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Abstract

We consider the problem of localizing a robot in a known
environment modeled by a simple polygon P . We as-
sume that the robot has a map of P but is placed at an
unknown location. The robot must move around and
use range sensing and a compass to determine its po-
sition (i.e. localize itself). From its initial location, the
robot sees a set of points called the visibility polygon
V of its location. In general, this will not su�ce to
uniquely localize the robot, since the set H of points in
P with visibility polygon V may have more than one
element. To address this di�culty, we combine infor-
mation from multiple vantage points seeking a strategy
that minimizes the distance the robot travels to deter-
mine its exact location. An optimal localization strat-
egy would direct the robot to follow a minimum length
path to verify its location, but this is impossible to com-
pute without a priori knowing which of the hypothetical
locations in H is the true initial location of the robot.

In this paper, we de�ne a natural, algorithmic variant of
the problem of localizing a robot with minimum travel.
We then show this variant is NP-hard. Finally, we give
a polynomial time approximation scheme that causes
the robot to travel a distance of at most k = jHj times
d, where d is the length of a minimum length tour that
would allow the robot to verify its true initial location
by sensing. This is remarkable in view of the fact that
the length d of such a minimum length tour cannot be
determined without a priori knowledge of which hypo-
thetical location in H is the true one, and yet our strat-
egy determines a path whose length is provably within a
factor k of the best possible without using such a priori

knowledge.
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1 Introduction

Numerous mobile robot tasks call for a robot that has
a map of its environment and knowledge of where it is
located in the map. Determining the position of the
robot in the environment is known as the robot localiza-
tion problem. To date, mobile robot research that uses
a map generally assumes either that the position of the
robot is always known, or that it can be estimated using
sensor data acquired by displacing the robot only small
amounts [KMK93, TA92]. However, self-similarities be-
tween separate portions of the environment prevent a
robot that has been dropped into or activated at some
unknown place from uniquely determining its exact lo-
cation without moving around. This motivates a search
for strategies that direct the robot to travel around
its environment and to collect additional sensory data
[BD90, DJMW93] to deduce its exact position.

In this paper, we view the general robot localization
problem as consisting of two phases. The �rst phase is
to determine the set H of hypothetical locations that are
consistent with the sensing data obtained by the robot
at its initial location. The second phase is to determine,
in the case that H contains two or more locations, which
location is the true initial position of the robot; i.e. to
eliminate the incorrect hypotheses. Ideally, for reasons
of speed and accuracy, the robot should travel the mini-
mum distance necessary to determine its exact location.

A solution to the hypothesis generation phase of robot
localization has been given by Guibas, Motwani and
Raghavan in [GMR92], and we describe their results
later. Our paper is concerned with minimizing the dis-
tance traveled in the hypothesis elimination phase of
robot localization. Together, the two papers give a so-
lution to the general robot localization problem.

We show that the problem of localizing a robot with
minimum travel is NP-hard. We then solve the hypoth-
esis elimination phase with what we call a greedy local-
ization strategy. Our strategy causes the robot to travel
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a distance that is bounded above by k = jHj times the
length d of a minimumlength tour that allows the robot
to verify its true initial position by sensing. Such a min-
imum length tour cannot be determined without a pri-

ori knowledge of which hypothetical location in H is the
true one, and yet our strategy determines a tour whose
length is within a factor k of the minimumwithout using
such a priori knowledge.

2 Preliminaries

In this section, we describe our robot model and give
some key de�nitions.

2.1 Assumptions about the robot

� The robot is mobile and moves in a static 2-
dimensional obstacle-free environment. We model
the movement of the robot in the environment by
a point p moving inside and along the boundary of
an n-vertex polygon P positioned somewhere in the
plane.

� The robot has a map of its environment, i.e., it
knows both P and the orientation of P in the plane.

� The robot has a compass and a range sensing de-
vice. It is essential that the robot be able to deter-
mine its orientation (with the compass); otherwise
it cannot determine its exact location in an environ-
ment with non-trivial symmetry such as a square.

� The robot's sensor can detect the orientations of,
and the distances to, those walls for which an unob-
structed straight line can be drawn from its current
location. The observations at a particular location
determine a polygon V of points that the robot can
see from that location. This is analogous to a laser
range sensor or a simple model of sonar sensing.

