
LOCALIZING A ROBOT WITH MINIMUM TRAVEL∗

GREGORY DUDEK† , KATHLEEN ROMANIK‡ , AND SUE WHITESIDES†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 583–604, April 1998 013

Abstract. We consider the problem of localizing a robot in a known environment modeled by a
simple polygon P . We assume that the robot has a map of P but is placed at an unknown location
inside P . From its initial location, the robot sees a set of points called the visibility polygon V of its
location. In general, sensing at a single point will not suffice to uniquely localize the robot, since the
set H of points in P with visibility polygon V may have more than one element. Hence, the robot
must move around and use range sensing and a compass to determine its position (i.e., localize itself).
We seek a strategy that minimizes the distance the robot travels to determine its exact location.

We show that the problem of localizing a robot with minimum travel is NP-hard. We then give a
polynomial time approximation scheme that causes the robot to travel a distance of at most (k−1)d,
where k = |H|, which is no greater than the number of reflex vertices of P , and d is the length of
a minimum length tour that would allow the robot to verify its true initial location by sensing. We
also show that this bound is the best possible.

Key words. robot, localization, positioning, navigation, sensing, visibility, optimization, NP-
hard, competitive strategy

AMS subject classifications. 68Q25, 68T99, 68U05, 68U30

PII. S0097539794279201

1. Introduction. Numerous tasks for a mobile robot require it to have a map
of its environment and knowledge of where it is located in the map. Determining the
position of the robot in the environment is known as the robot localization problem.
To date, mobile robot research that supposes the use of a map generally assumes
either that the position of the robot is always known or that it can be estimated using
sensor data acquired by displacing the robot only small amounts [4, 24, 30]. However,
self-similarities between separate portions of the environment prevent a robot that has
been dropped into or activated at some unknown place from uniquely determining its
exact location without moving around. This motivates a search for strategies that
direct the robot to travel around its environment and to collect additional sensory
data [5, 25, 14] to deduce its exact position.

In this paper, we view the general robot localization problem as consisting of
two phases: hypothesis generation and hypothesis elimination. The first phase is to
determine the set H of hypothetical locations that are consistent with the sensing data
obtained by the robot at its initial location. The second phase is to determine, in the

∗Received by the editors December 23, 1994; accepted for publication (in revised form) March 28,
1996. An earlier version of this paper appeared as McGill University School of Computer Science
Technical Report SOCS-94.5 in August 1994. Also, an abridged version of this paper appeared in
Proc. Sixth Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1995,
pp. 437–446.

http://www.siam.org/journals/sicomp/27-2/27920.html
†Research Centre for Intelligent Machines and School of Computer Science, McGill Uni-

versity, 3480 University Street, Montréal, Québec, Canada H3A 2A7 (dudek@cim.mcgill.ca,
sue@cs.mcgill.ca). The research of these authors was supported by NSERC research grants pro-
gramme.
‡Center for Automation Research, University of Maryland, College Park, MD 20742

(romanik@cfar.umd.edu). This research was done while the author was at McGill University and
DIMACS Center for Discrete Mathematics and Theoretical Computer Science. It was supported
by IRIS National Network of Centres of Excellence, NSERC, and DIMACS. DIMACS is an NSF
Science and Technology Center, funded under contract STC-88-09648 and also receives support from
the New Jersey Commission on Science and Technology.

583

584 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

case that H contains two or more locations (see Fig. 2.1), which location is the true
initial position of the robot; i.e., to eliminate the incorrect hypotheses.

Ideally, the robot should travel the minimum distance necessary to determine its
exact location. This is because the time the robot takes to localize itself is proportional
to the distance it must travel (assuming sensing and computation time are negligible
in comparison). Also, the most common devices for measuring distance, and hence
position, on actual mobile robots are relative measurement tools such as odometers.
Therefore, they yield imperfect estimates of orientation, distance, and velocity, and
the errors in these estimates accumulate disastrously with successive motions [13].
Our strategy is well suited to handling the accumulation of error problem via simple
recalibration, as we will point out later.

A solution to the hypothesis generation phase of robot localization has been given
by Guibas, Motwani, and Raghavan in [19]. We describe this further in the next sec-
tion after making more precise the definitions of the two phases of robot localization.
Our paper is concerned with minimizing the distance traveled in the hypothesis elim-
ination phase of robot localization. It begins where [19] left off. Together, the two
papers give a solution to the general robot localization problem.

In this paper, we define a natural algorithmic variant of the problem of localizing
a robot with minimum travel and show that this variant is NP-hard. We then solve
the hypothesis elimination phase with what we call a greedy localization strategy. To
measure the performance of our strategy, we employ the framework of competitive
analysis for on-line algorithms introduced by Sleator and Tarjan [29]. That is, we
examine the ratio of the distance traveled by a robot using our strategy to the length
d of a minimum length tour that allows the robot to verify its true initial position.
The worst case value of this ratio over all maps and all starting points is called the
competitive ratio of the strategy. If this ratio is no more than k, then the strategy
is called k-competitive. Since our strategy causes the robot to travel a distance no
more than (k − 1)d, where k = |H| (|H| is no greater than the number of reflex
vertices of P), our strategy is (k − 1)-competitive. We also show that no on-line
localization strategy has a competitive ratio better than k− 1, and thus our strategy
is optimal.

The rest of this paper is organized as follows. In section 2 we give a formal
definition of the robot localization problem, we define some of the terms used in the
paper, and we comment on previous work. In section 3 we prove that, given a solution
set H to the hypothesis generation phase of the localization problem that contains
more than one hypothetical location, the hypothesis elimination phase, which localizes
the robot by using minimum travel distance, is NP-hard. In section 4 we define
the geometric structures that we use to set up our greedy localization strategy. In
section 5 we give our greedy localization strategy and prove the previously mentioned
performance guarantee of k − 1 times optimum. We also give an example of a map
polygon for which no on-line localization strategy is better than (k − 1)-competitive.
Section 6 summarizes and comments on open problems.

2. Localization through traveling and probing. In this section, we describe
our robot abstraction and give some key definitions.

The most common application domain for mobile robots is indoor “structured”
environments. In such environments it is often possible to construct a map of the
environment, and it is acceptable to use a polygonal approximation P of the free
space [26] as a map. A common sensing method used by mobile robots is range
sensing (for example, sonar sensing or laser range sensing).

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 585

2.1. Assumptions about the robot. We assume the following throughout this
paper.

1. The robot moves in a static two-dimensional, obstacle-free environment for
which it has a map. The robot has the ability to make error-free motions between
arbitrary locations in the environment.1 We model the movement of the robot in the
environment by a point p moving inside and along the boundary of an n-vertex simple
polygon P positioned somewhere in the plane.

2. The robot has a compass and a range sensing device. It is essential that the
robot be able to determine its orientation (with the compass); otherwise it can never
uniquely determine its exact location in an environment with nontrivial symmetry
(such as a square).

3. The robot’s sensor can detect the distances to those points on walls for which
the robot has an unobstructed straight line of sight, and the robot’s observations at
a particular location determine a polygon V of points that it can see (see the next
subsection for a definition of V). This is analogous to what can be extracted by
various real sensors such as laser range finders. The robot also knows its location
in V .

2.2. Some definitions and an example. Two points in P are visible to each
other or see each other if the straight line segment joining them does not intersect the
exterior of P . The visibility polygon V (p) for a point p ∈ P is the polygon consisting
of all points in P that are visible from p. The data received from a range sensing
device is modeled as a visibility polygon. The visibility polygon of the initial location
of the robot is denoted by V , and the number of its vertices is denoted by m. Since
the robot has a compass, we assume that P and V have a common reference direction.

