dj � �m)(dj � �m)T(12)

Therefore, the �nal equation for �(djmi) is:

�(djm) = N(d� �m;CT)(13)
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3. INFORMATION OBTAINED FROM MEASUREMENTS

where N is the multivariate normal distribution:

N(d� �m;CT ) =
1p

(2�)n jCT j
exp

�
�1
2
(d� �m)TC�1

T (d� �m)

�
;(14)

n being the dimension of the data space.

Experimental training is not an easy job. A representative sample of models in di�erent

poses, and of di�erent scanner positions, must be taken. Otherwise, �(djm) may either

underestimate the errors in the estimation process and give high levels of false positive

identi�cations, or conversely overestimate them and give low levels of true positive matches.

Later, we will show that, when we have a database of known models in the scene, we

need only perform training on these models. The distribution representing the theoretical

information, �(djm), is created by simply summing the individual distributions for each of

the known models in the following fashion:

�(djm) =
MX
i

�(djmi)(15)

whereM is the number of models in the scene. This means that it is not necessary to sample

all of M , but only the models known to exist a priori. The training process is therefore

considerably less complex than it �rst appears.

The result of training is a database of prede�ned model classes. Each class can be

represented by an ellipsoidal cluster in multi-dimensional parameter space. Figure 4.1(a)

illustrates the model classes resulting from training in a scene of four known models. The

distributions of each class become elliptical in shape when seen projected onto 2D ax=ay

parameter space. In (b), one can see how each individual class is created during the training

process.

3. Information Obtained from Measurements

The measurement experiment gives a certain amount of information about the true

values of the observable parameters. However, often measurement errors are not taken into

account, and the estimated model parameters are assumed to be exact. This would imply

that the probability density �D(d) would be represented by the Dirac delta function. This

is usually an overly optimistic view of the state of information of the measurement, and

may end up giving a very positive, but totally unjusti�able, identi�cation of the object.

We do not accept this, however, and have gone to great pains in our system to charac-

terize the ambiguities that exist in the parameters (Whaite & Ferrie 1992). As a result, we

obtain not only an estimate of the observed model parameters dobs, but also an estimate
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Figure 4.1. Results of training. (a) Model classes resulting from training are ellip-
soidal clusters in multi-dimensional parameter space. Here, the projection onto the
2D ax=ay parameter space is shown. (b) Each model class is created by measuring
the known model m N times. From these measures, d1;d2; : : : ;dN , the mean �m,
and associated covariances, CT , are calculated by assuming a multivariate normal
distribution.

of their uncertainty in the covariance operator Cd. The assumption we make is that the

multivariate normal distribution N(d�dobs;Cd) represents our belief in the measurements.

The probability density function representing this information is the conditional probability

density function �(dobsjd) , such that:

�(dobsjd) = N(d� dobs;Cd):(16)

Therefore, we have:

�D(d)

�D(d)
=

�(dobsjd)R
D�(dobsjd) �D(d) dd

=
1

k
N(d� dobs;Cd)(17)

where k is the normalization constant:

k =

Z
D
N(d� dobs;Cd) �D(d) dd:(18)

We have restricted D to the subspace of possible model estimates. We have assumed

that �D(d) is a constant uniform distribution, entirely contained within that space, such

that: Z
D
�D(d) dd = 1(19)
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5. SOLUTION TO THE INVERSE PROBLEM

Therefore, the normalization constant reduces to:

k =
1R

D dd

Z
D
N(d� dobs;Cd) dd;(20)

where
R
D dd refers to the volume of data space. We assume that the measurement

distributions are relatively sharp in that they lie entirely within D. In this case,R
DN(d� dobs;Cd) dd � 1, and k � 1R

D
dd
, a prede�ned constant.

The issue of how to de�ne
R
D dd is a di�cult one to address. In order to de�ne such a

space, a commitment to a permissible region of observed parameters must be established.

As this is very di�cult to de�ne prior to measurement, the current framework leaves the

measurement knowledge non-normalized. Under the assumption made that the measure-

ment distributions are mostly contained within the data space, we can justify ignoring the

normalization constant as it is equal for all measurements. here, di�erent measurements

can be compared.

However, for atter measurement distributions, the assumption thatD de�nes the space

of all possible estimates is no longer valid. The normal distribution
R
DN(d� dobs;Cd) dd�

1, and actually k � �D(d). In these cases, the measurement knowledge should actually

be much larger than it is, to compensate for the spread out distribution. Because of these

cases, independent measurements di�er by an uncomputed factor, and can no longer be

compared.

4. Information Obtained from A Priori Information on Model Parameters

In the current context, there are a �nite number of reference models, �mi; i = 1 : : :M ,

which are uniformly distributed. The probability density function used to convey this

knowledge is

�M(m) =
MX
i

P ( �mi) �(m� �mi);(21)

where the P ( �mi) are the a priori model probabilities or weights reecting the likelihood

that the ith model, �mi, occurs.

5. Solution to the Inverse Problem

Substituting the probability density functions in (17), (21) into the marginal a posteriori

density function in (8) yields

�(m) =
1

k

MX
i

P ( �mi) �(m� �mi)

Z
D
N(d� dobs;Cd) �(djm) dd:(22)
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Now, because �(m� �mi) = 0 for allm 6= �mi, and provided that �(djm) is �nite form 6= �mi,

we may replace it with �(dj �mi). After doing this and regrouping, we get the inverse solution

to the part recognition problem to be:

�(m) =
1

k

MX
i

�
P ( �mi)

Z
D
N(d� dobs;Cd) �(dj �mi) dd

�
�(m� �mi)

=
1

k

MX
i

Qi �(m� �mi):(23)

As we would expect, this tells us that the model must be one of the the models given a priori

(21), but with a redistribution of the a priori model probabilities P ( �mi). For convenience,

we will call:

Qi = P ( �mi)

Z
D

N(d� dobs;Cd) �(dj �mi) dd(24)

the a posteriori model probabilities or weights.

In order that we make a strong positive identi�cation of the part, the Qi should be

concentrated in one model over all the others. If this is not the case, the information

we have is inadequate to identify the model, either because the data set is insu�cient, or

because the empirical distribution, �(djm), describing the measurement is inadequate.

Now that we have the form of the part recognition solution, we can re-examine in its

light the ways in which we might obtain and represent the empirical distribution representing

the measurement process. The crucial observation is that:

�(djm) =
MX
i

�(dj �mi):(25)

This means, as we would intuitively expect, that the Monte Carlo estimates need not sample

all of model space, but only the space of discrete models known to exist a priori, in this

case, �mi.

Under the normality assumption made in (13) with reference to the conditional proba-

bility density function �(djm), the solution for the a posteriori model probabilities becomes:

Qi = P ( �mi)

Z
D
N(d� dobs;Cd) N(d� �mi;CT) dd:(26)

The convolution of two normal distributions is a normal distribution (see Appendix A

for details), therefore

Qi = P ( �mi)

Z
D
N(d� dobs;Cd) N(d� �mi;CT) dd;

= P ( �mi) N(dobs � �mi;CD);(27)
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where CD = CT +Cd. This result is important because it shows that, under the Gaussian

assumption, observational errors and modelization errors simply combine by addition of the

respective covariance operators (even when the forward problem is non-linear) (Tarantola

1987, page 58).

Convolving the measurement distribution against each of the reference model distribu-

tions has the e�ect of causing them to be more spread out. Therefore, the contribution of

the a priori measurement information is to incorporate its uncertainties into the distribu-

tions of the model classes. Figure 4.2(a){(c) illustrates this concept. In (a), the multivariate

normal distributions of the reference models are seen projected onto the 2D ax=ay space.

The black dot indicates the position of the measured model, dobs in this space. Here, one

can see that the measured model does not fall onto any of the distributions of the reference

models. Strict distance metrics such as the one proposed by Pentland & Sclaro� (1991),

do not take the uncertainties in the model, de�ned by the covariances, into account. These

methods would �nd the measured model to be a member of class 3 since it lies closest to

it. This identi�cation would be incorrect. To see this, the 2D projection of the measured

model distribution, �D(d), is displayed in (b). In (c), one can see the resulting distributions

after convolving the measured model with each of the reference models. These distributions

are much more spread out than those in (a). The covariances of the measured model de�ne

the degree and direction of the spread. Combining the prior information in this manner

has lead to the identi�cation of the measured model as being a member of reference class

4. Thus, the combination of the a priori information has improved the solution, in cases

where recognition systems that use distance metrics that do not consider the measurement

uncertainty would have generated a false identi�cation.

The �nal equation for the a posteriori probability density function is

�(m) =
1

k

MX
i

P (mi) N(dobs � �mi;CD) �(m� �mi):(28)

This density function is comprised of one delta function for each model in the database.

Each delta function is weighted by the belief P ( �mi) N(dobs� �mi;CD) in the modelmi. The

�nal distribution represents the \state of knowledge" of the parameters ofmi. Figure 4.2(d)

illustrates this distribution. The beliefs in each of the reference models, mi, are computed

by evaluating each of the convolved distributions at dobs.

Because the normalization constant in (3) is not calculated in the current scheme,

the resulting belief distributions are non-normalized. The result is that their values from
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Figure 4.2. Creating the belief distribution. (a) Here, the reference model distri-
butions, �(djmi), are seen projected onto 2D, ax=ay parameter space. The black dot
represents the position of the measured model, dobs in 2D parameter space. We can
see that it doesn't fall on any of the reference model distributions, and lies \closest",
by a strict distance metric, to class 3. (b) The measured model distribution, �D(d),
projected onto 2D parameter space. (c) The result of convolving the distribution in
(b) with each of those in (a) is a version of (a) spread out in parameter space. We
can see that now the measured model actually falls within the distribution of the
fourth reference model class. (d) The resulting belief distribution. Notice that the
system has the highest belief in model class 4, and a small belief in model class 3.
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independent measurements cannot be compared. However, our current interest lies in the

examining the relative beliefs resulting from each measurement.

The advantage of the method is that rather than establish a �nal decision as to the exact

identity of the unidenti�ed object, it communicates the degree of con�dence in assigning

the object to each of the model classes. It is then up to the interpreter to decide what may

be inferred from the resulting distribution.

Figure 4.3 illustrates the kinds of results we get by applying the theory to a typical

recognition problem. Here, the reference models were produced by training on models

created with data acquired by scanning the objects all around their surfaces (i.e. complete

3D data). The reference models, consisting of a smaller sphere, a large sphere, and a lemon,

can be seen in Figure 4.3a. The larger sphere was then measured from a single viewpoint,

and the resulting model is shown in Figure 4.3b. The system's ability to distinguish the

larger sphere from both the smaller sphere and the lemon was then tested. The result is

the belief distribution found in Figure 4.3c. One can see that the system has a signi�cantly

higher degree of con�dence in the hypothesis that the measured model was a large sphere.

a) Reference Models

b) Measured Model c) Beliefs in Reference Models

6.12�10�43 0.00273 0

Figure 4.3. Recognizing a sphere. (a) The reference models are: a smaller sphere,
a larger sphere, and a lemon. (b) The measured unknown model. (c) The belief

distribution.

In this chapter, we have presented a method for the recognition of volumetric models

based on the general inverse theory (presented in Chapter 3). We have speci�ed the prob-

ability density functions representing each sources of knowledge involved in the solution.