In order to abstract the sensory interpretation process,
we use a visibility skeleton (de�ned later) that the robot
will compute for its current location, based on its obser-
vations. We use this abstraction because there are only
a �nite number of visibility skeletons for all the points
in P .

2.2 Some de�nitions and an example

Two points in P are visible to each other or see each
other if the straight line segment joining them does not

intersect the exterior of P . The visibility polygon V (p)
for a point p 2 P is the polygon consisting of all points in
P that are visible from p. We denote by V the visibility
polygon of the initial location of the robot. There may
be more than one location in P with visibility polygon
V , so V = V (p) for one or more points p 2 P . The
number of vertices of V is denoted by m. Since the
robot has a compass, we assume the representations of
P and V have a common reference direction.

We break the general problem of localizing a robot into
two phases as follows.

The Robot Localization Problem

Hypothesis Generation: Given P and V , determine
the set H of all points pi 2 P such that the visibility
polygon of pi is exactly V (i.e. V (pi) = V ).

Hypothesis Elimination: Devise a strategy by which
the robot can correctly eliminate all but one hypothesis
from H, thereby determining its exact initial location.
Ideally, the robot should travel a distance as small as
possible.

Consider the example illustrated in Figure 1. The robot
knows the map polygon P of its environment and the
visibility polygon V representing what it can \see" in
the environment from its present location. It also knows
that P and V should be oriented as shown. The black
dot represents the robot's position in the visibility poly-
gon. By examining P and V , the robot can deter-
mine that it is at either point p1 or point p2 in P ,
i.e. H = fp1; p2g. It cannot distinguish between these
two locations because V (p1) = V (p2) = V . However,
by traveling out into the \hallway" and taking another
probe, the robot can determine its location precisely.

P V V(p  ) = V(p  )

p p1 2

21

Figure 1: Given a map polygon P (left) and a visibility
polygon V (center), the robot must determine which of
the 2 possible initial locations p1 and p2 (right) is its
actual location in P .

An optimal strategy for the hypothesis elimination
phase would direct the robot to follow an optimal veri-
�cation tour, de�ned as follows.

De�nition. A veri�cation tour is a tour along which
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a robot that knows its position a priori can travel to
verify this information by probing and then return to
its starting position. An optimal veri�cation tour is a
veri�cation tour of minimum length d.

Since we do not assume a priori knowledge of which
hypothetical location in H is correct, an optimal veri�-
cation tour for the hypothesis elimination phase cannot
be pre-computed. For this reason, we seek an interac-
tive probing strategy to localize the robot. In each step
of such a strategy, the robot sends out range sensors,
receives back the visibility polygon of its present posi-
tion, and from this information decides where to move
next to make another probe. To be precise, the type
of strategy we seek can be represented by a localizing
decision tree, de�ned as follows.

De�nition. A localizing decision tree is a tree consist-
ing of two kinds of nodes and two kinds of weighted
edges. The nodes are either sensing nodes (S-nodes)
or reducing nodes (R-nodes), and the node types alter-
nate along any path from the root to a leaf. Thus tree
edges directed down the tree either join an S-node to
an R-node (SR-edges), or join an R-node to an S-node
(RS-edges).

� Each S-node is associated with a position de�ned
relative to the initial position of the robot. The
robot may be instructed to probe the environment
from this position.

� Each of the R-nodes is associated with a set H0 �
H of hypothetical initial locations that have not yet
been ruled out. The root is an R-node associated
with H, and each leaf is an R-node associated with
a singleton hypothesis set.

� Each SR-edge has weight 0. Such an edge repre-
sents the computation that the robot does to rule
out hypotheses in light of the information gathered
at the S-node end of the edge. An SR-edge does
not represent physical travel by the robot.

� Each RS-edge has an associated path de�ned rel-
ative to the initial location of the robot. This is
the path along which the robot is directed to travel
to reach its next sensing point. The weight of an
RS-edge is the length of its associated path.

Since we want to minimize the distance traveled by the
robot, we de�ne the weighted height of a localizing de-
cision tree as follows.