We break the general problem of localizing a robot into two phases as follows.

The robot localization problem.
HYPOTHESIS GENERATION: Given P and V , determine the set H of all points

pi ∈ P such that the visibility polygon of pi is congruent under translation to V
(denoted by V (pi) = V).

HYPOTHESIS ELIMINATION: Devise a strategy by which the robot can correctly
eliminate all but one hypothesis from H, thereby determining its exact initial location.
Ideally, the robot should travel a distance as small as possible to achieve this.

As previously mentioned, the hypothesis generation phase has been solved by
Guibas, Motwani, and Raghavan. We describe their results in the next subsection.
This paper is concerned with the hypothesis elimination phase.

Consider the example illustrated in Fig. 2.1. The robot knows the map polygon P
and the visibility polygon V representing what it can “see” in the environment from
its present location. Suppose also that it knows that P and V should be oriented as
shown. The black dot represents the robot’s position in the visibility polygon. By
examining P and V , the robot can determine that it is at either point p1 or point p2
in P , i.e., H = {p1, p2}. It cannot distinguish between these two locations because
V (p1) = V (p2) = V . However, by traveling out into the “hallway” and taking another
probe, the robot can determine its location precisely.

An optimal strategy for the hypothesis elimination phase would direct the robot
to follow an optimal verification tour, defined as follows.

1In practice, position estimation errors accrue in the execution of such motions; however, the
strategy we present here is exceptionally well suited to various methods for limiting these errors using
sensor feedback (see section 5.1).

586 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

P V

p p1 2

21V(p) = V(p) = V
FIG. 2.1. Given a map polygon P (left) and a visibility polygon V (center), the robot must

determine which of the 2 possible initial locations p1 and p2 (right) is its actual location in P .

DEFINITION 2.1. A verification tour is a tour along which a robot that knows
its initial position a priori can travel to verify this information by probing and then
return to its starting position. An optimal verification tour is a verification tour of
minimum length d.

Since we do not assume a priori knowledge of which hypothetical location in H
is correct, an optimal verification tour for the hypothesis elimination phase cannot be
precomputed. Even if we did have this knowledge, computing an optimal verification
tour would be NP-hard. This can be proven using a construction similar to that
in section 3 and a reduction from hitting set [16]. For these reasons, we seek an
interactive probing strategy to localize the robot. In each step of such a strategy, the
robot uses its range sensors to compute the visibility polygon of its present position
and from this information decides where to move next to make another probe. To be
precise, the type of strategy we seek can be represented by a localizing decision tree,
defined as follows.

DEFINITION 2.2. A localizing decision tree is a tree consisting of two kinds of
nodes and two kinds of weighted edges. The nodes are either sensing nodes (S-nodes)
or reducing nodes (R-nodes), and the node types alternate along any path from the
root to a leaf. Thus, tree edges directed down the tree either join an S-node to an
R-node (SR-edges) or join an R-node to an S-node (RS-edges).

1. Each S-node is associated with a position defined relative to the initial position
of the robot. The robot may be instructed to probe the environment from this position.

2. Each R-node is associated with a set H ′ ⊆ H of hypothetical initial locations
that have not yet been ruled out. The root is an R-node associated with H, and each
leaf is an R-node associated with a singleton hypothesis set.

3. Each SR-edge represents the computation that the robot does to rule out hy-
potheses in light of the information gathered at the S-node end of the edge. An SR-edge
does not represent physical travel by the robot and hence has weight 0.

4. Each RS-edge has an associated path defined relative to the initial location of
the robot. This is the path along which the robot is directed to travel to reach its next
sensing point. The weight of an RS-edge is the length of its associated path.

Since we want to minimize the distance traveled by the robot, we define the
weighted height of a localizing decision tree as follows.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 587

S

R

R R

S

RR

S

R R

FIG. 2.2. A map polygon and 4 hypothetical locations {p1, p2, p3, p4} (above) with a localizing
decision tree for determining the true initial position of the robot (below).

DEFINITION 2.3. The weight of a root-to-leaf path in a localizing decision tree
is the sum of the weights on the edges in the path. The weighted height of a local-
izing decision tree is the weight of a maximum-weight root-to-leaf path. An optimal
localizing decision tree is a localizing decision tree of minimum weighted height.

In the next section, we show that the problem of finding an optimal localizing
decision tree is NP-hard.

We call a localization strategy that can be associated with a localizing decision
tree a localizing decision tree strategy. As an example of such a strategy, consider the
map polygon P shown in Fig. 2.2.

Imagine that, from the visibility polygon sensed by the robot at its initial location,
it is determined that the set of hypothetical locations is H = {p1, p2, p3, p4}. Hence
the root of the localizing decision tree (shown in Fig. 2.2) is associated with H. In
the figure, the SR-edges are labeled with the visibility polygons seen by the robot
at the S-node endpoints of these edges. Assuming that north points straight up, the
strategy given by the tree directs the robot first to travel west a distance d1, which
is the distance between pi and p′i, for 1 ≤ i ≤ 4, and then to take another probe
at its new location. Depending on the outcome of the probe, the robot knows it is
located either at one of {p′1, p′2} or at one of {p′3, p′4}. If it is located at p′1 or p′2, then
the strategy directs it to travel south a distance d2, which is the distance between p′i
and p′′i , for 1 ≤ i ≤ 2, to a position just past the dotted line segment shown in P .
By taking a probe from below this line segment, it will be able to see the vertex at

588 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

the end of the segment if it is at location p′′1 , and it will not see this vertex if it is
at location p′′2 . Thus after this probe it will be able to determine its unique location
in P . Similarly, if the robot is located at p′3 or p′4, then the strategy directs it to
travel south a distance d3 and take another probe to determine its initial position.
The farthest that the robot must travel to determine its location is d1 + d3, so the
weighted height of this decision tree is d1 + d3.

2.3. Previous work. Previous work on robot localization by Guibas, Motwani,
and Raghavan [19] showed how to preprocess a map polygon P so that, given the
visibility polygon V that a robot sees, the set of points in P whose visibility polygon is
congruent to V , and oriented the same way, can be returned quickly. Their algorithm
preprocesses P in O(n5 logn) time and O(n5) space, and it answers queries in O(m+
logn+k) time, where n is the number of vertices of P , m is the number of vertices of
V , and k is the size of the output (the number of places in P at which the visibility
polygon is V). They also showed how to answer a single localization query in O(mn)
time with no preprocessing.

Kleinberg [23] has independently given an interactive strategy for localizing a
robot in a known environment. As in our work, he seeks to minimize the ratio of the
distance traveled by a robot using his strategy to the length of an optimal verification
path (i.e., the competitive ratio). Kleinberg’s model differs from ours in several ways.
First of all, he models the robot’s environment as a geometric tree rather than a
simple polygon. A geometric tree is a pair (V,E), where V is a finite point set in
Rd and E is a set of line segments whose endpoints all lie in V . The edges E do
not intersect except at points of V and do not form cycles. Kleinberg only considers
geometric trees with bounded degree ∆. Also, his robot can make no use of vision
other than to know the orientation of all edges incident to its current location. Using
this model, Kleinberg gives an O(n2/3)-competitive algorithm for localizing a robot
in a geometric tree with bounded degree ∆, where n is the number of branch vertices
(vertices of degree greater than two) of the tree.