We have also shown how to combine the information to obtain a solution in the form of
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a conditional probability density function, which we refer to as a belief distribution. In

Chapter 7, we will illustrate a system that successfully recognizes real objects based on the

methodology presented. We choose to represent objects by superellipsoid models, due to

their computational simplicity. In order recognize based on the parameters of these volu-

metric models, the next chapter will specify how to avoid the degeneracies in shape and

orientation associated with them.
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CHAPTER 5

Degeneracies in the Superellipsoid Representation

1. Introduction

In the previous chapter, we have shown how to apply the inverse solution to a bottom-

up system that produces volumetric models used for recognition. Although the recognition

strategy described can be applied to any parametric model of an object, we have decided

on the superellipsoid model as an object descriptor, due to the wide range of shapes in can

represent as well as its computational simplicity. This type of model is also attractive in

that the parameters describe physical attributes of the objects in an intuitive manner (see

Chapter 1).

However, representations based on superquadrics pose a number of di�culties due to

degeneracies in shape and orientation. By �tting data to superellipsoid models, the resulting

covariance matrix de�nes a local region of parameter space (the ellipsoid of con�dence) in

which models are non-unique or ambiguous (Whaite & Ferrie 1991). The problem is that

the ellipsoid of con�dence represents the non-uniqueness at a single minima in parameter

space. There might be other parameters at several disjoint minima that �t the data equally

well. The problem of detecting all the possible local minima is a di�cult one to address.

For one thing, many of the minima may be geometrically equivalent. Rotating a model by

90� about an axis of symmetry will result in di�erent rotational parameters, and re-ordered

size parameters, without changes in appearance. In addition to these problems, other less

obvious equivalence classes occur for superellipsoids. For example, in the x�y plane, squares
have shape parameters �2 = 0.1, and diamonds 1.9. However, a diamond with equal size

parameters is simply a square rotated by 45� . Detecting all possible equivalence classes,

compounded with the uncertainty of the parameter set, is a di�cult problem that must be

addressed if one is to compare parameters for the purposes of recognition.
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We will begin this chapter by enumerating the possible equivalence classes for the

superellipsoid (Section 2). We will then show how to avoid these degeneracies without undue

computational overhead, by representing a model by all of its possible equivalent forms.

Consequently, models are described by multi-modal distributions (Section 3). Finally, we

will show how to encompass multi-modal superellipsoid models into the recognition strategy

described earlier (Section 4).

2. Equivalence Classes for the Superellipsoid Parameters

It was determined empirically that there are, in fact, only a �nite number of possible

equivalence classes for superellipsoids. Here, we will enumerate the most common degen-

eracies that occur in practice when using superellipsoids to model objects.

Using the superellipsoid description, two identical models may be described di�erently

because of di�erent labelling of the axes of symmetry. This is the most common type

of equivalence class for superellipsoids, which we will refer to as rotational equivalences.

Within this class, the highest number of equivalent states occurs when objects have the

same shape in all planes. In superellipsoid terms, this means that the shape parameters,

�1 and �2, are equal. Here, one can describe the same surface in any one of six di�erent

ways, by di�erent assignments of the x; y; z axes. Therefore the size of the model can be

appropriately described by any one of six permutations of the extent parameters, while

the description of shape of the object remains unaltered. Figure 5.1 shows the six possible

rotational equivalences of a model with equal shape parameters: �1 = �2.

It is important to note that this type of rotational equivalence class is only strictly

true when the shape of the model is identical along all three axes of symmetry. We de�ne

strict equivalence to mean that the surfaces are identical in size and shape. It is in this

situation only that the model can be described by any of the six permutations of the extent

parameters. This is due to the limited descriptive powers of the superellipsoid model where

shape is described by only two parameters: �2 and �1. �2 controls the shape in the x{y cross-

sectional plane along the z�axis, while �1 describes the shape in two planes simultaneously,
x{z, and y{z. When the model has di�erent shape parameters, or �1 6= �2, the superellipsoid

description forces the unique shape to be along the z�axis in all cases. Hence, the number

of strict rotational equivalences in this case are limited to two, generated by the permuting

the labelling of the x and y axes. In fact, regardless of their shape parameters, two models

are rotationally equivalent if they only di�er by having opposite labelling of their x and y

axes.
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2. EQUIVALENCE CLASSES FOR THE SUPERELLIPSOID PARAMETERS

Figure 5.1. Rotational equivalences when the shape parameters are equal. Here,
�1 = 0:1 and �2 = 0:1.

Figure 5.2 illustrates the case of a superellipsoid model of a cylinder with shape param-

eters: �1 = 0:1, and �2 = 1:0. In this case, the model is round in one cross-sectional plane,

and rectangular in the other two. The superellipsoid description of the model forces the axis

with the unique cross-sectional shape to be the z � axis. Figure 5.2(a) shows the original

cylinder, and (b){(f) shows the result of permuting the size parameters of the cylinder in

(a). The fact that only (b) is identical to (a) illustrates that, for models with di�erent shape

parameters, the only strict rotational equivalence occurs in reversing the x and y axes.

Another type of equivalence class occurs when a superellipsoid model has a cross-

sectional shape of a square in the x{y plane: �2 u 0:1 and ax = ay . In this case, the model

can also be described as a diamond: �02 u 1.9, with the extent parameters: a0x = a0y , scaled

such that a0x =
p
2 � ax. The size parameters must be scaled because, with a square, the

extent parameters are measured from one face to the opposite one. However, for a diamond,

they are measured from corner to corner (see Figure 5.3). This equivalence is only strictly

true in the limit when the shapes are purely square (�2 = 0:1) or diamond-like (�02 = 1:9).

In the range in between, 0:1 < �2 < 1:9, the shape of the model becomes more rounded.

In this case, one can say that the equivalence between square-like models (�2 < 1) and

diamond-like models (�02 > 1) is only approximately true, especially with the added e�ect of

uncertainty. There is an approximate match between models such that �02 = 2:0� �2 with
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a b c

d e f

Figure 5.2. Permutations of the size parameters of model (a) when the shape
parameters are not equal. Here, �1 = 0:1 and �2 = 1:0. Notice that (b) is the only
model identical to (a).

the scaling of the extent parameters mentioned above. Figure 5.3 illustrates an example of

this type of square/diamond equivalence class.

Notice that �1 is not involved in this type of equivalence class. The reason for this

being that �1 controls the shape in two cross-sectional planes simultaneously: x{z and y{z.

Using the superellipsoid description, one could never have a simultaneous square in both

the x{z and the y{z planes being equivalent to a diamond in the x{z and the y{z planes.

This is because cubes join at corners comprised of three edges, and diamonds are made up

of corners that join four edges.

3. Multi-Modal Representation of Superellipsoid Models

Because more than one set of parameters could be used to describe the same superellip-

soid model, it is best to represent each model by all of its possible equivalent forms. For this

reason, we no longer limit our representation of a model to a single distribution, centered

on the �rst minimum state settled into by the �tting procedure. We now represent each

model by a multi-modal distribution, where each mode is centered on a possible canonical

form.
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a b

Figure 5.3. Square/diamond equivalences (a) Block with parameters: ax = 20,
ay = 20, az = 20, �1 = 0:5, �2 = 0:1. (b) Block with parameters ax = 28:28,
ay = 28:28, az = 20, �1 = 0:5, �2 = 1:9.

Since the most common degeneracies occur due to rotations, the primary focus is to

ensure object representations free of rotational biases. This is ensured by enumerating, for

each unidenti�ed model, the six members of its rotational equivalence class. The �rst step is

to �t the data to a superellipsoid model. Then, all six permutations of the extent parameters

are found, resulting in six possible descriptions of the object. However, even if each of these

parameter sets lies close to its appropriate minimum, we wish to �nd the exact minima

corresponding to the possible rotational canonical forms. This includes accurate parameter

sets as well as their corresponding covariances. Fine-tuning in this fashion is crucial in

situations where discrimination between two objects is delicate. In order to attain this

level of accuracy, the model is re�t with each of the permuted parameters used as initial

conditions. The results are six representations for the model based on all possible rotations.

However, the six representations do not necessarily produce identical model surfaces. As

illustrated earlier, only models with equal shape parameters have six rotational equivalences

(see Figure 5.2). Here, the results of �tting are models that strongly resemble the original,

with di�erent labelling of their axes. When the shape parameters are very di�erent, the

only surfaces that are identical are the two produced from rotations in the cross-sectional

x� y plane. The other four canonical models that result from �tting are di�erent from the

original. This is caused by attempting to force the �tting procedure to settle in minima that

are not members of the rotational equivalence class. This leads to models that do not �t the

data very well, and do not resemble the original. Figure 5.4 shows the six canonical forms

of a cylinder. One can see that the only representation that is identical to the original is the

one that has permuted the x and y axes. The other models are the results of permuting the

axes when the shape parameters are not the equal. These no longer resemble the original.

40



4. RECOGNITION OF MULTI-MODAL SUPERELLIPSOID MODELS

0.93 0.93 6.12

a b c

6.12 5.82 5.82

d e f
Displayed above are the six canonical forms of a cylinder. The original model (a) is seen enclosed by a box. (b) is
the model resulting from permuting the x and y axes and re�tting, (c){(f) are the results of re�tting the model,
with the other extent parameters permuted. Above each model is the residual error resulting from the �t.

Figure 5.4. The six canonical forms of a cylinder.

Since other equivalences exist for the superellipsoid, future work will concentrate on

enumeration of all possible equivalences, each represented by a new mode in the normalized

distribution of the model. Since these other equivalences occur less frequently, they are not

included for now. As a result, recognition attempts still encounter some di�culties where

these equivalences need to be taken into account.

4. Recognition of Multi-Modal Superellipsoid Models

Recognition of an unknown model represented by a multi-modal distribution is now

performed. Here, a belief vector in a reference model is calculated by passing its single-mode

distribution over the six-modal distribution of the unidenti�ed object, and determining the

belief in each mode. This is performed for each reference model. The unidenti�ed object

assumes the canonical form with the highest belief in one of the reference distributions.

For the majority of the cases, this system would work well. This section will illustrate the
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problems that can arise with this strategy and will propose some practical solutions to these

problems.

4.1. Reducing Mis�t Problems. When calculating the canonical forms of a model,

we permute the extent parameters, and send these as initial conditions to the �tting pro-

cedure. However, in cases where the shape parameters are not equal to each other, we are

forcing inappropriate initial parameters onto the �tting procedure. This leads to higher de-

grees of mis�ts in some canonical forms. From Figure 5.4, one can see that those canonical

forms that are not members of the rotational equivalence class do, in fact, produce much

higher residual errors of �t. In these cases, there is a risk that the resulting distributions

would fall closer to the wrong reference model's distribution than to any others. The results

are false-positive identi�cations.

In order to reduce the number of incorrect identi�cations, we assign weights to the

beliefs generated by each model based on the amount of mis�t detected. These weights

are inversely proportional to the residual error returned by the �tting process: Large errors

produce small weights, decreasing all the beliefs produced by that mode. Small errors

enhance the beliefs. The weight function decided on is:

W = exp

�
�1
2
�̂2
�

(29)

where �̂2 represents an unbiased estimate of the sensor noise variance given by the current

residual errors. In this fashion, little credibility is given to representations associated with

large mis�ts.