De�nition. The weight of a root-to-leaf path in a
localizing decision tree is the sum of the weights on the
edges in the path. The weighted height of a localizing

decision tree is the weight of a maximum-weight root-
to-leaf path. An optimal localizing decision tree is a
localizing decision tree of minimum weighted height.

p1

p001

p2

p002

p3

p003

p4

p004

p01 p02

p03 p04

S

R

R R

S

RR

S

R R

Go west d1

Go south d2 Go south d3

fp1; p2; p3; p4g

fp03; p
0

4gfp01; p
0

2g

fp001g fp002g fp004gfp003g

Figure 2: A map polygon and 4 hypothetical locations
fp1; p2; p3; p4g with a localizing decision tree for deter-
mining the true initial position of the robot.

We call a localization strategy that can be associated
with a localizing decision tree a localizing decision tree

strategy. As an example of such a strategy, consider the
map polygon P shown in Figure 2. From the visibil-
ity polygon sensed by the robot at its initial location
it is determined that the set of hypothetical locations
is H = fp1; p2; p3; p4g. Hence the root of the localiz-
ing decision tree (also shown in Figure 2) is associated
withH. In the �gure, the SR-edges are labeled with the
visibility polygons seen by the robot at the S-node end-
points of these edges, and the RS-edges are labeled with
the path the robot should follow. Assuming that north
points straight up, the strategy given by the tree directs
the robot �rst to travel west a distance d1, which is the
distance between p1 and p01. This positions the robot at
one of p01, p

0

2, p
0

3 or p04. The strategy then directs the
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robot to take another probe at its new location. This is
represented by an S-node in the decision tree. Depend-
ing on the outcome of the probe, the robot knows it is
located either at one of fp01; p

0

2g or at one of fp
0

3; p
0

4g. It
then travels south either d2 or d3, to a position just past
the dotted line segment shown in P , and takes another
probe, which determines its unique location in P . The
farthest that the robot must travel to determine its lo-
cation is d1+ d3, so the weighted height of this decision
tree is d1 + d3.

2.3 Previous work

Previous work on robot localization by Guibas, Mot-
wani, and Raghavan in [GMR92] showed how to pre-
process a map polygon P so that given the visibility
polygon V that a robot sees, the set of points in P whose
visible polygon of P is congruent to V , and oriented the
same way, can be returned quickly. Their algorithm pre-
processes P in O(n5 logn) time and O(n5) space, and it
answers queries in O(m+logn+A) time, where n is the
number of vertices of P , m is the number of vertices of
V , and A is the size of the output (the number of places
in P at which the visibility polygon is V ).

Theoretical work has also been done on navigating a
robot in an unknown environment (see [BRS91, PY91]).

3 Hardness of Localization

In this section we show that the problem of constructing
an optimal localizing decision tree, as de�ned in the pre-
vious section, is NP-hard. To do this, we �rst formulate
the problem as a decision problem.

Robot-Localizing Decision Tree (RLDT)

INSTANCE: A simple polygon P and a star-shaped
polygon V , both with a common reference direction,
the set H of all locations pi 2 P such that V (pi) = V ,
and a positive integer h.

QUESTION: Does there exist a localizing decision tree
of weighted height less than or equal to h that localizes a
robot with initial visibility polygon V in the map poly-
gon P , where H is the set of possible initial locations?

We show that this problem is NP-hard by giving a re-
duction from the Abstract Decision Tree problem,
proven NP-complete by Hya�l and Rivest in [HR76].
The Abstract Decision Tree problem is stated as
follows:

Abstract Decision Tree (ADT)

INSTANCE: A set X = fx1; : : : ; xkg of objects, a set
T = fT1; : : : ; Tng of subsets of X representing binary
tests, where test Tj is positive on object xi if xi 2 Tj
and is negative otherwise, and a positive integer h0 � n.

QUESTION: Does there exist an abstract decision tree
of height less than or equal to h0, where the height of a
tree is the maximum number of edges on a path from
the root to a leaf, that can be constructed to identify
the objects in X? Such a decision tree has a binary
test at all internal nodes and an object at every leaf.
To identify an unknown object, the test at the root is
performed on the object, and if it is positive the right
branch is taken, otherwise the left branch is taken. This
procedure is repeated until a leaf is reached, which iden-
ti�es the unknown object.