The competitive ratio of Kleinberg’s algorithm appears to be better than the
lower bound illustrated by Fig. 5.2 in section 5.3. However, if this map polygon were
modeled as a geometric tree it would have degree n, where n is the number of branch
vertices, rather than a constant degree, and the distance traveled by a robot using
Kleinberg’s algorithm can be linear in the degree of the tree. If Kleinberg’s algorithm
ran on this example, it would only execute step 1, which performs a spiral search, and
it would cause the robot to travel a distance almost 4n times the length of an optimal
verification path. Our algorithm causes the robot to travel a distance less than 2n
times the length of an optimal verification path on this example. Our algorithm is
similar to step 3 of Kleinberg’s algorithm, and he gives a lower bound example (Fig. 3
of [23]) illustrating that an algorithm using only steps 1 and 3 of his algorithm is no
better than O(n)-competitive. Although this example does not directly apply to our
model since the robot in our model has the ability to see to the end of the hallway,
by adding small jogs in the hallway a similar example can be constructed where our
strategy is no better than O(n)-competitive. In this example, the number of branch
vertices of the geometric tree represented by P would be n and the number of vertices
of P would be O(n). However, in this example |H| = n, so this does not contradict
our results.

Other theoretical work on localizing a robot in a known environment has also
been done. Betke and Gurvits [8] gave an algorithm that uses the angles subtended

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 589

by landmarks in the robot’s environment to localize a robot. Their algorithm runs in
time linear in the number of landmarks, and it assumes that a correspondence is given
between each landmark seen by the robot and a point in the map of the environment.
Avis and Imai [2] also investigated the problem of localizing a robot using angle
measurements, but they did not assume any correspondence between the landmarks
seen by the robot and points in the environment. Instead they assumed that the
environment contains n identical markers, and the robot takes k angle measurements
between an unknown subset of these markers. They gave polynomial time algorithms
to determine all valid placements of the robot, both in the case where the robot has a
compass and where it does not. In addition they showed that, with polynomial-time
preprocessing, location queries can be answered in O(logn) time.

Theoretical work with a similar flavor to ours has also been done on navigating
a robot through an unknown environment. In this work a point robot must navigate
from a point s to a target t, which is either a point or an infinite wall, where the
Euclidean distance from s to t is n. There are obstacles in the scene, which are not
known a priori, but which the robot learns about only as it encounters them. The
goal is to optimize (i.e., minimize) the ratio of the distance traveled by the robot to
the length of a shortest obstacle-free path from s to t. As with localization strategies,
the worst case ratio over all environments where s and t are distance n apart is called
the competitive ratio of the strategy.

Papadimitriou and Yannakakis [28] gave a deterministic strategy for navigating
between two points, where all obstacles are unit squares, that achieves a competitive
ratio of 1.5, which they show is optimal. For squares of arbitrary size they gave a
strategy achieving a ratio of

√
26/3. They also showed, along with Eades, Lin, and

Wormald [15], that when t is an infinite wall and the obstacles are oriented rectangles,
there is a lower bound of Ω(

√
n) on the ratio achievable by any deterministic strategy.

Blum, Raghavan, and Schieber [9] gave a deterministic strategy that matched
the Ω(

√
n) lower bound for navigating between two points with oriented, rectangular

obstacles. Their strategy combines strategies for navigating from a point to an infinite
wall and from a point on the wall of a room to the center of the room, with competitive
ratios of O(

√
n) and O(2

√
3 log n), respectively. The competitive ratio for the problem

of navigating from a corner to the center of a room was improved to O(lnn) by a
strategy of Bar-Eli et al. [3], who also showed that this ratio is a lower bound for
any deterministic strategy. Berman et al. [7] gave a randomized algorithm for the
problem of navigating between two points with oriented, rectangular obstacles with a
competitive ratio of O(n4/9 logn).

Several people have studied the problem of navigating from a vertex s to a vertex
t inside an unknown simple polygon. They assume that at every point on its path the
robot can get the visibility polygon of that point. Klein [21] proved a lower bound of√

2 on the competitive ratio and gave a strategy achieving a ratio of 5.72 for the class
of street polygons. A street is a simple polygon such that the clockwise chain L and
the counterclockwise chain R from s to t are mutually weakly visible. That is, every
point on L is visible to some point on R and vice versa. Kleinberg [22] gave a strategy
that improved Klein’s ratio to 2

√
2, and Datta and Icking [12] gave a strategy with a

ratio of 9.06 for a more general class of polygons called generalized streets, where every
point on the boundary is visible from a point on a horizontal line segment joining L
and R. They also showed a lower bound of 9 for this class of polygons.

Previous work in the area of geometric probing has examined the complexity of
constructing minimum height decision trees to uniquely identify one of a library of

590 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

polygons in the plane using point probes. Such probes examine a single point in
the plane to determine if an object is located at that point. If each polygon in the
library is given a fixed position, orientation and scale, then it has been shown that
both the problem of finding a minimum cardinality probe set (for a noninteractive
probing strategy) [6] and the problem of constructing a minimum height decision tree
for probing (for an interactive strategy) [1] are NP-complete. Arkin et al. [1] give
a greedy strategy that builds a decision tree of height at most dlog ke times that
of an optimal decision tree, where k is the number of polygons in the library. The
minimum height decision tree used for probing in [1] is different than our localizing
decision tree. It is a binary decision tree whose internal nodes represent point probes
whose outcome is either positive or negative and whose edges are unweighted. The
height of such a decision tree is the number of levels of the tree, and it represents the
maximum number of probes necessary to identify any polygon in the library.

3. Hardness of localization. In this section we show that the problem of con-
structing an optimal localizing decision tree, as defined in the previous section, is
NP-hard. To do this, we first formulate the problem as a decision problem.
Robot Localizing Decision Tree (RLDT).

INSTANCE: A simple polygon P and a star-shaped polygon V , both with a common
reference direction, the set H of all locations pi ∈ P such that V (pi) = V , and a
positive integer h.
QUESTION: Does there exist a localizing decision tree of weighted height less than or
equal to h that localizes a robot with initial visibility polygon V in the map polygon P?

We show that this problem is NP-hard by giving a reduction from the Abstract

Decision Tree problem, proven NP-complete by Hyafil and Rivest in [20]. The
Abstract Decision Tree problem is stated as follows.
Abstract Decision Tree (ADT).

INSTANCE: A set X = {x1, . . . , xk} of objects, a set T = {T1, . . . , Tn} of subsets of
X representing binary tests, where test Tj is positive on object xi if xi ∈ Tj and is
negative otherwise, and a positive integer h′ ≤ n.
QUESTION: Does there exist an abstract decision tree of height less than or equal to
h′, where the height of a tree is the maximum number of edges on a path from the
root to a leaf, that can be constructed to identify the objects in X?

An abstract decision tree has a binary test at all internal nodes and an object
at every leaf. To identify an unknown object, the test at the root is performed on
the object, and if it is positive the right branch is taken, otherwise the left branch is
taken. This procedure is repeated until a leaf is reached, which identifies the unknown
object.

THEOREM 3.1. RLDT is NP-hard.
Proof. Given an instance of ADT, we create an instance of RLDT as follows. We

construct P to be a staircase polygon, with a stairstep for each object xi ∈ X (see
Fig. 3.1). For each stairstep we construct n = |T | protrusions, one for each test in T
(see Fig. 3.2). If test Tj is a positive test for object xi, then protrusion Tj on stairstep
xi has an extra hook on its end (such as T3, T4, and Tn in Fig. 3.2). The length of a
protrusion is denoted by l and the distance between protrusions T1 and Tn is denoted
by d, where d and l are chosen so that dh′ < l. The vertical piece between adjacent
stairsteps is longer than (2l+ d)h′, and the width w of each stairstep is much smaller
than the other measurements. The polygon P has O(nk) vertices, where n = |T | and
k = |X|.

