
Shape Description and Classification
using the Interrelationship of Structures
at Multiple Scales !

Gregory Dudek

McGill Research Centre for Intelligent Machines, McGill University, Montreal, Quebec,
Canada H3A 2A7

Abstract. This paper deals with the classification of objects described by pla-
nar curves in an image. Invariance to deformation is an important aspect of
shape representation and two representations are described with different de-
grees of such invariance. One of these is a new statistical method for shape
description exhibiting a large degree of such invariance.
Using scale-space to describe shape statistically allows for a texture-like form

of object classification. The scale-space used is one based on curvature-tuned
smoothing (CTS). This allows a curve to be represented as a set of descriptors at
various scales. The spatial correlation of these descriptors produces a statistical
description of a contour that has similarities to a large-scale texture measure.
The texture being measured is, in fact, the combination of substructures that
define the object’s shape.
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1 Introduction

For the purposes of object recognition, an object’s shape is its most impor-
tant characteristic. Computational approaches to shape-based recognition have
largely focused on shape matching based on shape similarity as a template-like
matching process combined with a limited amount of deformation (notwithstand-
ing several exceptions noted below). Vision-based object recognition amounts to
a process of finding the exemplar shape from a library of models whose contours
best match the input shape according to some distance measure. This approach
fails to describe the alternative types of shape-based recognition that is per-
formed by humans. Consider the recognition of 2-dimensional objects such as
the silhouettes of clouds or plants: such objects are eminently recognizable from
their silhouettes but are often highly dissimilar in any template-like sense.
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1.1 Representational Constraint

Despite its intuitiveness, the concept of what it means for objects to have similar
shapes is surprisingly hard to define. This may be, in part, because there are
multiple mechanisms that contribute to the concept of shape [8, 24].
Computationally, there are several classes of shape-description techniques

which can be organized along a continuum or taxonomy according to their de-
gree of representational shape constraint; that is, the degree of spatial freedom
they permit in individual parts (or sub-parts) of an object without change to
the representation (or the deformation invariance properties). Template-like rep-
resentations are the most constraining allowing almost no deformation in an
object’s shape [3], metric representations with parameterized deformation are
somewhat less constraining [20, 14], representations based on feature topology
are less constraining still [1], and finally statistical shape description, a method
described below, captures shape properties with extremely little positional con-
straint on the individual sub-shapes or features.
Two matching methods along this continuum are presented based on the same

input primitives. One method is a minimum-deformation matching method, the
other is a new method for shape description and representation based on statis-
tical properties of an object’s shape. The complex relationship between spatial
scale and object structure has become apparent in attempts to describe object
shape computationally [25, 4, 15, 12]. The statistical shape-recognition method
exploits the multi-scale aspect of object shape by describing objects in terms of
the interrelationship between different shape features at a single location of an
object contour. This leads to an object similarity measure that associates objects
having similar structural properties even when they are dissimilar in a template
matching or part-by-part sense. The notion of statistical shape properties and
the relationship between different scales has some similarities to a texture mea-
sure [16, 18]. A key difference from conventional microtexture descriptors [23, 9]
is that the primitive features here are large-scale shape primitives.

2 Curvature-scale-space Description

Shape primitives can be extracted using a variational method called
curvature-tuned smoothing [5, 6]. This description has its basis in curvature
measurements [2, 13], and tolerates sparse data or noise [19, 22]. The multi-scale
nature of the representation allows multiple alternative descriptions for portions
of a curve to be retained. It produces a description of a curve where a single
region may be described in terms of one or more arcs of different curvatures (of
one or more sizes), and hence makes the information at different spatial scales
explicit. The term scale is used to refer to the size or spatial extent of a processing
operation or feature.
The curve representation is produced by repeatedly minimizing the following

energy functional with respect to a piecewise C2 solution u(t) = (x(t), y(t)):