Theorem 1 RLDT is NP-hard.

Proof: Given an instance of ADT, we create an in-
stance of RLDT as follows. We construct P to be a stair-
case polygon, with a stairstep for each object xi 2 X

(see Figure 3). For each stairstep we construct n = jT j
protrusions, one for each test in T (see Figure 4). If
test Tj is a positive test for object xi, then protrusion
Tj on stairstep xi has an extra hook on its end (such as
T3, T4, and Tn in Figure 4). The length of a protrusion
is denoted by l and the distance between protrusions
T1 and Tn is denoted by d, where d and l are chosen
so that dh0 < l. The vertical piece between adjacent
stairsteps is longer than (2l + d)h0, and the width w

of each stairstep is much smaller than the other mea-
surements. The polygon P has O(nk) vertices, where
n = jT j and k = jXj.

...

x

x

1

2

x k-1

x k

> (2l+d)h’

Figure 3: Construction showing localization is NP-hard

Consider a robot that is initially located at the shaded
circle shown in Figure 4 on one of the k stairsteps.
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In order to determine the hypothetical location corre-
sponding to the true initial location of the robot, we
construct an overlay arrangement A that combines the
k translates Pj .

De�nition. The overlay arrangement A for the map
polygon P corresponding to the set of hypothetical lo-
cations H is obtained by taking the union of the edges
of each translate Pj as well as the visibility edges in the
visibility cell decomposition of Pj.

See Figure 5 for an example of an overlay arrangement.
Since each visibility cell decomposition is created from
O(nr) lines introduced in the interior of Pj, a bound on
the total number of cells in the overlay arrangement as
well as their total complexity is O(k2n2r2), which may
be O(n6). In fact, there are map polygons whose cor-
responding overlay arrangements for certain visibility
polygons have 
(n5) cells.

V(p) = V(q)

q

p

Figure 5: A visibility polygon, a map polygon and the
corresponding overlay arrangement

4.2 The reference point set Q

Each cell in the overlay arrangement A represents a po-
tential probe position, which can be used to distinguish
between di�erent hypothetical locations of the robot.
For each cell C of A and for each translate Pj that con-
tains C, there is an associated visibility skeleton V �

j (C).
If two translates Pi and Pj have di�erent skeletons for
cell C, or if C is outside of exactly one of Pi and Pj,
then C distinguishes hypothetical location pi from pj.

For our localization strategy we choose a set Q of ref-
erence points in A that can be used to distinguish be-
tween di�erent hypothetical locations. For each cell C
in A that lies in at least one translate of P , and for each
translate Pj that contains C, let qC;j denote the point
on the boundary of C that is closest to the origin (recall
that translating P to Pj moves pj to the origin). Here,
the distance dj(qC;j) from the origin to the closest point
in C is measured inside Pj. We choose Q = fqC;jg. In
the remainder of this paper we drop the subscripts from
qC;j when they are not necessary.

Computing the reference points in Q involves comput-

ing Euclidean shortest paths in Pj from the origin to
each cell C. To compute these paths we can use ex-
isting algorithms in the literature for shortest paths in
simple polygons (see [GHL+87]), and we omit the de-
tails here. For each cell C we will have up to k ref-
erence points fqC;1; : : : ; qC;kg and their corresponding
distances fd1(qC;1); : : : ; dk(qC;k)g. We de�ne dj(q) =1
for all points q not within Pj.

Partition of H

For each cell C we compute a partition of H that repre-
sents which hypothetical locations can be distinguished
fromone another by probing from inside C. If two trans-
lates Pi and Pj have the same visibility skeleton for cell
C, then pi and pj are in the same subset of the parti-
tion of H corresponding to cell C. Also, if C is outside
of both translates Pi and Pj , then pi and pj are in the
same subset of the partition.

Although there may be O(n6) cells in the overlay ar-
rangement A, yielding up to O(kn6) reference points,
we show in Section 5.3 that only O(k2) reference points
are needed for our localization strategy, so we do not
need to compute a partition of H for all O(n6) cells.