Consider a robot that is initially located at the shaded circle shown in Fig. 3.2 on
one of the k stairsteps. The visibility polygon V at this point has O(n) vertices and is

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 591

...

FIG. 3.1. Construction showing localization is NP-hard.

n-1T T T T T nT1 2 3 4

l

.

. . .

. . .

. . .

. . .

. . .

w

d

FIG. 3.2. Close-up of a stairstep xi in NP-hard construction. Not to scale: l >> d >> w.

the same at an analogous point on any internal stairstep xi. We output the polygons
P and V , which can be constructed in polynomial time, the k locations pi ∈ P such
that V (pi) = V , and weighted height h = (2l + d)h′ as an instance of RLDT.

In order for the robot to localize itself, it must either travel to one of the “ends” of
P (either the top or the bottom stairstep) to discover on which stairstep it was located
initially, or it must examine a sufficient number of the n protrusions on the stairstep
where it is located to distinguish that stairstep from all the others. Since the vertical
piece of each stairstep is longer than h = (2l + d)h′, only a strategy that directs the
robot to remain on the same stairstep can lead to a decision tree of weighted height
less than or equal to h.

Any decision tree that localizes the robot by examining protrusions on the stairstep
corresponds to an equivalent abstract decision tree to identify the objects of X using

592 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

tests in T , and vice versa. Each time the robot travels to the end of protrusion Tj
to see if it has an extra hook on its end, it corresponds to performing binary test Tj
on an unknown object to observe the outcome. The robot must travel 2l to perform
this test, and it travels at most d in between tests. Therefore, if the robot can always
localize itself by examining no more than h′ protrusions, then it has a decision tree
of weighted height no more than h = (2l + d)h′, which corresponds to an abstract
decision tree of height h′ for the ADT problem. Since dh′ < l, in a localizing decision
tree of weighted height ≤ h the robot cannot examine more than h′ protrusions on
any root-to-leaf path.

4. Using a visibility cell decomposition for localization. In this section
we discuss the geometric issues involved in building a data structure for our greedy
localization strategy.

4.1. Visibility cells and the overlay arrangement. When we consider po-
sitions where the robot can move to localize itself, we reduce the infinite number of
locations in P to a finite number by first creating a visibility cell decomposition of
P [10, 11, 19]. A visibility cell (or visibility region) C of P is a maximally connected
subset of P with the property that any two points in C see the same subset of vertices
of P [10, 11]. A visibility cell decomposition of P is simply a subdivision of P into
visibility cells. This decomposition can be computed in O(n3 logn) using techniques
in [10, 11]. It is created by introducing O(nr) line segments, called visibility edges,
into the interior of P , where r is the number of reflex vertices2 of P . Each line seg-
ment starts at a reflex vertex u, ends at the boundary of P , and is collinear with a
vertex v that is either visible from u or is adjacent to it. The number of cells in this
decomposition, as well as their total complexity, is O(n2r) (see [19] for a proof).

Although two points p and q in the same visibility cell C see the same subset
of vertices of P , they may not have the same visibility polygon (i.e., it may be that
V (p) 6= V (q)). This is because some edges of V (p) may not actually lie on the
boundary of P (these edges are collinear with p and are produced by visibility lines),
so these edges may be different in V (q). Therefore, in order to represent the portion
of P visible to a point p in a visibility cell C in such a way that all points in C are
equivalent, we need a different structure than the visibility polygon. The structure
that we use is the visibility skeleton of p.

DEFINITION 4.1. The visibility skeleton V ∗(p) of a location p ∈ P is the skeleton
of the visibility polygon V (p). That is, it is the polygon induced by the nonspurious
vertices of V (p), where a spurious vertex of V (p) is one that lies on an edge of V (p)
that is collinear with p, and the other endpoint of this edge is closer to p. The non-
spurious vertices of V (p) are connected to form V ∗(p) in the same cyclical order that
they appear in V (p). The edges of the skeleton are labeled to indicate which ones
correspond to real edges from P and which ones are artificial edges induced by the
spurious vertices. If p is outside P , then V ∗(p) is equal to the special symbol ∅.

For a complete discussion of visibility skeletons and a proof that V ∗(p) = V ∗(q)
for any two points p and q in the same visibility cell, see [10, 11, 19].

As stated in section 2, the hypothesis generation phase of the robot localization
problem generates a set H = {p1, p2, . . . pk} ⊂ P of hypothetical locations at which the
robot might be located initially. The number k of such locations is bounded above
by r (see [19] for a proof). From this set H, we can select the first location p1 (or
any arbitrary location) to serve as an origin for a local coordinate system. For each

2A reflex vertex of P is a vertex that subtends an angle greater than 180◦.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 593

FIG. 4.1. A visibility polygon, a map polygon and the corresponding overlay arrangement.

location pj , 1 ≤ j ≤ k, we define the translation vector tj = p1 − pj that translates
location pj to location p1, and we define Pj to be the translate of P by vector tj .
We thus have a set {P1, P2, . . . , Pk} of translates of P corresponding to the set H
of hypothetical locations. The point in each Pj corresponding to the hypothetical
location pj is located at the origin.

In order to determine the hypothetical location corresponding to the true initial
location of the robot, we construct an overlay arrangement A that combines the
k translates Pj that correspond to the hypothetical locations, together with their
visibility cell decompositions. More formally, we define A as follows.

DEFINITION 4.2. The overlay arrangement A for the map polygon P corresponding
to the set of hypothetical locations H is obtained by taking the union of the edges of
each translate Pj as well as the visibility edges in the visibility cell decomposition
of Pj.

See Fig. 4.1 for an example of an overlay arrangement. Since each visibility cell
decomposition is created from O(nr) line segments introduced into the interior of Pj ,
a bound on the total number of cells in the overlay arrangement as well as their total
complexity is O(k2n2r2), which may be O(n6).

4.2. Lower bound on the size of the overlay arrangement. Figure 4.2
shows a map polygon P whose corresponding overlay arrangement for the visibility
polygon shown in Fig. 4.3(a) has Ω(n5) cells. This polygon has a long horizontal
“hallway” with k identical, equally spaced “rooms” on the bottom side of it (k = 4
in Fig. 4.2). Each room has width 1 unit, and the distance between rooms is 2k − 1
units. If the robot is far enough inside one of these rooms so that it cannot see any of
the rooms on the top of the hallway, then its visibility polygon is the same no matter
which room it is in. The k − 1 rooms on the top side of the hallway are identical,
have width 1 unit, and are spaced 2k + 1 units apart. Each top room is between two
bottom rooms. The ith top room from the left has its left edge a distance 2i − 1 to
the right of the right edge of the bottom room to its left, and it has its right edge a
distance 2(k − i) − 1 to the left of the left edge of the bottom room to its right (see
Fig. 4.2).

Consider the visibility edges starting from the reflex vertices of the bottom rooms
that are generated by (i.e., collinear with) the reflex vertices of the top rooms. The
ith bottom room from the left will have 2(k− i) such visibility edges starting from its
right reflex vertex and 2(i− 1) starting from its left reflex vertex. Due to the spacing
of the top rooms, the visibility edges starting from the reflex vertices of one bottom

594 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

2k-3

2k-1

1

1

1

2k-53

FIG. 4.2. A map polygon whose overlay arrangement contains Ω(n5) cells.