E(u(t), c) =

∫ tb

ta

||u(t)− d(t)||2 + αp(u(t)) + λ(c)(κu(t)− c)2 dt, (1)



where t is the arc length, d(t) = (x(t), y(t)) is a list of initial data points es-
timating the input curve, p(x, y) is a potential function derived from the input
image (i.e. a measure of edge strength), κu(t) is the curvature of u(t), c is the
curvature tuning, α is a constant, and λ is the stabilizing constant selected as
a function of c. This solution is determined for various values of c, denoted by
ci. The first two terms constrain the solution to be consistent with an initial
input description and with image support for the curve position. The third term
expresses an a priori bias for a solution with a specific curvature given by c.
In practice, the discrete form of this equation is used:

∑

t∈data

||ui(t)− d(t)||
2 + αp(ui(t)) + λ(c)(1− li(t))(κu(t)− c)

2, (2)

where li(t) is an independent Boolean discontinuity function (line process) at
each scale. Discontinuities are progressively inserted at each scale to satisfy a
smoothness criterion.
For each value of the tuning parameter, a slightly different solution curve u(t)

is produced that reflects structure. This combines smoothing of the input data
akin to that of active contours models (i.e. snakes [11]), with model fitting at
multiple scales although the process can also be used directly on a parameterized
input curve (i.e. with α = 0) [6].
The use of multiple alternative stabilizers for curvature-tuned smoothing

leads to selecting not only various structures at different curvatures, but also
structures with different spatial extents. Low curvature segments are components
of circles with large radii. Conversely, the segments selected when the curvature
tuning is large must also have large curvatures. As a result, differently tuned
stabilizers lead to different sets of discontinuities that decompose the curve into
different segments.

Fig. 1. Poison sumac leaf and scale-space.

The description of the poison sumac leaf (object s1) extracted using curvature-tuned
smoothing. Segments corresponding to certain features on the leaf illustrated.



2.1 Abstraction into Segments

From the set of arc-like segments produced by the minimization operations it
is possible to extract a small subset of the segments with high smoothness as a
simplified description [7, 6]. These are the segments that best match the input
data since their low energy implies that they had to deform least to suit the data
(such a description is shown in Fig. 1). The segments themselves are sections
of approximately uniform curvature, yet together they capture most of a curve’s
structure. The structure of each segment is so simple that it is unnecessary to
retain all the internal point locations. As a coarse description the curve segments
can be encoded only by their initial and final positions (tIj and t

F
j ) and the

curvature tuning c used to extract them. This encoding will be referred to as the
segment descriptor for a segment j:

sj = (t
I
j , t
F
j , cj). (3)

The set of segment descriptors for an object o constitutes its description S(o):

S(o) =
⋃

j

sj . (4)

.

3 Matching with Deformation

Dynamic programming is one of the techniques used to match curves based
on a sequence of extracted primitives such as those described above [10]. By
constructing a matching function that ensures that matched curves have the
same sequence of (multi-scale) primitives, matching is made insensitive to local
deformations in a curve. For two segments s1 and s2 the mismatch is measured as
〈s1, s2〉s = w1| log c1− log c2| + |l1− l2|, where w1 is a constant and l1 and l2 are
the segment lengths (|tIj− t

F
j |). Note that logarithmic weighting is applied to the

curvature components to impose a preference for coarse-scale information [25].
Curve matching can be formulated as a dynamic programming problem in

terms of matching an increasingly long subsequence of segments from one curve
to a series of segments from the other. Invariance to the initial position on either
curve can be achieved by doubling the series of tokens and looking only for
a substring of half the total length [6]. This has been demonstrated using an
algorithm that constructs an incrementally expanded table of costs such that
for two curves composed of segments, entry C(i, j) in the cost table reflects the
match the first i segments from one curve makes with the first j segments from
the other. The process of matching one contour with another is then a process
of executing the dynamic program for an observed data set against the set of
models.
This procedure has been shown to be appropriate for matching curves that

are noisy versions of one another or that have undergone a limited amount of
deformation [6]. For pairs of curves that have significant structural variations



with respect to one another, there will be substantial mismatch error. For many
natural processes structural variations may be present at a global level while
sub-parts and local structures are similar. It has been suggested that one way
in which this can occur is when local generative processes at different scales are
combined in a pseudo-random or non-rigid manner [17, 25]. In such cases the
alternative approach described below may be appropriate for shape recognition.