5 A Greedy Strategy

In this section we present a localizing decision tree strat-
egy, called Strategy Q , for completing the solution of
the hypothesis elimination phase of the robot localiza-
tion problem. Our strategy, which has a greedy avor,
is called Strategy Q because in choosing locations for
probes, it uses the set Q of reference points described
previously. Strategy Q will enable the robot to localize
itself by traveling distance at most kd, where k = jHj
and d is the length of an optimal veri�cation tour.

In devising a localizing decision tree strategy, there are
two main criteria to consider when deciding where the
robot should make the next probe: (1) the distance to
the new probe position, and (2) the information to be
gained at the new probe position. However, even a strat-
egy that considers both criteria can do poorly. For ex-
ample, if the robot employs an incremental strategy that
at each step tells it to travel to the closest probe loca-
tion that yields some information, then a map polygon
can be constructed such that in the worst case the robot
will travel distance 2kd.

Using Strategy Q for hypothesis elimination, a strategy
for the complete robot localization problem can be ob-
tained as follows. Preprocess the map polygonP using a
method similar to that in [GMR92]. This preprocessing
yields a data structure that stores for each equivalence
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class of visibility polygons either the location in P yield-
ing that visibility polygon, if there is only one location,
or a localizing decision tree that tells the robot how to
travel to determine its true initial location.

5.1 Strategy Q

In this subsection we present the details of Strategy
Q . Using the results of Section 4, it is possible to pre-
compute Strategy Q 's entire decision tree. However, we
will describe the strategy by explaining how it directs
the robot to behave. This amounts to describing the na-
ture of a root-to-leaf path in the tree. This is easier to
understand than the description of an algorithm to com-
pute the entire decision tree. Also, in practice, it may
sometimes be preferable not to pre-compute the entire
tree, but rather to compute the robot's next move on an
interactive basis, as the robot carries out the strategy.

Information used by Strategy Q

� The map polygon P .

� The set H generated in the hypothesis generation
phase.

� The set Q of reference points de�ned in Section 4.2.

� For each point q 2 Q the distance dj(q) of q from
the origin, measured within Pj.

� For each point q 2 Q, a path pathj(q) within Pj of
length dj(q), which is de�ned by a series of relative
motions that take the robot from the origin to q

in Pj. Using the data structure in [GHL+87] these
paths can be easily computed.

� For each point qC;j 2 Q, the partition of H associ-
ated with cell C, as de�ned in Section 4.2.

Next we describe how Strategy Q directs the robot to
behave. Initially, the set of hypothetical locations is
the given set H. As the robot carries out the strategy,
hypothetical locations are eliminated from H. Thus in
our description of Strategy Q , we abuse notation and
use H to denote the shrinking set of active hypothetical
locations; i.e. those that have not yet been ruled out.
Similarly, we use Q to denote the shrinking set of active
reference points; i.e. those that non-trivially partition
the set of active hypothetical locations. We call a path
pathj(q) active if pj 2 H and q 2 Q are both active.

Notation. Let d�(q�) denote the minimum of

f dj(q) j q 2 Q and pj 2 H are active g.

Let path�(q�) denote an active path of length d�(q�).

Strategy Q

Strategy Q directs the robot to travel along paths from
the origin to points in the overlay arrangement A. Sup-
pose that pj is the true initial location of the robot. We
will prove in the next subsection that Strategy Q only
directs the robot to follow paths that are contained in
translate Pj. Note that a path from the origin that is
contained in Pj is analogous to a path in P from location
pj.

From the initial H and Q, an initial path�(q�) can be
selected. The strategy directs the robot to travel along
this path and to make a probe at its endpoint. The
robot then uses the information gained at the probe
position to update H and Q and to determine a new q�
and a new path�(q�) from the origin. The strategy then
directs the robot to retrace its previous path back to the
origin, and then to follow the new path to its endpoint,
which is the next probe location. This process stops
when the size ofH shrinks to 1. At this point the initial
location of the robot is determined, and the robot can,
if desired, be directed to return to its initial location by
retracing its last path.

5.2 A performance guarantee

The following theorems show that Strategy Q directs
the robot along a path whose length compares favor-
ably with the minimum veri�cation length d. First we
show that Strategy Q never directs the robot to pass
through a wall. Then we show that Strategy Q elim-
inates all hypothetical locations except the valid one,
and we establish an upper bound on the length of the
path produced by Strategy Q . A corollary of Theorem 3
is that the localizing decision tree associated with Strat-
egy Q has a weighted height that is at most 2k times the
weighted height of an optimal localizing decision tree.