FIG. 4.3. (a) A visibility polygon. (b) Visibility cells in a bottom room.

room will be at different angles than those in any other bottom room. See the picture
in Fig. 4.3(b) for an illustration of the visibility cells inside a bottom room.

When the overlay arrangement A for the visibility polygon shown in Fig. 4.3(a)
is constructed, it will consist of k translates, one for each of the bottom rooms of
P . Since these rooms are identical and equally spaced, A will have 2k − 1 rooms on
its bottom side. Since the visibility edges inside each bottom room are at different
angles, these edges will not coincide when bottom rooms from two different translates
overlap in A. This means that A will have Ω(k) bottom rooms with Ω(k2) visibility
edges starting from the left reflex vertex, and Ω(k2) visibility edges starting from the
right reflex vertex, resulting in Ω(k4) cells inside each of these bottom rooms of A.
Therefore, A will have Ω(k5) cells in total. Since the number of vertices of P is 8k, A
has Ω(n5) cells.

Closing the gap between the upper and lower bounds on the size of the arrange-
ment is an open problem.

4.3. The reference point set Q. Each cell in the overlay arrangement A rep-
resents a potential probe position, which can be used to distinguish between different
hypothetical locations of the robot. For each cell C of A and for each translate Pj

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 595

that contains C, there is an associated visibility skeleton V ∗j (C). If two translates Pi
and Pj have different skeletons for cell C, or if C is outside of exactly one of Pi and
Pj , then C distinguishes pi from pj .

For our localization strategy we choose a set Q of reference points in A that will
be used to distinguish between different hypothetical locations. For each cell C in A
that lies in at least one translate of P , and for each translate Pj that contains C, let
qC,j denote the point on the boundary of C that is closest to the origin. Here, the
distance dj(qC,j) from the origin to the closest point in C is measured inside Pj . We
choose Q = {qC,j}. In the remainder of this paper we drop the subscripts from qC,j
when they are not necessary.

Computing the reference points in Q involves computing Euclidean shortest paths
in Pj from the origin to each cell C. To compute these paths we can use existing
algorithms in the literature for shortest paths in simple polygons. We first compute
for each hypothetical initial location pj the shortest path tree from the origin to all
of the vertices of Pj in linear time using the algorithm given in [18]. This algorithm
also gives a data structure for storing the shortest path tree so that the length of
the shortest path from the origin to any point x ∈ Pj can be found in time O(logn)
and the path from the origin to x can be found in time O(logn + l), where l is the
number of segments along this path. We can use this data structure later to extract
the shortest path to any cell C in A within any translate Pj .

We use π(pj , x) to denote the shortest path from the origin to x in Pj . To find
the shortest path from the origin to a segment xy contained in Pj we use the following
theorem.

THEOREM 4.3. If P is a simple polygon, then the Euclidean shortest path π(s, xy)
from a point s in P to a line segment xy in P is either the shortest path π(s, x) from
s to x, the shortest path π(s, y) from s to y, or a polygonal path with l edges such that
the first l − 1 edges are the first l − 1 edges on either π(s, x) or π(s, y), and the last
edge is perpendicular to xy.

Proof. The theorem follows from standard geometry results. We sketch the proof
here. It is shown in [27] that the shortest paths π(s, x) and π(s, y) are polygonal
paths whose interior vertices are vertices of P , and if v is the last common point on
these two paths, then π(v, x) and π(v, y) are both outward-convex (i.e., the convex
hull of each of these subpaths lies outside the region bounded by π(v, x), π(v, y) and
the segment xy). As in [27] we call the union π(v, x) ∪ π(v, y) the funnel associated
with xy, and we call v the cusp of the funnel. See Fig. 4.4 for an example of a simple
polygon with edges of this funnel shown as dashed line segments.

The shortest path π(s, xy) has π(s, v) as its initial subpath. To complete the
shortest path π(s, xy) we must find a shortest path π(v, xy). If v has a perpendicular
line of sight to xy, then this visibility line will be π(v, xy). If v does not have a
perpendicular line of sight to xy, then consider the edge e adjacent to v on the funnel
that is the closest to perpendicular. Without loss of generality, assume e is the first
edge on π(v, y). The path π(v, xy) will follow π(v, y) until it reaches y or it reaches a
vertex that has a perpendicular line of sight to xy.

Using this theorem we can in O(n) time determine the length of the shortest path
in Pj from the origin o to xy and the closest point on xy to o. We first use the data
structure in [18] to determine in O(logn) time the length dx and the last edge ex
on the shortest path π(o, x), and the length dy and the last edge ey on the shortest
path π(o, y). For each of these edges we check its angle with respect to xy. Note that
both of these angles cannot be 90◦ or greater, or else it would be impossible to form

596 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

x y

s

v

FIG. 4.4. A simple polygon with shortest paths from s to x, y, and xy shown.

a funnel with π(o, x) and π(o, y). If the angle between ex (ey) and xy is at least 90◦,
then we return dx (dy) as the shortest distance to xy and x (y) as the closest point
on xy.

If both the angles formed by ex and ey with xy are less than 90◦, then the last
edge on the shortest path π(o, xy) will be a perpendicular drawn from one of the
vertices on the funnel associated with xy. To find this edge we again use the data
structure in [18] to examine the edges of the funnel in order, starting with ex. For
each edge we calculate the angle formed by its extension with xy. That is, for each
edge (u,w) whose extension intersects xy at point z, we calculate the angle ∠uzy. As
we move around the funnel these angles increase. When the angle becomes greater
than 90◦, we have found the vertex from which to drop a perpendicular to xy. It
takes O(n) time to find this vertex, and an additional O(logn) time to calculate the
distance to xy and the closest point (this is the time it takes to determine the length
of the shortest path from o to this vertex).

To compute the reference point qC,j , we compute the shortest path distance in Pj
from the origin to each edge of C. We then choose the smallest distance as the distance
to the cell C. For each cell C we will have up to k reference points {qC,1, . . . , qC,k}
and their corresponding distances {d1(qC,1), . . . , dk(qC,k)}. We define dj(q) = ∞ for
all points q not within Pj .

Partition of H. For each cell C we compute a partition of H that represents
which hypothetical locations can be distinguished from one another by probing from
inside C. If two translates Pi and Pj have the same visibility skeleton for cell C, or if
C is outside of both Pi and Pj , then pi and pj are in the same subset of the partition
of H corresponding to cell C.

Since the visibility polygon and the visibility skeleton for a point p ∈ P can be
computed in O(n) time (see [17]) and we can compare two visibility skeletons with m
vertices in O(m) time to see if they are identical, we can compute the partition of H
for C in O(kn + k2m) time, where m is the maximum number of vertices on any of
the k visibility skeletons.

Although there may be O(n6) cells in the overlay arrangement A, yielding up to
O(kn6) reference points, we show in section 5.4 that only O(k2) reference points are
needed for our localization strategy, so we do not need to compute a partition of H
for all O(n6) cells.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 597

5. A greedy strategy for localization. In this section we present a localiz-
ing decision tree strategy, called Minimum Distance Localization Strategy or Strategy
MDL for short, for completing the solution of the hypothesis elimination phase of the
robot localization problem. Our strategy, which has a greedy flavor, uses the set Q
of reference points described in the previous section for choosing probing locations.
Strategy MDL has a competitive ratio of k − 1, where k = |H|.