4 Statistical Measurement

Conventional approaches to curve recognition using local characteristics, such
as the one described above, are based on determining the position of features
on a curve and then using the position or spatial topology of these features for
recognition. The approach described here as scale-space statistics is an alterna-
tive to using the relative locations of features on a curve for object recognition
or classification.
At a given scale, the ease with which a curve can be described as having

a given curvature c can be considered as a one-dimensional signal similar to a
goodness-of-fit and will be denoted by

φ(t, c) ∈ 0, 1 (5)

that varies along a curve. A simple form of φ(t, c) is a binary function that
indicates whether any segment descriptor having curvature c spans point t:

φ(t, c) =

{
1 iff ∃ sj = (tIj , t

F
j , c) ∈ S(o) and t

I
j ≤ t ≤ t

F
j ,

0 otherwise .
(6)

By observing the mean value φ(c) of this function, we can describe “how much”
of a contour can be well-approximated at the given curvature.
The similarity between the one-dimensional functions φ(·, c) for different val-

ues of c indicates the inter-relationship between the different-scale substructures
that make up the curve at each point. As noted above and in the texture lit-
erature, specific statistical interrelationships are characteristic of many shapes
including a variety of natural forms. Common examples include the trunks of
trees, typified by a large-scale cylindrical curve combined with fine-scale bark
patterns, geological formations, or the way the bumps and ridges on the leaves of
a tree are combined. Note also that many objects are recognizable even though
the sequence of sub-curves that compose them may be highly variable (Fig. 2).
The cross-correlation matrix C has elements defined by

Cij =

∫
(φ(t, ci)− φ(ci))(φ(t, cj)− φ(cj))

σφ(ci) σφ(cj)
dt (7)

between this value at one curvature and the value of this function at another
curvature. It provides a measure of what types of substructure in curvature space
occur within a structure at another scale. This corresponds to taking a slice of



Fig. 2. Statistically similar objects. The first two coastal curves are similar in a struc-
tural or statistical sense, yet they cannot be globally deformed into one another easily;
the third is different.

Fig. 3. Sample input curves. Left to right, top to bottom: r1 (raspberry), m1 (maple),
a9 (unknown), r2 (raspberry).

the scale-space for a fixed position and measuring the statistical likelihood of
features at one scale given the presence (or absence) of features at another scale.
Together, the vector φ and the matrix C provide a statistical description of

a curve which is similar to a texture measure for an intensity pattern. Whereas
texture is often measured by decomposing a signal into different components
such as bandpass channels [23, 21], the statistical shape measure presented here
relates texture to the goodness-of-fit of shape operators at different curvature-
based scales.
For appropriate classes of shapes, these statistical scale-space measures can

be used directly for shape matching. The simplest such shape measure for two
shapes o1 and o2 being compared is

M(o1, o2) =
C1 · C2
||C1||||C2||

, (8)

where · denotes the dot or inner product. Shapes with identical scale-space statis-
tics thus match with value 1, while unrelated shapes have a match score of zero.
Since C1 and C2 have uniform diagonals caused by autocorrelation,M has

a positive offset. Cross-talk between the responses at different scales leads to a
consistent positive bias for near diagonal elements as well. This off-diagonal cou-
pling across scales, however, cannot readily be estimated a priori and depends



      

   

Fig. 4. Scale-space correlation surfaces. Three scale-space correlation surfaces for three
different curves from the previous figure (leaf silhouettes). Curvature tuning (or scale)
varies along each axis and the amplitude at any point reflects the correlation between φ
signals for the two curvatures. The top two surfaces are from two different leaves of the
same type (examples r1 and r2 at different orientations in depth). The lower surface is
from a different type of leaf (example a9); note its qualitatively different profile.