Theorem 2 Strategy Q never directs the robot to pass

through a wall.

Proof: The proof is by contradiction. Suppose that
pj is the true initial location of the robot and xj is the
point on the boundary of Pj where the robot would �rst
pass through a wall. Furthermore, suppose that when
the robot attempts to pass through the wall at xj , the
path it has been directed to follow is pathi(q).

Let C denote the cell of arrangement A (see Section 4.1)
that contains the portion of pathi(q) just before xj.
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Since cell C is contained in Pj, it contributes a refer-
ence point qC;j to the set Q of reference points.

It su�ces to show that qC;j is active at the time Strat-
egy Q chooses pathi(q) for the robot to follow. This
is because dj(qC;j) � dj(xj) by de�nition of qC;j; fur-
thermore, dj(xj) � di(xj) since the portion of pathi(q)
from the origin to xj is contained within Pj, and dj(xj)
is equal to the length of a shortest path in Pj from the
origin to xj; �nally, di(xj) < di(q) because xj is an in-
termediate point on pathi(q). Chaining these inequal-
ities together gives dj(qC;j) < di(q). Hence Strategy
Q would choose pathj(qC;j) rather than pathi(q) pro-
vided that qC;j is active at the time pathi(q) is selected.

Now we show that qC;j is active when pathi(q) is se-
lected. Point qC;j is active if and only if the following
two conditions hold: (1) pj has not been eliminated
from H and (2) the visibility skeleton associated with
C distinguishes between at least two active hypotheti-
cal locations. Clearly condition (1) holds, since the cor-
rect hypothetical location is never eliminated from H.
Condition (2) holds because the skeleton V �

j (C) associ-
ated with C relative to Pj has a real edge through the
point xj, whereas the skeleton V �

i (C) associated with
C relative to Pi does not have a real edge through xj.
Therefore, the skeleton associated with points in C dis-
tinguishes between pi and pj, which are both active at
the time pathi(q) is chosen, so point qC;j is active. ut

Theorem 3 Strategy Q directs the robot along a path

whose length is at most kd, where k = jHj and d is

the length of an optimal veri�cation tour for the robot's

initial position.

Proof: Let pt denote the true initial location of the
robot. First we show that Strategy Q eliminates all
hypothetical initial locations in H except pt. Suppose
the contrary is true. This means that the set Q of active
reference points becomes empty before the size of H
shrinks to one. Let pi be an active hypothetical initial
location di�erent from pt at the time Q becomes empty.
Translates Pi and Pt are not identical, so there is some
point xt on the boundary of Pt that does not belong to
the boundary of Pi. Let C be the cell of arrangement
A contained in Pt and containing xt. C distinguishes
between pi and pt because the skeletons associated with
C relative to Pi and Pt are not the same. Therefore qC;i
and qC;t are still in the active set Q, a contradiction.

Next we establish the upper bound on the length of the
path determined by Strategy Q . Because the strategy
never directs the robot to a probing site that does not
eliminate one or more elements from H, it requires the

robot to make a trip from its initial location to some
sensing point and back at most k � 1 times.

We claim that each round trip has length at most d. To
see this, we �rst consider how a robot traveling along an
optimal veri�cation tour L would rule out an arbitrary
incorrect hypothetical location pb. Then we consider
how Strategy Q would rule out pb.

Consider a robot traveling along tour L that eliminates
each invalid hypothetical location at the �rst point x on
L where the visibility skeleton of x relative to the in-
valid hypothetical location di�ers from the skeleton of x
relative to Pt. Let w be the point on L where the robot
rules out pb. The point w must lie on the boundary of
some cell C in the arrangement A that distinguishes pb
from pt. Cell C generates a reference point qC;t 2 Q,
which is the closest point of C to the origin, where dis-
tance is measured inside Pt, so dt(qC;t) � dt(w). Since
pt is the true initial location of the robot, the distance
dt(w) is equal to or less than the distance along L of w
from the origin, as well as the distance along L from w

back to the origin. Putting these inequalities together,
we deduce that the distance dt(qC;t) is equal to or less
than half the length of L.