As well, there are other ways in which mis�t problems can be avoided. When �tting

the data to a model, the �tting process can settle into di�erent minima, depending on

its starting point. This is especially true when collecting data from one viewing position,

because the level of mis�t is increased by the lack of constraint on the �tting. In order

to ensure some level of consistency in the initial model representations, appropriate initial

conditions are given to the �tting process. These starting points give the process a rough

estimate of the shape of the object, as well as an acceptable pose (see (Ferrie, Lagarde &

Whaite 1993)). This was done to reduce the level of mis�t, and to lead the process towards

a member of an appropriate rotational equivalence class. It is necessary to perform this step

on the models used in training because these do not include all possible canonical forms.

4.2. Representation of the Reference Models. In the current scheme, each ref-

erence model is represented by a single-mode normalized distribution. The �tting procedure
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is given an appropriate starting point to ensure uniform canonical forms for the models in-

volved in the training process. The �tting process creates a single distribution centered on

the parameters at the closest minimum. Since the reference models are created from data

collected from three views, the �tting procedure is well-constrained.

However, one the problems associated with using only a single mode distribution for

the reference model is that, due to uncertainty during training, the system may choose

a canonical form for an instance of that model di�ering from that of the mean. This

outlier would bias the distribution of the model class. This would result in an inaccurate

representation of the object, falsely diminishing its certainty in its parameters.

Ideally, one would want to represent the reference models by a six-modal normalized

distribution, permitting the representation of all possible canonical forms. In this fashion,

the recognition procedure would attempt to �nd the greatest overlap in multi-modal normal

distributions. Multi-modal representation of the reference model is not employed due to

the fact that training models, each represented by multi-modal distributions, is a di�cult

clustering problem not yet solved.

In this chapter, we have shown how to avoid the degeneracies associated with the

superellipsoid model, by explicitly enumerating all equivalence classes for each model, and

encompassing them into the model description. This lead to a multi-modal distribution for

each model. We have also indicated how the recognition strategy described in Chapter 4 can

be extended to include multi-modal superellipsoid models. In Chapter 7, we will illustrate

that recognition experiments based on these representations prove successful.
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CHAPTER 6

Informative Views and Active Recognition

1. Introduction

In earlier chapters (Chapters 3,4), we have described how one can cast the recognition

problem into a probabilistic framework. We have shown how we can describe what we

know about the world by representing all prior knowledge as probability density functions.

As well, we have illustrated the way in which we can combine the information to obtain

the solution in the form of a conditional probability density function, by application of a

generalized inverse theory.

Now, consider an active agent charged with the task of roaming the environment in

search of some particular object. It has an idea of what it is looking for, at least at some

generic level, but resources are limited so it must act purposefully when carrying out its

task (Aloimonos 1992). In particular, the agent needs to assess what it sees and quickly

determine whether or not the information is useful so that it can evolve alternate strategies,

the next place to look for example. Key to this requirement is the ability to make and

quantify assertions while taking into account prior expectations about the environment. In

this chapter we will show how the resulting belief distributions can be used to (i) assess

the quality of a viewpoint on the basis of the assertions it generates and (ii) sequentially

recognize an unknown object by accumulating evidence at the probabilistic level.

2. Determining Which Viewpoints are Informative

In Chapter 7, we will show that recognition based on complete information produces

perfect results in all cases. Since complete information is not always available, and poten-

tially expensive to acquire, recognition schemes based on single viewpoints are required.

However, recognition based on one view will not prove to be consistently reliable. In fact,

the degree of reliability depends upon the amount of information available. For example,

some viewpoints capture enough of the unique characteristics of the object to su�ciently
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distinguish it from the others in the database. We will refer to these viewpoints as informa-

tive viewpoints. Other viewing positions, where it is impossible to say which object in the

database the unknown is closest to, are called uninformative viewpoints. By determining if

a viewpoint is informative or not, we can establish if further sampling is necessary to be

able to recognize the object well.

The question becomes: how can we use the inverse solution to distinguish between

informative and uninformative viewpoints? We have shown an important result. Rather

than establish an absolute identity for the unknown object, the method communicates the

belief in each of the models in the database. Furthermore, uncertainty serves to condition

prior expectations such that the shape of the resulting belief distribution can vary greatly.

The results will indicate (Chapter 7) that the distribution becomes very delta-like as the

interpretation tends towards certainty. In contrast, ambiguous or poor interpretations con-

sistently tend towards very broad or at distributions. We will exploit this characteristic

to de�ne the notion of an informative viewpoint, i.e. a view with a clear winner, in terms

of a signi�cantly higher belief in one model than the others. From these positions, the

system is able to capture the attributes of the model that distinguish it from the others.

The important contribution of this work is to be able to recognize these viewpoints, and

use them in the determination of object identity.

We would also like to use the beliefs for the converse, i.e. to label a viewpoint as

uninformative. This indicates that results from the current viewing position do not tell

us much about the object's identity. This situation occurs when the unnormalized belief

in each of the models is very low (or zero). Here, it is impossible to say which reference

model the unknown might correspond to. This situation occurs when the distribution of

the unknown model does not signi�cantly overlap with any of the reference distributions.

There are two possible reasons for this to occur. The �rst is the case where the distribution

of the measured model is very wide due to large uncertainties in its parameters. The result

is low beliefs in all the reference models in the database. This case occurs when scanning

has occurred from a viewpoint where insu�cient data was collected. The second case occurs

when there is a breakdown in some of the prior assumptions. In this case, the issue is not

one of insu�cient data. Here, the parameters determined from that particular viewpoint

di�er signi�cantly from any of the models in the database. The resulting distribution

could actually be quite sharp, but simply does not overlap with any of the reference model

distributions. In this case, it could be that the linearity assumption breaks down, implying

that perhaps the assumption of a normal distribution is not valid. Zero belief cases exist
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when the values of the a posteriori probability density functions are extremely low. Due to

numerical underow, the procedure produces beliefs of zero for each of the reference models.

Figure 6.1 illustrates the di�erence between informative and uninformative viewpoints

for the case of a cylinder. Here, one can see that the system is able to distinguish the cylinder

from a block with great ease, if the cylinder is measured from an informative viewpoint.

However, if measured from an uninformative viewpoint, there is little con�dence in either

model. In this case, the beliefs are in fact below the numerical precision of the system, and

therefore become zeros.

Database Models

Measured Model View 1 View 2 View 3 View 4

Belief in cylinder 2.237 0.009181 0.0 0.0

Belief in block 0.0 0.0 0.0 0.0

a) Informative b) Uninformative

At the top of this �gure are the two reference models in the data base: the cylinder and the square block. Beneath
these are measured models of the cylinder obtained after scanning its surface from 4 di�erent viewing positions.
Below each model one can �nd the unnormalized belief distributions obtained when attempting to recognize each
of the measured models.

Figure 6.1. (a) Informative and (b) uninformative views of a cylinder.

46



3. INCREMENTAL RECOGNITION

The problem of distinguishing between the two kinds of states becomes one of determin-

ing the threshold below which one can safely state that the beliefs are in fact insigni�cant.

It is obvious that cases where the beliefs in all the models are zero are uninformative. How-

ever, this threshold depends on the numerical precision of the system. In this sense, it is

chosen externally (and is, therefore, a random cuto� point). We therefore feel justi�ed in

raising this threshold to one that excludes other low con�dence states. The expectation

is that this will eliminate false positive states, as they are thought to occur with low be-

lief. (We will establish this empirically in Chapter 7.) One can determine this cuto� point

empirically, by observing the belief distributions from di�erent viewpoints, and noting if

there is a clear division between the clear winner states and the low con�dence states. A

bi-modal distribution would indicate that an application of a prede�ned threshold can easily

distinguish between these states. In Chapter 7, we will illustrate the results of plotting the

belief distributions resulting from recognizing six objects from di�erent viewing positions.

There are at least two applications for a method that can assess the quality of the

information from a particular viewpoint. First, in the case of an active observer, viewpoints

can be chosen so as to maximize the distribution associated with an object of interest.

This does not specify how to choose an informative viewpoint1, but can be used as a �gure

of merit for a particular choice. Second, in the case of an o�-line planner, it is often

advantageous to be able to pre-compute a set of characteristic views to aid in recognition

(Koenderink 1976, Koenderink 1979, Sripradisvarakul & Jain 1989, Eggert & Bowyer 1989,

Eggert et al. 1992, Kriegman & Ponce 1989, Bowyer & Dyer 1990). A good strategy here

would be to select the n best views of an object ranked according to its belief distribution.

3. Incremental Recognition

Provided that the low belief states have been identi�ed, we wish to make a statement

about the remaining beliefs. Even though the majority of the cases can be clearly divided

into informative and uninformative states, there are still ambiguous cases where a \signi�-

cant" belief in more than one model exists. Because of these situations, it becomes apparent

that evidence from more than one viewpoint is needed. But at what level of representation

should this evidence be accumulated? The autonomous exploration procedure that we use

to generate the set of database models, for example, sequentially constructs a complete 3D

representation at the level of surface geometry (Whaite & Ferrie 1994). One could follow a

1Strategies for gaze planning are usually operationally de�ned (Whaite & Ferrie 1991, Whaite & Ferrie 1994).
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similar approach at the recognition phase, i.e. recalculate each belief distribution as the ex-

plorer adds new data to its representation of the unknown object. Unfortunately this would

be computationally prohibitive, largely due to the expense of data fusion (Soucy 1992). A

better approach would be to process each view independently and avoid the fusion problem

at the data level by seeking instead to combine information at the level of the belief distri-

bution. In Chapter 3, the inverse theory outlined how to do this by de�ning the operation

of conjunction of states of information, i.e. the belief distributions. That is, we denote be-

lief distributions corresponding to each model hypothesis, Hi, given the parameters of the

unknown model, M, computed from the measurement, Dj , by P (HijMDj
). Then, given

two data sets Dj and Dj+1 corresponding to di�erent viewpoints we seek a conjunction

of P (HijMDj
) and P (HijMDj+1

) that is equivalent to P (HijMDj+Dj+1
). An active agent

would then gather su�cient evidence in this fashion until the composite belief distribution

associated with a particular hypothesis exceeds a prede�ned level of acceptability.

Although the theory formally de�nes conjunction, such an operation requires knowing

how a change in viewpoint conditions the respective belief distributions, as they are not

normalized with respect to a global frame of reference. (As we have seen in Chapter 5,

the normalizing factor is some unknown function of viewpoint, and is di�cult to obtain

analytically.) As a result, relative values between the views are meaningless. Hence, it

becomes di�cult to match a belief of 500, for example, from one view, with a value of

50 from another. Each of these values may reect the strongest possible belief from their

respective views, however it is di�cult to compare them in a sensible fashion. As well, in

situations where there is a belief of 50 in one model and 40 in another, it becomes impossible

to establish a clear winner.

For this reason, we have chosen not to choose a \winner" in ambiguous situations,

and state that all positive beliefs indicate equally likely hypotheses. We illustrate this

philosophy by binarizing the conditional probability density function values at each view,

such that all beliefs above the threshold become ones. In this fashion, we have divided the

possible results to include:

(i) Informative states: states with one clear winner (a single positive value).