In devising a localizing decision tree strategy, there are two main criteria to con-
sider when deciding where the robot should make the next probe: (1) the distance
to the new probe position, and (2) the information to be gained at the new probe
position. It is easy to see that a strategy that only considers the second criterion
can do arbitrarily worse than an optimal localizing decision tree strategy. Strategy
MDL considers (2) only to the extent that it never directs the robot to make a useless
probe. Nevertheless, its performance is the best possible. Although it would seem
beneficial to weight each possible probe location with the amount of information that
could be gained in the worst case by probing at that location, this change will not
improve the worst case behavior of Strategy MDL, as the lower bound example given
in section 5.3 illustrates.

Even a strategy that considers both the distance and the information criteria when
choosing the next probe position can do poorly. For example, if the robot employs an
incremental strategy that at each step tells it to travel to the closest probe location
that yields some information, then a map polygon can be constructed such that in
the worst case the robot will travel distance 2kd.

Using Strategy MDL for hypothesis elimination, a strategy for the complete robot
localization problem can be obtained as follows. Preprocess the map polygon P using
a method similar to that in [19]. This preprocessing yields a data structure that stores
for each equivalence class of visibility polygons either the location in P yielding that
visibility polygon, if there is only one location, or a localizing decision tree that tells
the robot how to travel to determine its true initial location.

5.1. Strategy MDL. In this subsection we present the details of Strategy MDL.
Using the results of section 4, it is possible to precompute Strategy MDL’s entire
decision tree. However, for ease of exposition we will only describe how the strategy
directs the robot to behave on a root-to-leaf path in the tree. In practice, it may also
sometimes be preferable not to precompute the entire tree, but rather to compute the
robot’s next move on an interactive basis, as the robot carries out the strategy.

Strategy MDL uses the map polygon P , the set H generated in the hypothesis
generation phase, and the set Q of reference points defined in section 4.3. Also, for
each point qC,j ∈ Q the strategy uses the distance dj(qC,j) of qC,j from the origin, a
path pathj(qC,j) within Pj of length dj(qC,j), and the partition of H associated with
cell C, as defined in section 4.3.

Next we describe how Strategy MDL directs the robot to behave. Initially, the
set of hypothetical locations used by Strategy MDL is the given set H. As the
robot carries out the strategy, hypothetical locations are eliminated from H. Thus
in our description of Strategy MDL, we abuse notation and use H to denote the
shrinking set of active hypothetical locations; i.e., those that have not yet been ruled
out. Similarly, we use Q to denote the shrinking set of active reference points; i.e.,
those that nontrivially partition the set of active hypothetical locations. We call a
path pathj(q) active if pj ∈ H and q ∈ Q are both active. We let d∗(q∗) denote the
minimum of { dj(q) | q ∈ Q and pj ∈ H are active } and let path∗(q∗) denote an active
path of length d∗(q∗).

598 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

Using the initial H and Q, an initial path∗(q∗) can be selected. The strategy
directs the robot to travel along this path and to make a probe at its endpoint. The
robot then uses the information gained at the probe position to update H and Q.
The strategy then directs the robot to retrace its path back to the origin and repeat
the process until the size of H shrinks to 1.

Note that Strategy MDL is well suited to handling the problem of accumulation
of errors caused by successive motions in the estimates of orientation, distance, and
velocity made by the robot’s sensors. This is because the robot always returns to the
origin after making a probe, so it can recalibrate its sensors.

5.2. A performance guarantee for Strategy MDL. The following theorems
show that Strategy MDL is correct and has a competitive ratio of k − 1. First we
show that Strategy MDL never directs the robot to pass through a wall. Then we
show that Strategy MDL eliminates all hypothetical locations except the valid one
while directing the robot along a path no longer than k − 1 times the length of an
optimal verification tour. A corollary of Theorem 5.2 is that the localizing decision
tree associated with Strategy MDL has a weighted height that is at most 2(k − 1)
times the weighted height of an optimal localizing decision tree.

THEOREM 5.1. Strategy MDL never directs the robot to pass through a wall.
Proof. The proof is by contradiction. Suppose that pj is the true initial location

of the robot and xj is the point on the boundary of Pj where the robot would first
hit a wall. Furthermore, suppose that when the robot attempts to pass through the
wall at xj , the path it has been directed to follow is pathi(q). Let C denote the cell
of arrangement A that contains the portion of pathi(q) just before xj . Since cell C is
contained in Pj , it contributes a reference point qC,j to the set Q of reference points.

In order to arrive at a contradiction, it suffices to show that qC,j is active at
the time Strategy MDL chooses pathi(q) for the robot to follow. This is because
dj(qC,j) ≤ dj(xj) by definition of qC,j , dj(xj) ≤ di(xj) since the portion of pathi(q)
from the origin to xj is contained within Pj , and di(xj) < di(q) because xj is an
intermediate point on pathi(q). Thus dj(qC,j) < di(q), so Strategy MDL would choose
pathj(qC,j) rather than pathi(q) if qC,j is active.

Point qC,j is active when pathi(q) is selected because cell C distinguishes be-
tween the two active hypothetical locations pi and pj . This is because the skele-
ton V ∗j (C) associated with C relative to Pj has a real edge through the point xj ,
whereas the skeleton V ∗i (C) associated with C relative to Pi does not have a real edge
through xj .

THEOREM 5.2. Strategy MDL localizes the robot by directing it along a path whose
length is at most (k−1)d, where k = |H| and d is the length of an optimal verification
tour for the robot’s initial position.

Proof. Let pt denote the true initial location of the robot. First we show by
contradiction that Strategy MDL eliminates all hypothetical initial locations in H
except pt. Suppose Q becomes empty before the size of H shrinks to one, and let
pi be an active hypothetical location different from pt at the time Q becomes empty.
Translates Pi and Pt are not identical, so there is some point xt on the boundary of
Pt that does not belong to the boundary of Pi. Let C be the cell of arrangement A
contained in Pt and containing xt. C distinguishes between pi and pt, so qC,t is still
in the active set Q — a contradiction.

Next we establish an upper bound on the length of the path determined by Strat-
egy MDL. Because the strategy always directs the robot to a probing site that elim-
inates one or more elements from H, the robot makes at most k − 1 trips from its

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 599

initial location to a sensing point and back. To show that each round trip has length
at most d, we consider how a robot traveling along an optimal verification tour L
would rule out an arbitrary incorrect hypothetical location pi. Then we consider how
Strategy MDL would rule out pi.

Consider a robot traveling along tour L that eliminates each invalid hypothet-
ical location at the first point x on L where the visibility skeleton of x relative
to the invalid hypothetical location differs from the visibility skeleton of x relative
to Pt.

Let x be the first point on L where the robot can eliminate pi. The point x must
lie on the boundary of some cell C in the arrangement A that distinguishes pi from pt.
Cell C generates a reference point qC,t ∈ Q, and dt(qC,t) ≤ dt(x). Since pt is the true
initial location of the robot, the distance dt(x) is no more than the distance along L
of x from the origin, as well as the distance along L from x back to the origin. Thus
dt(qC,t) is no more than half the length of L.

At the moment Strategy MDL directs the robot to move from the origin to the
probing site where it eliminates pi, both pi and pt are active, so point qC,t is active
since it distinguishes between them. At this time Strategy MDL directs the robot to
travel along path∗(q∗). By definition, the length d∗(q∗) of this path is the minimum
over all dj(q) for active pj ∈ H and q ∈ Q. In particular, since point qC,t is still
active, d∗(q∗) ≤ dt(qC,t), which is no more than half the length of L. Therefore,
Strategy MDL directs the robot to travel along a loop from the origin to some probing
position where the robot eliminates pi and back, and the length of this loop is at
most d.