on non-linear discontinuity effects in the original solutions. Hence, an additional
heuristic is of utility: elements (correlations) of C that are well off the diagonal,
corresponding to correlations between signals well separated in scale, can be more
heavily weighted. This is further grounded in the observation that, in general,
structures at different scales are independent except where non-accidental pro-
cesses lead this to be otherwise; hence such structural correlations are especially
salient [26, 17].
Hence, we have a refined measurement of the form:

Mw(o1, o2) =
C1 'W · C2 'W

||C1 'W || ∗ ||C2 'W ||
, (9)

where ' denotes the Hadamard product (C(i, j)∗W (i, j)) and W is a weighting
matrix of the form:

W (i, j) = 1− e−|i−j|. (10)

In this way, an improved signal-to-noise ratio for the matching task is obtained.

5 Results

The results of matching particular contours (e.g. object m1 of Fig. 3) to sev-
eral others are tabulated below, each to two significant figures (the first letter



indicates the leaf species, the numerical suffix indicates the example; m and r
species are intuitively similar):

CurveMw(m1, ·)Mw(t1, ·)Mw(a9, ·)
m1 1.0 0.65 0.29
m2 0.79 0.72 0.44
r1 0.73 0.87 0.24
r2 0.71 0.78 0.17
s1 0.65 0.54 0.21
t1 0.65 1.0 0.086
a9 0.29 0.086 1.0

Note that the m1 and r1 contours and their deformed versions are rated
similar to one another while other contours have much lower scores.
The statistical representations C and the matching function Mw describe

the relationship between structures of different types without regard for the
precise spatial arrangement of the structures. For example a large bump may
equivalently contain several concavities without regard for the positions of the
concavities with respect to one another. This form of view invariance has both
advantages and shortcomings. A disadvantage of this coarse abstraction of a
curve’s shape is that it is insensitive to a large variety of possible variations in
the object, in particular those that are obtained by reordering the major sections
of the shape. On the other hand, this abstraction permits measurement of the
the similarity between different shapes that have the same cross-scale structure
because they are composed of the same building-block parts, but in different
numbers or arrangements. For example, various natural forms such as cloud
types are typified by the combination and co-occurrence of particular forms at
multiple scales, for example lobes with serrations, whereas the specific spatial
arrangement of the forms is highly variable. In essence, this simple shape mea-
surement is best suited to classes of objects where a small number of interacting
generative processes are responsible for each object, and each of these processes
can be typified as creating subshapes at a particular scale but with random or
hard-to-typify spatial arrangements. This characterization appears to be appro-
priate for many types of natural form such as rocks, leaves, microscopic particles,
and clouds.

6 Conclusion

The use of a collection of curvature-based minimizing operators, which are
termed collectively curvature-tuned smoothing, has been previously developed
to address several difficulties with existing approaches to smoothing, interpola-
tion, segmentation, and curve description. Using this representation as input,
techniques for describing and recognizing objects via the sequencing of descrip-
tors along the curve and via the correlation statistics of the descriptors in this
space have been outlined.



The statistical method provides a notion of recognition based on structural
regularities in shape rather than direct point-to-point similarity. As such, it
allows objects to be recognized or deemed alike even when they have no identical
sub-contours. Because the primitive elements in this description (bumps and
valleys) are perceptually and functionally salient, the shape-similarity space can
be described in intuitive or generative terms (for example it can be related to
processes that produce bumps and valleys). Statistical shape description can
also be formulated in terms of alternative primitive shapes if this is appropriate
to specialized domains. This particular class of similarity appears well suited to
the recognition of certain classes of biological and geological forms where the
structural characteristics are common to the class, but individual members vary
in terms of their particular layout.
The two matching techniques presented illustrate very different positions

along a proposed continuum for the classification of shape matching methods.
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