(ii) Uninformative states: states without a clear winner. This includes:

a) Ambiguous states: states with more than one possible winner (more than one

single positive value).

b) Undetermined states: states with no winners (all zero values).
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It is important to note that ambiguous states are, in fact, undetermined states that lie above

the chosen threshold. In theory, careful choice of cuto� level should eliminate these states

as well (without eliminating a large number of informative states). Figure 6.2 illustrates

these di�erent states in the case of a square block. Here, the system is asked to identify

a square block from di�erent views, and correctly distinguish it from a similar rounder

one. This example indicates that the results match human intuition. The clear winners,

or informative states, in Figure 6.2a indicate that the system is able to identify the block

despite wide variations in its three dimensions. The ambiguous cases (Figure 6.2b) occur

when the resulting models are rounder in shape. Here, the system has trouble di�erentiating

between the models. In fact, these models resemble the rounded block more than the square

one. In the third case (Figure 6.2c), the system does not have signi�cant belief in any of

the models. Intuitively, one can see that these models are not similar to either reference

model.

Using this method of representation, rather than base conclusions on maximum like-

lihood methods from independent viewpoints, methods that combine evidence from single

viewpoints would consider all models whose beliefs are above a threshold to be equally

signi�cant. In accordance with Marr's \Principle of Least Commitment" (Marr 1982), all

possible hypotheses, rather than just one are communicated to the external processes.

By normalizing our con�dence values in this manner, combining them from di�erent

viewpoints becomes straightforward. Should the maximum likelihood hypothesis prevail

in a largely view-invariant manner, then after a sequence of trials, a robust interpretation

can be made by tabulating the votes for each one, represented by the binarized beliefs,

and picking the hypothesis with the highest score. In this fashion, a clear winner should

emerge. As well, the con�dence in the incorrect models should become insigni�cant. In

Chapter 7, we will verify this empirically by attempting to recognize a series of real objects

from sequential viewpoints. We will also show that the view-invariance is maximized by

applying the threshold to �lter out the uninformative hypotheses.

Figure 6.3 illustrates an attempt at sequentially recognizing the square block at 40�

increments. As in the previous example, the square and round blocks are used as reference

models. The raw beliefs are binarized by imposing a threshold of 10�13. Notice that the

ambiguous case quickly becomes insigni�cant with the increase of evidence in the correct

model. After only 9 iterations, the clear winner emerges, casting all doubt aside.

In the next chapter, we will test the recognition procedure on real single-part objects,

for models created from complete (3D) data and from partial (2D) data. The possibility
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of applying a threshold to distinguish between informative and uninformative viewpoints

will be tested, by observing the belief distributions resulting from recognition from di�erent

viewpoints. Also, Sequential recognition experiments will be performed. Finally, the ability

of the system to recognize parts of articulated models from single viewpoints will be assessed.

E�ects of applying an external threshold to eliminate uninformative viewpoint hypotheses

will be seen as well.
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Measured Model Belief in Block Belief in Round Block

Unnormalized Binarized Unnormalized Binarized

0.2 1 0 0

0.007 1 0 0

2.0�10�13 1 5.8�10�6 1

3.4�10�13 1 0.002 1

0 0 0 0

0 0 0 0

Above are the two reference models: a block and a rounded block. In the left column of the table are the
models of the block measured from informative (�rst pair), ambiguous (middle pair) and undetermined
(last pair) viewpoints. To their right, one can �nd the unnormalized, and binarized (threshold of 10�13)
belief distributions obtained when attempting to recognize each of the measured models.

Figure 6.2. Informative, ambiguous, and undetermined States for the Block.
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3. INCREMENTAL RECOGNITION

View Angle Measured Model Belief in Block Belief in Round Block

Unnormalized Binarized Unnormalized Binarized

0� 2.0�10�13 1 5.8�10�6 1

40� 0 0 0 0

80� 0.2 1 0 0

120� 0.03 1 0 0

160� 0 0 0 0

200� 0.1 1 0 0

240� 0 0 0 0

280� 0.03 1 0 0

320� 0.001 1 0 0

Final Score 6 1

Displayed above are the 9 models resulting from sequentially measuring the square block at 40� increments. From
left to right, one can see the viewing angle, the measuredmodel, the unnormalizedand binarized (threshold of 10�13)
belief distribution resulting from attempting to recognize each of the measured models. The �nal distribution is
the histogram of the binarized distributions.

Figure 6.3. Incremental recognition of a block.
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CHAPTER 7

Experimentation and Results

1. Introduction

In the previous chapters, we have introduced the inverse theory, and indicated how it

can be used within the context of a part recognition problem. As well, we have illustrated

how the results can be used to assess the quality of the information from a particular

viewpoint, and an incremental recognition scheme was proposed. Solutions to problems

with the superellipsoid model were presented in order to be able to use this volumetric

model as an object descriptor for recognition.

In order to test the proposed methodology on real objects, several experiments are

performed. Section 2 begins with the description of the system used to acquire the object

descriptions. Section 3 describes the �rst set of experiments which tested the algorithm on

several single part objects. Maximum likelihood (or Winner-takes-all) schemes were tested

on models �t to data acquired all around the object (complete or 3D data). In addition,

the tests were performed on models generated by data acquired from one viewpoint only

(partial or 2D data). The results of these tests indicated the possibility of distinguishing

between informative and uninformative viewpoints by application of an external threshold.

Experiments using an incremental recognition scheme were performed, whereby evidence

in the form of belief distributions was accumulated from di�erent viewpoints sequentially.

Finally, in Section 4, both single-view and incremental recognition of parts of articulated

models was tested. This provided the basis for a multiple-part object recognition strategy.

2. System Overview

Throughout the experiments, object representations were created through the bottom-

up system developed by the 3D Vision Group at CIM. In the system we have constructed, ar-

ticulated, volumetric models are created by successive probes of a laser-range�nder through

a process of autonomous exploration (Whaite & Ferrie 1991, Whaite & Ferrie 1993b, Whaite
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& Ferrie 1994). The owchart for the bottom-up stages for the pencil sharpener can be found

in Figure 7.1. It corresponds to the classical model of bottom-up vision in which sensor

data are transformed into various levels of representation though successive stages of pro-

cessing (Ferrie & Lagarde 1989). The additional feature is the inclusion of feedback from

the �tting procedure, which is used to determine the new gaze position that will reduce

model uncertainty. Because object recognition represents the highest level of processing, it

relies not only on its discriminating power, but on all the lower level processes that con-

tribute to the stability and accuracy of the object representation needed for recognition.

This section will describe the system that generated the volumetric models used by the

recognition scheme.

2.1. Data Acquisition. Objects are scanned using a 2-axis laser range�nder

mounted on the end of an inverted PUMA robot arm. The scanner is capable of scan-

ning at a range of 1 meter (Soucy & Ferrie 1992). Its �eld of view is approximately 40�

in the x direction, and 28� in the y direction. Each of these spans can be divided into at

most 256 positions. The precision of the scanner is approximately 1 mm at a distance of 1

meter, and improves non-linearly as the distance decreases. In the experiments described,

the density of scanning is such that each pixel of an 85� 85 pixel2 image represents 3mm2.

In order to obtain calibrated data, i.e. real x, y, and z coordinates in the camera frame

(in mm), a calibration procedure is applied. Here, look-up tables are created, providing the

translation from points in the image to the x and y coordinates in the camera frame.

In addition, a set of precision stages, controlled by stepper motors, is used to expose

di�erent faces of the object to the laser range�nder. The rotary table permits four degrees

of freedom (two rotations, and two translations). The theoretical precision obtained is

approximately 79 steps per mm in displacement in x and in y, 100 steps per degree for the

rotation about the z � axis and 0.56 step per degree for the rotation about the x � axis.

However in reality, the precision is slightly lower if one were to take into account the

mechanical play of the gears (i.e. backlash).

Using this set-up, di�erent views of an object are obtained by keeping the scanner �xed

and by moving the stages to which the object is attached. The data acquisition set-up can

be seen in Figure 7.2. An example illustrating the data lines resulting from using the set-up

to scan the pencil sharpener can be seen in Figure 7.1a.

2.2. Surface Reconstruction. The purpose of this stage is to transform the discrete

range data into piecewise smooth representations of the surface (Ferrie, Mathur & Soucy
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Fit volumetric

models to parts

Reconstruct and

segment into

parts

Acquire range

data

Compute

uncertainties

Autonomous

Exploration

Compute new

gaze position

a

c

d

b

e

Here we see the classical bottom-up strategy used to obtain a parametric model of an object in the scene.
Notice that the loop is closed with the addition of feedback which uses the parametric uncertainty to
choose a new gaze position that will reduce model ambiguity. The process is referred to as autonomous

exploration. See text for details.

Figure 7.1. Flowchart of the bottom-up system.
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The set-up includes a laser range�nder mounted on the end-e�ector of an inverted PUMA manipulator.
The object itself is placed on a rotary table, permitting four DOFs.

Figure 7.2. Set-up used to scan objects.

1993). It consists of a di�usion algorithm based on surface curvature properties. The

e�ect of the operator is to remove noise and to smooth out convex surface regions. Points

along a boundary, marked by negative local minima and concave discontinuities are left

undisturbed. The di�usion algorithm results in bringing out the convex surface patches in

the image (Ferrie, Lagarde & Whaite 1993, Lagarde 1989, Lejeune & Ferrie 1993).

2.3. Part Decomposition. The reconstructed surface is segmented into regions cor-

responding to object parts. This is done by growing the labelled surface regions until they

reach the previously labelled boundary points. Regions are merged using a relaxation la-

belling network that ensures resulting boundary contours that are consistent with prede�ned

boundary points (Ferrie, Lagarde & Whaite 1993, Lagarde 1989, Lejeune & Ferrie 1993).

Figure 7.1b illustrates the surface patches resulting from reconstructing and segmenting

the surface of the sharpener. The di�erent colors refer to di�erent part regions.
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2.4. Data Fusion. If data are acquired from various viewing positions, they are

merged using a scheme which calculates the correspondence between surfaces from neigh-

bouring views. The motion parameters between views are calculated under the assumption

that curvature is preserved. In this fashion, local motion estimates map data points from

one frame to another. In order to constrain the local match, global motion consistency is

enforced, where variations in velocity between frames are assumed to be piecewise-smooth.

Therefore, choosing the motion parameters becomes a minimization problem, where the dif-

ferences in relative position and orientation between points are minimized. In this fashion,

the algorithm is tolerant of local errors in correspondence. In addition, it serves to smooth

out local noise, and blend neighbouring surface patches (Soucy & Ferrie 1992, Soucy 1992).

2.5. Volumetric Modelling. At the highest level of abstraction, a volumetric model

is �t to each part region. Descriptors of this nature provide the basis for the characterization

of uncertainty. As well they maintain correspondence at the part level. Most importantly,

they describe general shape properties, which is useful for the recognition task.