Since pt is the true initial location of the robot, it is
active at the moment Strategy Q directs the robot to
move from the origin to the probing site where it elimi-
nates pb. Since pb is about to be ruled out, it is also still
active. That means that the reference point qC;t con-
sidered in the previous paragraph is still active, since it
distinguishes pb from pt.

At this time Strategy Q directs the robot to travel along
path�(q�) = pathj(q). By design, the length d�(q�) =
dj(q) of this path, which is the distance the robot will
travel from the origin to the next probing position, is the
minimum over all di(q) for active pi 2 H and q 2 Q.
In particular, since point qC;t is still active, d�(q�) is
equal to or less than dt(qC;t). But as we have already
seen, this latter distance is equal to or less than half the
length of L. Therefore, Strategy Q directs the robot to
travel from the origin to some probing position where
the robot eliminates pb and back, and the length of this
loop is at most d. ut

Note that if a verifying path is not required to return
to its starting point, the bound for Theorem 3 becomes
2kd. In this paper, we do not comment further on com-
putation time as there are many ways to implement
Strategy Q .

Corollary 4 The weighted height of the localizing deci-

sion tree constructed by Strategy Q is at most 2k times

the weighted height of an optimal localizing decision tree
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for the same problem.

The bound given in Corollary 4 for the weighted height
of the localizing decision tree built by Strategy Q is also
a lower bound. That is, a map polygonP and a visibility
polygon V can be given such that the weighted height
of the localizing decision tree built by Strategy Q for P
and V is 
(k) times the weighted height of an optimal
localizing decision tree.

5.3 A reduced set of reference points

The set Q of reference points may have size O(kn6). In
this subsection, we show that when Strategy Q is run
with only a subset Q0 � Q of size at most k(k � 1), the
kd performance guarantee of Section 5.2 still holds.

Set Q0 is de�ned as the union of subsets Qi � Q, where
there is one Qi for each pi 2 H and jQij � k � 1. Ig-
noring implementation issues, we de�ne Qi as follows.
Initially Qi is empty, and the subset of Q consisting of
reference points qC;i generated for translate Pi is pro-
cessed in order of increasing di(qC;i). For each succes-
sive reference point qC;i, the partition of H induced by
Qi [fqC;ig is compared to that induced by Qi alone. If
the subset of H containing location pi is further subdi-
vided by the additional reference point qC;i, then qC;i
is added to Qi. Conceptually, the reference point qC;i
distinguishes another hypothetical initial location from
pi. This process continues until pi is contained in a sin-
gleton in the partition of H induced by Qi. Since there
are only k � 1 initial locations to be distinguished from
pi, Qi will contain at most k � 1 points.

We denote by Strategy Q0 the strategy obtained by re-
placing set Q with Q0 in Strategy Q. The proof of the
following theorem is similar to those of Theorems 2 and
3.

Theorem 5 Strategy Q0, which uses a set of at most

k(k � 1) reference points, directs the robot along a path

whose length is at most kd, where k = jHj and d is

the length of an optimal veri�cation tour for the robot's

initial position.

6 Conclusion

We have shown that the problem of localizing a robot
in a known environment by traveling a minimum dis-
tance is NP-hard, and we have given an approximation
strategy that achieves a bound of k times an optimal

solution, where k is the number of possible initial loca-
tions of the robot.

The work in this paper is one part of a strategy for lo-
calizing a robot. The complete strategy will preprocess
the map polygon and store the decision trees for am-
biguous initial positions so that the robot only needs to
follow a predetermined path to localize itself.

There are many variations to this problem which can
be considered. If the robot must localize itself in an
environment with obstacles, then the map of the envi-
ronment can be represented as a simple polygon with
holes. In this paper we assigned a cost of zero for the
robot to take a probe and analyze it. In a more general
setting we would look for a minimum weighted height
decision tree, where the edges of a decision tree asso-
ciated with the outcome of a probe would be weighted
with the cost to analyze that probe. A pragmatic varia-
tion of the problem would weight reference locations so
that those that produce more reliable percepts would be
selected �rst.
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