Using the definition of competitive ratio given in section 1, Theorem 5.2 can
be stated as “Strategy MDL is (k − 1)-competitive, where k = |H|.” Note that if a
verifying path is not required to return to its starting point, the bound for Theorem 5.2
becomes 2(k− 1)d. Note also that even if the robot were continuously sensing rather
than just taking a probe at the end of each path path∗(q∗), a better bound could not
be achieved. This is because the robot always goes to the closest point that yields
useful information, so no point on path∗(q∗) before q∗ will allow it to eliminate any
hypothetical locations.

COROLLARY 5.3. The weighted height of the localizing decision tree constructed
by Strategy MDL is at most 2(k−1) times the weighted height of an optimal localizing
decision tree for the same problem.

Proof. Consider the decision tree of Strategy MDL. Let ph denote the initial
location associated with the leaf that defines the weighted height of the tree. The
weighted height of the tree is thus the distance Strategy MDL will direct the robot
to travel to determine that ph is the correct initial location, and by Theorem 5.2 this
distance is at most k − 1 times the minimum verification tour length for ph. But the
minimum verification tour length for ph is at most twice the weight of a path from
the root to ph in an optimal localizing decision tree, which is at most the weighted
height of the tree. The result follows from these inequalities.

If the robot is required to return to its initial position, the bound on the weighted
height of the localizing decision tree constructed by Strategy MDL drops to k − 1.

It should be clear from the discussions in sections 4 and 5 that Strategy MDL can
be computed and executed in polynomial time. In this paper, we do not comment
further on computation time as there are many ways to implement Strategy MDL.
Also, if travel times are large compared to computation times, the importance of our
results is that they obtain good path lengths.

600 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

.. .

..

.

FIG. 5.1. Part of the map polygon that gives lower bound. Not to scale: d >> ε, δ.

5.3. Lower bounds. In Corollary 5.3 we proved that the weighted height of the
localizing decision tree built by Strategy MDL is no greater than 2(k − 1)d, where
k = |H| and d is the weighted height of an optimal localizing decision tree. This bound
is also a lower bound for Strategy MDL, as illustrated in Fig. 5.1. Consider a map
polygon that is a staircase polygon with k+2 stairs, such as the one in Fig. 3.1, where
each stairstep except the first and last one is similar to the one shown in Fig. 5.1. Each
such stairstep has k protrusions placed in a circle, with the end of each protrusion a
distance d from the center of the circle. In each stairstep a different protrusion has
its end extended, which uniquely identifies the stairstep. Each stairstep also has a
longer protrusion, with k smaller protrusions sticking out of it. One of these smaller
protrusions is extended to uniquely identify the stairstep. The first small protrusion
is a distance d+ ε from the center of the circle, and the last one is a distance d+ ε+ δ
from the center of the circle.

For this map polygon, if the robot is initially placed in the center of the circle on
one stairstep, Strategy MDL will direct it to travel up the k protrusions of length d
until it finds one that has a longer piece at the end, or until it has examined all but
one of these protrusions. In the worst case the robot will travel a distance 2(k − 1)d.
An optimal strategy would direct the robot to travel down the protrusion of length
d + ε + δ and examine all the small protrusions coming out of it until it found one
that was longer. In the worst case the robot would travel a distance d+ ε+ δ. Since
ε and δ can be made arbitrarily small, in the worst case Strategy MDL travels Ω(k)
times as far as the optimal strategy. Even if we used a strategy that weighted each
potential probe location with the amount of information that could be gained from
that location in the worst case, we would still build the same decision tree because
any probe location in the stairstep yields at most one piece of information in the worst
case.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 601

. .

d

.

FIG. 5.2. Part of the map polygon that shows Strategy MDL is best possible.

Although there are map polygons for which Strategy MDL builds a localizing
decision tree whose weighted height is Ω(k) times the weighted height of an optimal
localizing decision tree, there are other map polygons for which any localizing decision
tree strategy builds a tree with weighted height at least k − 1 times the length of an
optimal verification tour. Consider a map polygon that is a staircase polygon with
k+ 2 stairs, such as the one in Fig. 3.1, where each stairstep except the first and last
one is similar to the one shown in Fig. 5.2. Each such stairstep has k protrusions
placed in a circle, with the end of each protrusion a distance d from the center of the
circle, and has one protrusion extended at the end to uniquely identify the stairstep.
The vertical piece between adjacent stairsteps is longer than 2(k − 1)d.

As with the map polygon shown in Fig. 5.1, Strategy MDL will direct the robot
to explore the k protrusions of length d, and in the worst case the robot will travel a
distance 2(k − 1)d. Consider any other localizing decision tree strategy. If it directs
the robot to travel to any stairstep besides the one where it starts, then the localizing
decision tree that it builds will have weighted height greater than 2(k − 1)d. The
only way to localize the robot while remaining on the initial stairstep is to direct it
to examine the protrusions, and in the worst case the robot must travel a distance
2(k − 1)d before it has localized itself (assuming that it must return to the origin at
the end).

Since no localizing decision tree strategy can build a tree with weighted height
less than k − 1 times the length of an optimal verification tour for all map polygons,
Strategy MDL is the best possible strategy.

5.4. Creating a reduced set of reference points. The set Q of reference
points has size upper bounded by k times the number of cells in the arrangement A,
which may be very large as shown in section 4.2. In this subsection, we show that
when Strategy MDL is run with only a small subset Q′ ⊆ Q of the original reference
points, the (k − 1)d performance guarantee of section 5.2 still holds. The size of Q′

will be no more than k(k − 1).
Set Q′ is defined as the union of subsets Qi ⊆ Q, where there is one Qi for each

pi ∈ H and |Qi| ≤ k − 1. Ignoring implementation issues, we define Qi as follows.
Initially Qi is empty, and the subset of Q consisting of reference points qC,i generated
for translate Pi is processed in order of increasing di(qC,i). For each successive point
qC,i, the partition of H induced by Qi ∪ {qC,i} is compared to that induced by Qi

602 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

alone. If the subset of H containing location pi is further subdivided by the additional
reference point qC,i, then qC,i is added to Qi. Conceptually, the reference point qC,i
is added if it distinguishes another hypothetical initial location from pi. This process
continues until pi is contained in a singleton in the partition of H induced by Qi.
Since there are only k−1 initial locations to be distinguished from pi, Qi will contain
at most k − 1 points.

We denote by Strategy MDLR, which stands for Minimum Distance Localization
with Reduced reference point set, the strategy obtained by replacing set Q with Q′ in
Strategy MDL.

THEOREM 5.4. Strategy MDLR, which uses a set of at most k(k − 1) reference
points, localizes the robot by directing it along a path whose length is at most (k−1)d,
where k = |H| and d is the length of an optimal verification tour for the robot’s initial
position.

Proof. Both the proof that Strategy MDLR directs the robot along a path that
determines its initial location and the proof of the (k − 1)d bound are essentially the
same as the proofs of the corresponding results in Theorems 5.1 and 5.2 of section
5.2. The only additional observation needed is that if a reference point qC,i is used in
one of the previous proofs to distinguish between two hypothetical initial locations,
and if qC,i does not belong to set Q′, then Q′ contains some reference point qC′,j that
distinguishes the same pair of locations and that satisfies dj(qC′,j) ≤ di(qC,i). Hence,
set Q′ always contains an adequate substitute for any reference point of Q required
by the proofs of Theorems 5.1 and 5.2.