For the purposes of this thesis, the model chosen was the superellipsoid model (Solina

& Bajcsy 1990). Calculating the parameters a is performed using an iterative, least squares

minimization technique, the Levenburg-Marquardt algorithm (Luenberger 1984, Press,

Flannery, Teukolsky & Vetterling 1988, Whaite & Ferrie 1991). Here, a metric D(x; a)

is de�ned that measures the distance between each data point x and the superellipsoid

surface described by the parameters a. From an initial guess, the parameters are changed

incrementally in a steepest descent manner to minimize the squared sum

�2(a) =
NX
i=1

D2(xi; a)

�2i
(30)

of the metric over all data points. Each distance is weighted by its error, �2i , in order to

increase the importance of the low error terms. The procedure iterates until there is a

negligeable improvement in the squared error. Currently, the �ve superellipsoid parameters

describing object size and shape, as well as their associated covariances, are used as part

descriptors for object recognition.

Figure 7.1c illustrates the results of �tting superellipsoid models to each of the part

regions in Figure 7.1b.

2.6. Feedback. Because of the noise in the model, and because the data are often

incompletely sampled, e.g. only one side of the model is visible from a single viewpoint, the

parameters will often be under-constrained and exhibit large estimation errors. In order to
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reduce the error, the system calculates a new gaze position where additional data can be

collected. This is accomplished by using the estimated model as a predictor of the surfaces in

the scene. The error is quanti�ed in terms of an interval around each point on the predicted

surface. We refer to this interval as the surface prediction error interval, which refers to

an \error bar" protruding from a point on the estimated model's surface. The interval is

coded such that \hotter" colors (such as yellow, or red) represent higher uncertainty in

surface positions as predicted by the model. Figure 7.1d illustrates this color coding for the

sharpener. The resulting prediction can extend beyond the visible surfaces and can thus

serve as a basis for planning the next gaze direction. This is accomplished by directing the

scanner to the viewpoint corresponding to the highest uncertainty of prediction. This can

be seen in Figure 7.1e, where the scanner is moved to the back of the sharpener where the

uncertainty is greatest. It has been shown that updating the model parameters with the

additional data obtained from the new view will minimize the determinant of the parameter

covariances. This process is referred to as autonomous exploration (Whaite & Ferrie 1991,

Whaite & Ferrie 1993b, Whaite & Ferrie 1993c, Whaite & Ferrie 1994).

3. Single-Part Object Recognition

Having established the means to obtain object descriptions, the purpose of the �rst set

of experiments was to test the recognition procedure on a series of real objects. In order

to focus on this task, and to ensure results that were free of errors from the segmentation

process, these experiments included only single-part objects1. Several experiments were

performed. The �rst tested the ability of the system to recognize based on complete,

3D information. The second set tested the more practical problem of recognition from

single viewpoints. Here, the system's ability to distinguish informative from uninformative

viewpoints was assessed, by application of an external threshold. Finally, an incremental

recognition scheme was invoked.

With this in mind, six objects were chosen for these experiments: two spheres

(rad = 20mm; rad = 25mm), a block, a cylinder, a lemon, and a block with rounded edges.

The objects were selected because they consisted of single parts that conformed well to

superellipsoids. They varied in size and shape, so as not to be clustered together too tightly

in �ve-dimensional feature space. However, their distributions overlapped su�ciently in

several dimensions so that the recognition procedure was challenged in its discrimination

task.

1In Section 4, we will examine the capabilities of the system in recognizing parts of articulated models.
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3. SINGLE-PART OBJECT RECOGNITION

BS B C L SS RB
Displayed above are the reference objects that result from training on complete surface data: a big sphere (BS), a
block (B), a cylinder (C), a lemon (L), a smaller sphere (SS), and a rounded block (RB). Below, the same models
are shaded according to the projection of parameter uncertainties into 3D space. White reects large uncertainties,
and black indicates parameters that are tightly constrained. For example, the light face of the block shows that the
y size parameter is more uncertain than the x.

Figure 7.3. Six representatives that result from training.

Training (see Section 2) automatically produced object class representatives, by mea-

suring the object numerous times. Each individual model was created by scanning the

object from several views using a laser range-�nder, then a superellipsoid model was �t to

the data, and the resulting parameters stored (see previous section). For the purposes of

creating a stable database for recognition, it was established that three views of each object,

120� apart were su�cient to constrain the �tting procedure. Each sample was scanned from

a random scanning position, producing 24 samples of each object. Figure 7.3 illustrates

the six representative models of each object that result from training.

For all the experiments, the model of the unidenti�ed object was created using the

bottom-up system described in the previous section. Whether data were collected from

one view or from several views, in order to use the resulting superellipsoid model as a

descriptor for recognition, the system had to calculate the six possible equivalence classes

corresponding to it (as discussed in Chapter 5). These parameter sets were incorporated

into the overall model by representing the object with a multi-modal distribution. During

the matching stage, the system then chose the representation from the equivalence class

that had the highest belief in one of the reference models.

3.1. Matching Using Complete Information. In the �rst experiment, recogni-

tion was performed using an unknown model computed from a sequence of views covering
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3. SINGLE-PART OBJECT RECOGNITION

the visible surfaces of an unknown object. The intent of this experiment was to validate the

recognition procedure against models produced by the autonomous exploration process on

running to completion (Whaite & Ferrie 1991). Twenty-four samples of each object, each

scanned from three di�erent viewpoints, were presented to test the invariance of recognition

against variations in sampling and viewpoint. Using maximum likelihood as the basis for

recognition, i.e. choosing the model with the highest con�dence value, the results shown in

Figure 7.4 were obtained.

BS B C L SS RB

5

10

15

20

Undetermined

Incorrect

Correct

Number of Trials

Figure 7.4. Matching samples taken from multiple viewpoints.

The results indicate that the system can successfully recognize an instance of any object

in the database with perfect results, provided that its surfaces are accessible, independently

of viewpoint and sampling order. In addition, the identi�cations are made with a high

degree of certainty. This is to be expected given that the probability density functions

of each of the unidenti�ed objects exhibit small variations in parameter space due to the

relatively complete information available. Training produces reference models that are also

\delta-like"and well separated from each other. The distribution of the unidenti�ed object

would necessarily overlap that of the correct reference model much more than the others.

Examples of the non-normalized belief distributions of the lemon and block can be found

in Table 1.

Examination of the resultant beliefs shows that complete information allows the system

to correctly identify objects with a high degree of certainty. The high beliefs reect the fact

that both the measurement distributions and the reference model distributions are \delta-

like" and close together.

3.2. Matching Using Partial Information. Since complete information is not

always available (and potentially expensive to acquire), a more realistic test would be to

determine the parameters of an unknown model from partial information. In the limit this

would consist of attempting to base recognition on data acquired from a single viewpoint

and would clearly violate the multiple-view assumptions implicit in the training process.
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Trial BS B C L SS RB

1 0 0 0 5:11 0 0

2 0 0 0 6:53 0 0

3 0 0 0 12:66 0 0

4 0 0 0 70:70 0 0

5 0 0 0 42:32 0 0

6 0 0 0 27:13 0 0

a) Belief distributions of the lemon

Trial BS B C L SS RB

1 0 6:09 0 0 0 0

2 0 6:24 0 0 0 0

3 0 9:87 0 0 0 0

4 0 1:58 0 0 0 0

5 0 15:21 0 0 0 0

6 0 11:67 0 0 0 0

b) Belief distributions of the block

Table 1. Results of several iterations of recognition of a)lemon and b)block viewed
from multiple viewpoints.

Furthermore, it has been shown elsewhere that the resulting model parameters would be

inherently less stable (Whaite & Ferrie 1991). However, should the procedure still retain

some of its earlier selectivity | as evidenced by a low degree of false positive matches

| then an incremental recognition procedure becomes a possibility. This would involve

accumulating evidence from the belief distributions of sequential viewpoints until a clear

winner emerges.

In this second set of experiments, recognition was performed on thirty-six single-view

samples of each object. Here, data were collected at 40� intervals along 4 di�erent great

circle routes. The same methodology as in the �rst experiment was applied in the recognition

of the unknown model parameters. The results obtained are shown in Figure 7.5.

As expected, recognition based on partial information is less certain than in the previous

case where the complete surfaces of the unknown object were accessible. Here, undetermined

states exist in situations where the unnormalized values of the posterior probability density
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BS B C L SS RB
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Figure 7.5. Matching samples taken from single viewpoints.

functions are extremely low (on the order of 10�60). Due to numerical underow, the

procedure produces beliefs of zero for each of the reference models. We refer to viewpoints

such as these, that do not tell us much about the object's identity, as uninformative (see

Chapter 6).

In the top boxes are the square block and rounded block reference models. Below these are four di�erent attempts
at recognizing the square block from di�erent viewing positions. In each case the model is compared to the each
of the six references in turn, and beliefs in each are computed. Above each model one can see the result of running
a maximum likelihood algorithm on the results. C indicates a correct recognition, ??? indicates an undetermined
state, and XXX refers to a false recognition. Here, the system identi�es the square block as being the rounded one.
The objects are shaded according to their uncertainties (see �gure 7.3).

Figure 7.6. Examples of recognition of the block from single views.

Figure 7.6 shows some speci�c examples of recognition attempts on the block from dif-

ferent viewing positions. In the �rst two cases, the procedure correctly identi�ed the objects

as corresponding to the block despite wide uctuations in their size parameters. This is due

to the fact that the models encompass the uncertainties corresponding to these parameters
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in their representations. The reference model also learned of these possible variations during

training, incorporating them into its representation. Therefore, the distributions were close

enough to that of the reference block to make a correct identi�cation. This reinforces the

hypothesis that objects need not be represented by extremely accurate descriptions. Rough

size and shape representations are su�cient as long as the reference object has learned

about these possible uctuations in the training stage.

In the third case, the system could not identify the object as being any of the known

models. In this case, this model does not visually resemble any of the references in size or

shape. This is a situation where there is insu�cient data from that viewpoint to produce a

good model of the object. Further sampling of the object should provide better results.

In the �nal case, the system incorrectly identi�ed the block as being the rounded block.

(As well, the model is visually closer to the rounded block.) The reason for the match is

that, although the reference block is not very certain about all of its size parameters, as

indicated by the white shading on its sides, it is quite certain about its shape parameters.

This is indicated by the black shading around the block reference model's edges. Therefore,

measurements that are rounded in shape do not su�ciently overlap in its distribution. In

this case, despite the high uncertainty in the parameters of the unknown model (causing its

distribution to be quite at), there was su�cient overlap in the distribution of the reference

rounded block to cause a false identi�cation.

Table 2 shows the belief distributions resulting from incremental attempts at recogniz-

ing the lemon and the block. The data were collected from single views at 40� intervals in

an equatorial plane. One can see that the beliefs are considerably weaker than in Table 1

where complete information was used. The �rst iteration in the recognition of the block

produced a false-positive identi�cation. In this case, the system identi�ed the block as

being the rounded block, despite the fact that the resulting distribution overlapped with

the distribution of the reference block as well. The belief in both models was quite low,

indicating that the system is quite uncertain about the identi�cation. In fact, in many

cases, a false-positive identi�cation is associated with low beliefs. This suggests that if the

threshold for undetermined states were raised, the incorrect identi�cations would become

undetermined states.

In order to justify raising this threshold, the beliefs resulting from the experiment

described above were plotted on a logarithmic scale graph. The expectation in observing

these results was that the scatter of the beliefs was bi-modal. This would imply that

a distinct separation between informative and uninformative cases exists, permitting the
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Viewpoint BS B C L SS RB

0� 0 0 0 2.97�10�21 0 0

40� 0 0 0 6.93�10�15 0 0

80� 0 0 0 0.18 0 0

120� 0 0 0 2.44�10�5 0 0

160� 0 0 0 8.07�10�3 0 0

200� 0 0 0 3.38�10�4 0 0

240� 0 0 0 1.10�10�16 0 0

280� 0 0 0 0.31 0 0

a) Belief distributions of the lemon

Viewpoint BS B C L SS RB

0� 0 4.00�10�13 0 0 0 1.16�10�5
40� 0 0 0 0 0 0

80� 0 0.33 0 0 0 0

120� 0 0.05 0 0 0 0

160� 0 0 0 0 0 0

200� 0 0.21 0 0 0 0

240� 0 0 0 0 0 0

280� 0 0.05 0 0 0 0

b) Belief distributions of the block

Displayed above are the �rst six attempts at successively recognizing the block at 40� increments. Shading is in
accordance with parameter uncertainties (see �gure 7.3). The results of running a maximum likelihood algorithm
are found above each box (see �gure 7.6).

Table 2. Results of incremental recognition of a)lemon and b)block viewed from
40� single viewpoints.
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application of a threshold to distinguish between the two. The results can be found in the

plot in Figure 7.7.

Big Sphere Block Cylinder Lemon Small Sphere Round Block
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0
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Log Belief

Round Block

Small Sphere

Lemon

Cylinder

Block

Big Sphere

True Parts

Above are the results from attempting to recognize 36 di�erent single-view samples of each of the models in the
database. The beliefs in the di�erent models are represented by di�erent symbols, each symbol indicating the
true model used during that trial.
The level of numerical underow of the system is represented by a "U" on the y � axis. Because so many

trials fall into this category they are marked with a simple point, except when the belief is for the true model
used in the trial.
By observing the log of the beliefs, one can see the bi-modality in the results.

Figure 7.7. Log of beliefs in the Big Sphere, Block, Cylinder, Lemon, Small
Sphere, and Round Block.

The results illustrate a clustering e�ect in the beliefs. The �rst large cluster indicates

that the highest degree of con�dence lies in the correct model hypotheses. Beneath this

group, is a scatter of beliefs in the incorrect model. The degree of evidence of these hy-

potheses varies from model to model. This second large cluster occurs for beliefs in models

that lie below the numerical precision of the system (denoted the \U" level). The distinct

bi-modality of the results justi�es the application of an external threshold di�erentiating

between the high con�dence informative views and the low con�dence uninformative views.

In addition, they indicate that the value of this threshold is not critical. For example, for

the Big Sphere model, the cuto� point can lie anywhere from 10�5 to 10�60 (above the \U"

level). However, the desire is to choose this threshold so as to eliminate the majority of

false positive cases. Although the plot does not illustrate the maximum likelihood results,

making it impossible to tell where false positive indications occur, one can see that by plac-

ing the cuto� above the scatter of incorrect hypotheses, one can ensure a minimal amount

of incorrect maximum likelihood indications. Furthermore, one can see from the results
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that one does not necessarily need to choose a universal threshold level for all the models.

By examining the di�erence in the Big Sphere and the Rounded Block distributions, one

can see that choosing individual cuto� levels would render the results more accurate. For

maximal e�ciency, these levels can be computed o�-line prior to experimentation, and then

used in the recognition stage.

For the purposes of testing the hypothesis that an external cuto� would divide the re-

sults into informative and uninformative cases (and eliminate the majority of false-positive

cases), the threshold for undetermined states was uniformly raised to 0.00001. Figure 7.8

shows the results of imposing this threshold on the belief distributions. One can see that all

but one incorrect state (B) has become undetermined. However, several correct identi�ca-

tions have become undetermined as well. This is to be expected since setting this threshold

causes all uncertain identi�cations to be removed. We therefore make the empirical obser-

vation that, by raising the threshold, states that are not undetermined are accompanied by

a high accuracy in recognition.
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Figure 7.8. Matching samples taken from a single viewpoint while imposing a
threshold of 0.00001.

3.3. Incremental Recognition. The described experiments suggest the possibility

of an incremental recognition procedure. It is based on the following observations obtained

empirically over successive trials:

i) Viewpoints that provide very little information, or uninformative views, generally

can be detected by their low con�dence levels (beliefs). Because of the bi-modality

of the belief spread, these can be discovered by application of a threshold. Detection

of such events is a clear indicator that further sampling is required.

ii) Informative views are generally accompanied by high beliefs, but with the possibility

of a false-positive indication. These can also be detected by threshold application.

iii) The likelihood of successive false-positive indications is very small. First, this is a

consequence of the high selectivity of the reference distributions which result in low

frequencies of false-positive indications in the �rst place (e.g. Figure 7.8). Second,
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it is unusual for observer motion to result in similar viewpoints in two successive

views (general position assumption).

To illustrate these observations by example, Table 2 shows a sequence of single-view

recognition attempts, corresponding to the �rst 6 entries in the second half of the table.

Iteration 1 is inconclusive, the object is either a square or rounded block (However the

results of running a maximum likelihood algorithm indicate that the object is a rounded

block). In iterations 2 and 5 the object is undetermined. Iterations 3, 4, and 6, on the other

hand, consistently support the correct classi�cation of the unknown object as the square

block.

To explore the possibility of an incremental scheme, an experiment was performed

whereby evidence from single-views was accumulated. The method described in Chapter 6

was employed, whereby the system binarized the beliefs above the prede�ned threshold at

each view. Evidence at each stage was computed by histogramming the binarized beliefs

accumulated thus far. Table 3 displays the result of accumulating evidence after 36 single-

view iterations. Table 3a illustrates the results when the zero states were established by

the numerical limitations of the system, whereas in b, a threshold of 0.00001 was imposed

externally. One can see from these results that, after several iterations, choosing a winner

based on a maximum likelihood scheme on the accumulated beliefs gave the correct answer in

all cases. The false-positive cases became insigni�cant due to insu�cient evidence. In fact,

Table 3b illustrates that hardly any evidence in incorrect models remained after applying

the threshold of 0.00001. However, in the case of the rounded block, the majority of the

evidence in the correct model was also eliminated, indicating that perhaps this choice of

threshold was too high in this case. Its belief values were, in fact, signi�cantly lower than

the rest of the objects. In these cases, this choice of threshold seems to be appropriate in

that it removes the false-positive cases, while maintaining a high degree of con�dence in the

correct hypotheses. This justi�es using independent threshold levels for each of the models

in the database.

4. Multiple-Part Object Recognition

We have shown that recognition of single-part objects based on partial information

retains some of the selectivity of systems based on complete information. However, these

objects are less complex than most found in the real world, so we are interested in the natural

extension to recognizing objects that consist of several articulated parts. Our current focus

is \recognition by parts", whereby measured objects are segmented into their constituent
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BS B C L SS RB

BS 36 0 0 0 13 0

B 0 28 0 0 0 3

C 1 1 33 1 1 0

L 0 0 0 36 0 0

SS 0 0 0 0 36 0

RB 0 0 0 0 0 18

a) Threshold = computational underow

BS B C L SS RB

BS 36 0 0 0 0 0

B 0 21 0 0 0 1

C 0 0 26 0 0 0

L 0 0 0 20 0 0

SS 0 0 0 0 21 0

RB 0 0 0 0 0 1

b) Threshold = 0.00001

Displayed above are the tables describing the accumulation of evidence from 36 single-view experiments. Each row
describes the histogram of the binarized belief distributions for a particular measured model. The columns refer to
the reference models. Zero values are de�ned by a) numerical underow of system and b) a threshold of 0.00001.

Table 3. Histogram of binarized belief distributions after single-view iterations.

parts, each of which is compared to the parts in the database. The task of recognizing

these parts is much more challenging than recognizing single-part objects due to problems

of self-occlusion and segmentation. Objects are seen as collections of independent parts,

where topological relationships are not yet considered in this thesis2.

A toy potato-head consisting of two ears, two eyes, a nose and a head was chosen for the

purposes of testing the part recognition algorithm on complex objects. In order to scan the

object from all possible viewing positions, the head was scanned as described in Section 2.

A picture of the set-up used to scan the head is found in Figure 7.2.

Figure 7.9a displays the actual potato-head toy used in the experiment. Most of con-

stituent parts conformed well to non-deformable superellipsoid models, with the exception of

the head whose shape was tapered. The potato-head toy was chosen because its parts were

2Recognition strategies that take topology into account are currently being investigated.

68



4. MULTIPLE-PART OBJECT RECOGNITION

a) Original potato-head toy.

b) Reference potato-head model created by training.

Figure 7.9. Potato-head: a) real object and b) reference model.

similar to each other as well as to the reference spheres making discrimination a challenging

task.

Ten samples of the potato-head were used in the training procedure. Each sample was

produced by scanning the object from several viewpoints in an exploration sequence. The

reference model resulting from training can be found in Figure 7.9b.

4.1. Matching Using Partial Information. Since the more interesting task is

to recognize an object with only partial information available, an experiment was devised

whereby the potato-head was measured from 32 independent viewing positions. Recognition

was performed on each of these samples in turn, using a database consisting of the parts of

the potato-head as well as the single-part reference models used earlier as distractors. The

results of the using maximum likelihood on the beliefs can be seen in Figure 7.10.

The results indicate that the system was able to successfully recognize instances of

articulated parts of a complex object with only partial information available. The system

was able to maintain its selectivity even with very little information available from single

viewpoints, compounded by the added e�ects of self-occlusion. In fact, even with complete
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H N ERL ERR EYL EYR

2.5

5

7.5

10

12.5

15

Undetermined

Incorrect

Correct

Number of Trials

Displayed above are the tables describing the belief distributions of the potato-head measured from single view-
points. The parts of the potato-head are: a head (H), a nose (N), a left ear (ERL), a right ear (ERR), a left eye
(EYL), and a right eye (EYR). Here, identifying one eye as the other, or one ear as the other was considered to be
a correct identi�cation. Zero values are de�ned by the numerical underow of system.

Figure 7.10. Matching samples of the potato-head taken from single viewpoints.

data gathered from all around the object surface, most parts were embedded within oth-

ers and thus part of their surfaces were not visible. The results were models that were

unconstrained in several directions. This caused the reference parts to be created without

complete information. Therefore training no longer ensured models with parameters that

were close to the true values. This added to the di�culty of the recognition task.

For the purposes of the maximum likelihood experiments, the left and right eyes were

considered to be two instances of the same object. The same applied to the ears. This

is because a \recognition by parts" strategy considers objects that are identical in size

and shape to be the same model, as is the case with the eyes and ears of the potato-

head. In future research, when topological relationships will be included into a solution for

recognition of complex objects, di�erent instances of the same part will be distinguished by

position and orientation.