6. Conclusions and future research. We have shown that the problem of
localizing a robot in a known environment by traveling a minimum distance is NP-
hard, and we have given an approximation strategy that achieves a competitive ratio
of k−1, where k is the number of possible initial locations of the robot. We have also
shown that this bound is the best possible.

The work in this paper is one part of a strategy for localizing a robot. The
complete strategy will preprocess the map polygon and store the decision trees for
ambiguous initial positions so that the robot only needs to follow a predetermined
path to localize itself.

There are many variations to this problem which can be considered. If the robot
must localize itself in an environment with obstacles, then the map of the environment
can be represented as a simple polygon with holes. If these obstacles are moving, then
the problem becomes more difficult.

In this paper we assigned a cost of zero for the robot to take a probe and analyze
it. In a more general setting we would look for an optimal decision tree, where the
edges of a decision tree associated with the outcome of a probe would be weighted
with the cost to analyze that probe. A pragmatic variation of the problem would
weight reference locations so that those that produce more reliable percepts would be
selected first.

REFERENCES

[1] E. M. ARKIN, H. MEIJER, J. S. MITCHELL, D. RAPPAPORT, AND S. S. SKIENA, Decision trees
for geometric models, in Proc. 9th Annual ACM Symposium on Computational Geometry,
San Diego, CA, May 19-21, 1993, ACM, New York, pp. 369–378.

[2] D. AVIS AND H. IMAI, Locating a robot with angle measurements, J. Symbolic Comput.,
10 (1990), pp. 311–326.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 603

[3] E. BAR-ELI, P. BERMAN, A. FIAT, AND P. YAN, On-line navigation in a room, in Proc. 3rd
Annual ACM–SIAM Symposium on Discrete Algorithms, Orlando, FL, January 27–29,
1992, SIAM, Philadelphia, pp. 237–249.

[4] R. BASRI AND E. RIVLIN, Homing using combinations of model views, in Proc. 13th Internat.
Joint Conference on Artificial Intelligence (IJCAI-93), Chambery, France, August 1993,
Morgan Kaufmann Publishers, San Francisco, CA, pp. 1586–1591.

[5] K. BASYE AND T. DEAN, Map learning with indistinguishable locations, in Uncertainty in
Artificial Intelligence 5, M. Henrion, L. N. Kanal, and J. F. Lemmer, eds., Elsevier Science
Publishers, New York, 1990, pp. 331–340.

[6] P. BELLEVILLE AND T. C. SHERMER, Probing polygons minimally is hard, Comput. Geom.,
2 (1993), pp. 255–265.

[7] P. BERMAN, A. BLUM, A. FIAT, H. KARLOFF, A. ROSEN, AND M. SAKS, Randomized robot nav-
igation algorithms, in Proc. 7th Annual ACM–SIAM Symposium on Discrete Algorithms,
Atlanta, GA, January 28–30, 1996, SIAM, Philadelphia, pp. 75–84.

[8] M. BETKE AND L. GURVITS, Mobile robot localization using landmarks, in Proc. IEEE/RSJ/GI
Internat. Conference on Intelligent Robots and Systems, Munich, Germany, September
1994, IEEE Computer Society Press, Los Alamitos, CA, pp. 135–142. To appear in IEEE
Trans. on Robotics and Automation.

[9] A. BLUM, P. RAGHAVAN, AND B. SCHIEBER, Navigating in unfamiliar geometric terrain, in
Proc. 23rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1991,
pp. 494–504; SIAM J. Comput., 26 (1997), pp. 110–137.

[10] P. K. BOSE, Visibility in Simple Polygons, Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, December, 1991.

[11] P. K. BOSE, A. LUBIW, AND J. I. MUNRO, Efficient visibility queries in simple polygons, in Proc.
4th Canadian Conference on Computational Geometry, C. A. Wang, ed., St. John’s, New-
foundland, Canada, August 10-14, 1992, Memorial University of Newfoundland, pp. 23–28.

[12] A. DATTA AND C. ICKING, Competitive searching in a generalized street, in Proc. 10th Annual
ACM Symposium on Computational Geometry, Stony Brook, NY, June 6–8, 1994, ACM
Press, New York, pp. 175–182.

[13] E. DAVIS, Representing and Acquiring Geographic Knowledge, Pitman and Morgan Kaufmann
Publishers, Inc., London and Los Altos, CA, 1986.

[14] G. DUDEK, M. JENKIN, E. MILIOS, AND D. WILKES, Map validation and self-location in a
graph-like world, in Proc. 13th International Joint Conference on Artificial Intelligence
(IJCAI-93), Chambery, France, August, 1993, Morgan Kaufmann Publishers, San Fran-
cisco, CA, pp. 1648–1653.

[15] P. EADES, X. LIN, AND N. WORMALD, Performance guarantees for motion planning with
temporal uncertainty, Austral. Comput. J., 25 (1993), pp. 21–28.

[16] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

[17] H. A. E. GINDY AND D. AVIS, A linear algorithm for computing the visibility polygon from a
point, J. Algorithms, 2 (1981), pp. 186–197.

[18] L. J. GUIBAS, J. HERSHBERGER, D. LEVEN, M. SHARIR, AND R. E. TARJAN, Linear-time
algorithms for visibility and shortest path problems inside triangulated simple polygons,
Algorithmica, 2 (1987), pp. 209–233.

[19] L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN, The robot localization problem, SIAM J. Com-
put., 26 (1997), pp. 1120–1138.

[20] L. HYAFIL AND R. L. RIVEST, Constructing optimal binary decision trees is NP-complete,
Inform. Process. Lett., 5 (1976), pp. 15–17.

[21] R. KLEIN, Walking an unknown street with bounded detour, Comput. Geom., 1 (1992), pp. 325–
351.

[22] J. KLEINBERG, On-line search in a simple polygon, in Proc. Fifth Annual ACM–SIAM Sym-
posium on Discrete Algorithms, SIAM, Philadelphia, 1994, pp. 8–15.

[23] J. KLEINBERG, The localization problem for mobile robots, in Proc. 35th Annual IEEE Sym-
posium on Foundations of Computer Science, Santa Fe, NM, November 20–22, 1994, IEEE
Computer Society Press, Los Alamitos, CA, pp. 521–533.

[24] A. KOSAKA, M. MENG, AND A. C. KAK, Vision-guided mobile robot navigation using retroac-
tive updating of position uncertainty, in Proc. IEEE Internat. Conference on Robotics
and Automation, Volume 2, Atlanta, GA, May, 1993, IEEE Computer Society Press, Los
Alamitos, CA, pp. 1–7.

[25] B. J. KUIPERS AND Y. T. BYUN, A qualitative approach to robot exploration and map-learning,
in Proc. IEEE Workshop on Spatial Reasoning and Multi-Sensor Fusion, Los Altos, CA,
1987, IEEE Computer Society Press, Los Alamitos, CA, pp. 390–404.

604 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

[26] J.-C. LATOMBE, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA, 1991.
[27] D. LEE AND F. P. PREPARATA, Euclidean shortest paths in the presence of rectilinear barriers,

Networks, 14 (1984), pp. 393–410.
[28] C. PAPADIMITRIOU AND M. YANNAKAKIS, Shortest paths without a map, Theoret. Comput.

Sci., 84 (1991), pp. 127–150.
[29] D. D. SLEATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules,

Comm. ACM, 28 (1985), pp. 202–208.
[30] R. TALLURI AND J. K. AGGARWAL, Position estimation for an autonomous mobile robot in an

outdoor environment, IEEE Trans. on Robotics and Automation, 8 (1992), pp. 573–584.