The results show a high number of undetermined states for the head. This is because

the head is tapered, breaking the assumption that the objects can in fact be accurately

modeled by non-deformable superellipsoids. Di�erent single-view samples of the head pro-

duce very di�erent superellipsoids depending on where the data were collected from. Similar

to the problem caused by self-occlusion, the reference head was described by one partic-

ular superellipsoid, whose parameters were tightly constrained (due to the fact that data

were gathered all around the object to create each sample used in training). In the cur-

rent scheme, the reference description did not encompass all possible superellipsoid models

describing the tapered part. Therefore other equally viable descriptions that result from

single view measurements were not recognized correctly. This lead to undetermined states.

Other potential problems occur because the recognition process relies heavily on the

accuracy of the segmentation process. Because of this, errors in the segmentation of the
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range data can lead to errors in recognition. In these experiments, there were several cases

where the head was divided into two distinct parts: a \head" and a \cap". Because the

database allowed for only one part for the head, the system identi�ed the cap part as being

as lemon or some other reference model. This was understandable as the cap was similar

in size and shape to these models.

However, most of the incorrect states arose due to the similarity of the reference models.

For example, the eyes resembled the smaller sphere, the nose and the ears. Similarly,

the ears were extremely close to the bigger sphere in size and shape. As a result, their

distributions overlapped signi�cantly, making it di�cult to distinguish between them. Yet,

in the majority of cases, these incorrect identi�cations occurred with low beliefs. This

lead to the hypothesis that that most of these states actually arose from uninformative

viewpoints, and could be eliminated by raising the threshold for undetermined states.

In order to justify application of an external threshold to distinguish between unin-

formative and informative viewpoints, the beliefs in the potato-head parts as well as the

beliefs in the single-part objects were plotted on a logarithmic scale graph. Once again,

a bi-modal distribution was anticipated, whereby a clear division between the informative

and uninformative states would permit the use of a threshold to distinguish between the

two. The results can be found in Figure 7.11.

As hypothesized, the results indicate a bi-modal distribution for the beliefs in the

potato-head parts. For each of these parts, there lay a top cluster, representing relatively

high beliefs in the correct models. Beneath this, a thin scatter of beliefs in other models can

be seen. Finally, the bottom cluster occurred for those beliefs that were below the numerical

precision of the system (producing zero beliefs). However, the majority of the beliefs were

concentrated in the the top cluster illustrating that, most of the time, the system had high

con�dence in the correct part. However, some scattered beliefs in the single-part distractors

occurred as well. It is important to note that the majority of these cases lay below the top

cluster of correct identi�cations, indicating that by application of a threshold anywhere

from 10�10 to 10�5 should eliminate the majority of the false-positive cases. Once again,

the exact value of the cuto� level is not critical. Figure 7.11 illustrates the results that

can be achieved by applying a threshold of 10�5. This would lead to minimal false-positive

indications accompanying a high number of correct votes. The case of the head, however,

emphasizes the possibility of individual threshold levels for maximal e�ciency. Here, a

much lower threshold would ensure the highest number of correct matches.
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B Bs C L EarL EarR EyeL EyeR Head Nose Rb Ss
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EyeR

EyeL

EarR

EarL

Cap

True Parts

Above are the results from attempting to recognize 32 di�erent single-view samples of each of the parts of the
potato-head: the Left Ear (EarL), Right Ear (EarR), Left Eye (EyeL), Right Eye (EyeR), Head (Head), and
Nose (Nose). The single-part reference models were also included as distractors for the recognition process.
These included the Block (B), Big Sphere (Bs), Cylinder (C), Lemon (L), Round Block (Rb), and Small Sphere
(Ss). (For an explanation of the plot, see Figure 7.7).
One can see the bi-modality in the log of the beliefs in the potato-head models. The beliefs in the distractors

appear much more scattered, the majority lying beneath the top cluster of the potato-head parts. The top
horizontal line indicates the results achieved by applying a threshold of 10�5. This would lead to minimal
false-positive indications accompanying a high number of correct votes.

Figure 7.11. Log of beliefs in the Potato-Head parts, as well as the Big Sphere,
Block, Cylinder, Lemon, Small Sphere, and Round Block.

To investigate that the hypothesis that an external cuto� can divide the results into

informative and uninformative states, and remove the majority of incorrect identi�cations,

the cuto� point was raised to 0.00001. The results are shown in Figure 7.12. On can

see that, in the most of cases, the external threshold retained most of the correct states,

con�rming that the system had high con�dence in the correct identi�cations. The exception

was the case of the head, where low beliefs caused almost all of the correct identi�cations

to become undetermined states.

H N ERL ERR EYL EYR

5

10

15

20

25

30

Undetermined

Incorrect

Correct

Number of Trials

Figure 7.12. Matching samples of the potato-head model while imposing a thresh-
old of 0.00001.
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H N ERL ERR EYL EYR BS B C L SS RB

H 17 0 1 0 0 0 0 0 0 0 0 0

N 0 20 20 15 20 20 2 2 2 2 10 1

ERL 1 15 25 24 25 15 12 2 2 7 18 1

ERR 1 15 21 21 21 13 16 3 8 13 20 4

EYL 1 16 17 12 17 17 0 1 1 2 4 0

EYR 1 15 15 14 15 15 1 5 3 3 5 0

a) Threshold = computational underow

H N ERL ERR EYL EYR BS B C L SS RB

H 1 0 0 0 0 0 0 0 0 0 0 0

N 0 16 2 0 12 1 0 0 0 0 0 0

ERL 0 1 14 12 0 0 0 0 0 0 0 0

ERR 0 1 9 12 0 1 2 0 0 0 3 0

EYL 0 3 0 0 14 8 0 0 0 0 0 0

EYR 0 3 0 0 13 11 0 0 0 0 0 0

b) Threshold = 0.00001

Table 4. Histogram of binarized belief distributions for the potato-head after 32
single-view iterations (For explanation, see Table 3).

4.2. Incremental Recognition. In order to explore the possibility of an incremen-

tal recognition strategy for complex objects, an experiment was devised whereby evidence

from single-views of the potato-head toy was accumulated. Similar to the single-part ob-

ject case, the belief distributions were binarized at a prede�ned threshold at each viewing

position. At each stage, a histogram of the binarized distributions produced the evidence

accumulated thus far. The results of accumulating evidence after 32 single-views can be

seen in Table 4. In Table 4a, the cuto� point was determined by the numerical precision of

the system. In Table 4b, a threshold of 0.00001 was imposed externally.

Table 4a illustrates that the distributions from single-views were relatively \wide" in

that a measured model produced a degree of belief in several reference models at once. The

result is that, in most cases, the accumulated binarized evidence points to several models

at once. Attempting to choose a single winner after several iterations would therefore be a

di�cult task. The choice would however be limited to a few candidates as some false-positive
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indications have become insigni�cant due to insu�cient evidence. For example, in the case

of the Nose, lack of evidence in the Big Sphere, Block, Cylinder, Lemon and Rounded Block

has caused the belief in these models to become unsubstantiated. The hypothesis was that

the evidence in the true model was so much stronger than the evidence in the other models

that, by raising the threshold to an appropriate value, one could eliminate the majority of

the false indications. The result would be an accumulation of evidence in the true models.

Table 4b validates the hypothesis by illustrating that the majority of the evidence in

the incorrect models were removed after application of the external threshold. In fact, if

one were to choose a winner based on a maximum likelihood scheme of the accumulated

evidence, the results would be correct for all models3. In the case of the head, however, the

majority of the evidence in the correct model was eliminated as well. This indicates the

possibility that the choice of threshold was not appropriate for the head.

The problem of merging the belief distributions from di�erent viewpoints of complex

objects is quite di�cult. The di�culty lies in establishing correspondence between parts

from di�erent views. The problem is much more di�cult than in the single-part object

case which encompassed the strong prior assumption that the object measured does not

change from view to view. This assumption no longer holds, and a theory providing the

correspondence is needed. Methods that provide part correspondence based on geome-

try (Soucy & Ferrie 1992, Soucy 1992) were used for these experiments, however they are

restrictive in that the di�erent viewpoints must be close enough to contain overlapping data.

As well, merging data on the level of geometry is computationally expensive. Therefore,

a new scheme for merging the belief distributions, based on the models themselves, their

associated beliefs, and the relationships between them will be the focus of future research.

We have demonstrated that system is able to recognize parts of articulated objects with

only partial information available. Extension to recognition of multiple-part objects will

involve incorporating topological information into the solution. The rotation and translation

parameters of the superellipsoid models provide this information as they can be used to infer

the distance and angle between the parts. Once belief in each of the parts is established,

graph matching techniques can be employed to calculate the belief in the entire object.

Current work in our lab is concentrated on the solution to this problem.

3We have treated the left and right eyes as being the instances of the same object (similarly for the ears).
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CHAPTER 8

Conclusions

In this thesis, we have presented a new framework for parametric shape recognition based on

a probabilistic model of inverse theory �rst introduced by Tarantola (1987). We have shown

how a Bayesian recognition strategy can be derived automatically by applying the theory

and have demonstrated its implementation in a system for recognizing 3D objects based

on superellipsoid parameters (As well, see Arbel, Whaite & Ferrie 1994b, Arbel, Whaite &

Ferrie 1994a).

Casting the problem into a general inverse theory framework introduces several impor-

tant contributions to the �eld of object recognition. The �rst is that the method explicitly

enumerates all sources of prior knowledge. This way, if conditioning is necessary, the sources

of knowledge are apparent, and can therefore be examined. This is important in that many

recognition systems include implicit, hidden assumptions about the nature of the world. As

a result, these methods may work well in speci�c situations, but cannot be easily modi�ed

to work elsewhere. By representing knowledge as a probability density function, both the

information and the ambiguities associated with them are incorporated into the solution.

This permits the recognition engine to make well-informed decisions. As well, the method is

not dependent on the exact nature of the information, but rather provides a general recipe

for merging any group of contextual priors. Finally, the solution to the inverse problem is

presented in the form of a conditional probability density function. The importance of this

result is that it provides a quali�cation of the assessments made by the recognition proce-

dure. This is vital in that no problem in vision works in complete isolation, but rather must

communicate descriptions of results to external processes. In order to do so, it is important

to inform these processes of the uncertainties in the descriptions as well. Most recognition

schemes do not provide this information. Instead, they make absolute assessments about
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the identity of the unknown object. This provides the external processes with only partial

information, biased to their notion of what constitutes a clear \winner".

We have developed a method of avoiding degeneracies in the superellipsoid represen-

tation, which permits the use of this convenient parametric form without incurring undue

computational overhead. We have determined empirically that there are only a �nite num-

ber of possible equivalence classes for the superellipsoid, and rather than restrict ourselves

to one particular model description, we proposed a method that represents each model by a

multi-modal description encompassing all possible degeneracies. Our current representation

only includes the rotational equivalent forms, but future work will include all possible forms

in the representations.

The experimental results indicate that the strategy is quite robust, not only in situ-

ations where complete surface information is available but also in those cases where it is

only partially accessible. In this and other works (Arbel, Ferrie & Whaite 1994), we have

demonstrated that it is indeed possible to di�erentiate between informative and uninfor-

mative viewpoints, and have shown how the resulting belief distributions can be used to

assess the quality of the interpretation, by assessing the beliefs associated with a particular

set of assertions based on this data. The importance of this result is that it provides a

basis by which an external agent can assess the quality of the information from a particular

viewpoint, and make informed decisions as to what action to take using the data at hand.

The bi-modal nature of the resulting belief distributions have indicated that this can be

easily accomplished by application of an external threshold.

We have also demonstrated that some viewpoints can give rise to ambiguous informa-

tion, where the system has con�dence in more than one hypothesis. Similar to the motiva-

tion behind autonomous exploration in the model-building phase (Whaite & Ferrie 1994),

ambiguous views have spawned the development of an incremental recognition scheme,

where we seek information from a new viewpoint to reduce the overall ambiguity. We

have shown how evidence, in the form of the belief distributions, can be accumulated from

a sequence of views. The experiments have demonstrated that the maximum likelihood

hypothesis is largely viewpoint-invariant, implying that merging votes for the di�erent hy-

potheses over a sequence of views should lead to a clear winner. Because the beliefs are not

normalized, we have given equal weighting to all hypotheses by binarizing the values above

a threshold. We have illustrated that by histogramming the binarized beliefs and picking

the highest score of the result, we choose the correct winner in all cases.
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By qualifying the recognition results, the method provides potential for a wide variety

of applications. For example, an active recognition agent can choose viewpoints that will

maximize the belief distribution associated with an object of interest. We have not speci�ed

how to choose this viewpoint, but the method can be used to determine if the particular

choice leads to a su�cient level of information. Another important application of the

methodology is a strategy for o�-line computation of a pre-computed set of characteristic

views. One can rank these views according to the belief distributions, and then store the n

best views. Prede�ning these views speeds up on-line computations by directing the active

agent's attention to informative viewpoints, thereby reducing the search space of viable

hypotheses. These and other topics are currently under investigation in our laboratory.

Some observations are in order regarding the autonomous explorer, the system used to

automatically generate the database models used for recognition. In the numerous trials

performed during the course of this research we were able to consistently obtain stable para-

metric descriptions of the model database. These were largely independent of viewpoint,

variations in sampling, and the trajectory chosen by the mobile laser scanner. The genera-

tion of stable, salient object models is clearly an essential ingredient in the implementation

of a successful object recognition system. Future work will involve exploration guided by

feedback from the recognition system. This is possible because all sources of knowledge are

made explicit within the framework described. Therefore, the system could actively acquire

information needed to correctly classify the objects.

The system described exhibits a high degree of selectivity in matching object primitives,

paving the way for recognition of articulated objects. Current work includes a scheme for

multiple-part object recognition involving a graph-matching procedure. It is based on the

the work presented in this thesis, which outlines a sound, statistical method for comparing

the nodes. Given its success in discriminating based on partial information, the search-space

for the graph-matching problem should be considerably reduced.

Finally, we conclude by noting that although, in this thesis, we have concentrated

on the problem of recognizing particular parametric models, the general inverse theory

can be used to solve many problems in vision. One such application is the problem of

object classi�cation. Here, rather than represent the database knowledge as a series of

delta functions, one for each prototype in the database, one might represent a database of

classes by a series of normal distributions. The e�ect would be to spread out the database

prototypes from points in parameter space to clouds of points. Another option might be to

represent each class by a sum of delta functions. An example of which may be to include

77



CHAPTER 8. CONCLUSIONS

three possible sizes for each reference model. It is important to note that although these

applications di�er from classical object recognition, they do not involve a change in the

methodology, but rather a modi�cation in the shape of the distributions representing the

sources of knowledge. This type of exibility, made possible because all of the sources of

knowledge are made explicit, is one of the prime advantages of using the general inverse

theory to solve problems in vision.
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APPENDIX A

Combining Normal Distributions

This appendix chapter will present the mathematical details involved in the proof that

the convolution of normal distributions is itself a normal distribution (as was required in

Chapter 4). Section 1 will provide the proof that the convolution of multivariate Gaussian

distributions is itself a multivariate Gaussian distribution. Section 2 will use this result to

show that the integral of the product of two normal distributions (the convolution) is also

a normal distribution.

1. The Convolution of Gaussians

In this section, we wish to illustrate the useful result that the convolution of a multi-

variate Gaussian function (or a normal density function) with another is itself Gaussian.

We will denote a Gaussian function over the space X as

G(x;C) = exp

�
�1
2
xTC�1x)

�
(31)

= exp
�
xTH x

�
where where x is a vector in the n-dimensional vector space X , and C is a linear covariance

operator on the space X (an n � n matrix) . The covariance operator de�nes the spread

or dispersion of the function on the di�erent parameter directions. In matrix form it is

symmetric (CT = C), and positive de�nite. Where convenient we will also use the alternate

form with C�1 = 2H where H is the Hessian of the quadratic form xTH x. H is also

symmetric and positive de�nite (xTH x > 0 for x 6= 0). Let

Ga(x) = exp

�
�1
2
xTC�1

a x

�
= exp

��xTHax
�

and

Gb(x) = exp

�
�1
2
xTC�1

b x

�
= exp

��xTHbx
�
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denote two such Gaussian functions. The convolution of these is de�ned as

(Ga �Gb)(xc) =

Z
X
Ga(xc � x) Gb(x) dx

=

Z
X
exp

�
� �(xc � x)THa(xc � x) + xTHbx

��
dx(32)

=

Z
X
exp (�Q(x)) dx

When expanded, the quadratic exponent is

Q(x) = (xc � x)THa(xc � x) + xTHbx

= xT (Ha +Hb)x� 2(Haxc)
Tx+ xTcHaxc

= xTA x� 2bTx+ c;(33)

where A = Ha + Hb; b = Haxc; and c = xTcHaxc: Note that because Ha and Hb are

symmetric positive de�nite then their sum A its inverse A�1 are as well.

Because A is symmetric, the terms in x can be collected by rewriting the quadratic

form about the location of its minimum x = A�1b, such that

(x�A�1b)TA(x�A�1b) = xTAx� 2(A�1b)TAx+ (A�1b)TA(A�1b)

= xTAx� 2bT (A�1)TAx+ bT (A�1)TAA�1b

= xTAx� 2bTx+ bTA�1b

or that

xTAx� 2bTx = (x�A�1b)TA(x�A�1b)� bTA�1b:(34)

After substituting this into (33), we get that

Q(x) = xTAx� 2bTx+ c

= (x�A�1b)TA(x�A�1b) + c� bTA�1b

= (x�A�1b)TA(x�A�1b) +Qmin:(35)

Expanding the value at the minimum

Qmin = c� bTA�1b

= xTcHaxc � (Haxc)
T (Ha +Hb)

�1(Haxc)

= xTcHaxc � xTc
�
Ha(Ha +Hb)

�1Ha

�
xc

= xTc
�
Ha �Ha(Ha +Hb)

�1Ha

�
xc:
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This can be simpli�ed further by factorizing out Ha on the left and (Ha+Hb)
�1Ha on the

right

Qmin = xTcHa

�
H�1

a (Ha +Hb)� I
�
(Ha +Hb)

�1Haxc

= xTcHa

�
H�1

a Hb

�
(Ha +Hb)

�1Haxc

= xTcHb(Ha +Hb)
�1Haxc

= xTc
�
H�1

a (Ha +Hb)H
�1
b

��1
xc

= xTc
�
H�1

a +H�1
b

��1
xc(36)

With this, the convolution (32) is separable into two Gaussians, only one of which is a

function of x, that is

(Ga �Gb)(xc) =

Z
X
exp
��Q(x)� dx

=

Z
X

exp
�� �(x�A�1b)TA(x�A�1b) +Qmin

��
dx

= exp
��Qmin

� Z
X
exp
��(x�A�1b)TA(x�A�1b)

�
dx:(37)

The integral of the Gaussian over the spaceX has a known solution | that used to normalize

the multivariate normal probability distribution. Let us �rst change variables to y =

x�A�1b, then dx = dy, soZ
X
exp
��(x�A�1b)TA (x�A�1b)

�
dx =

Z
X
exp

�
�1
2
yT (2A)y

�
dy

= (2�)
n
2

��(2A)�1
�� 12

= (2�)
n
2

�j2Aj�1� 12
= (2�)

n
2 j2Ha + 2Hbj�

1

2

= (2�)
n
2

��C�1
a +C�1

b

��� 1

2 :

When it and (36) are substituted into (37), we get that the convolution of two multivariate

Gaussians

(Ga �Gb)(xc) =

s
(2�)n��C�1
a +C�1

b

�� exp

�
�1
2
xTc (Ca +Cb)

�1xc

�

=

s
(2�)n��C�1
a +C�1

b

�� G(xc;Ca +Cb)(38)

is itself a Gaussian where the covariances are summed.
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2. Integral of the Product of Normal Distributions

When integrated the product of two normal distributions is a normal distribution. This

is to be expected as the integral is really the convolution of normalized Gaussians, and as

we have shown in Section 1, this is itself a Gaussian. Because the Gaussians have been

normalized we would expect the convolution to be normalized as well.

As was stated in Chapter 4, a multivariate normal probability density function over

the space X is a normalized Gaussian

N(x� x�;C) =
1p

(2�)n jCj exp
�
�1
2
(x� x�)

TC(x� x�)
�

=
G(x� x�;C)p

(2�)n jCj(39)

centered on the mean value of the distribution x�, and with a dispersion in the various

parameter directions given by the covariances C.

The integral of the product of two normal distributions can be written as the convolu-

tion of twoGaussians. To show this we �rst note from (39) thatG(x�x�;C) = G(x��x;C).
This is simply a consequence of the symmetry of the distribution. Thus we have that

Z
X
N(x� xa;Ca) N(x� xb;Cb) dx =

Z
X

G(x� xa;Ca)p
(2�)n jCaj

G(x� xb;Cb)p
(2�)n jCbj

dx

=

Z
X

G(xa � x;Ca) G(x� xb;Cb)

(2�)n
pjCaj jCbj

dx

After a change of variable y = x�xb, it follows that dy = dx and that this is the convolution

of two Gaussians

=

Z
X

G ((xa � xb)� y;Ca) G(y;Cb)

(2�)n
pjCaj jCbj

dx dy:

=
(Ga �Gb)(xa � xb)
(2�)n

p
jCaj jCbj

:

From (38) with xc = (xa � xb)

Z
X
N(x� xa;Ca) N(x� xb;Cb) dx =

s
(2�)n��C�1
a +C�1

b

��G(xa � xb;Ca +Cb)

(2�)n
pjCaj jCbj

=
G(xa � xb;Ca+Cb)q

(2�)n jCaj jCbj
��C�1

a +C�1
b

�� :(40)

82



2. INTEGRAL OF THE PRODUCT OF NORMAL DISTRIBUTIONS

Using the well known property of determinants that jCaj jCbj = jCaCbj we can reorder

and write that

jCaj jCbj
��C�1

a +C�1
b

�� = ��Ca(C
�1
a +C�1

b )Cb

��
= jCa +Cbj :(41)

After substituting this into (40), we see that that the integral of the product of the two

normal distributions (really the convolution of two normal distributions) isZ
X

N(x� xa;Ca) N(x� xb;Cb) dx =
G(xa � xb;Ca +Cb)p

(2�)n jCa +Cbj
= N(xa � xb;Ca +Cb)

= N(xb � xa;Ca +Cb)(42)

which is also a normal distribution, but where the covariances are summed.
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