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Abstract—We address the problem of path planning for
robot missions based on waypoints suggested by multiple
human users. These users may be operating under distinct
mission objectives and hence suggest different locations for the
robot to visit. We formulate this problem using a constrained
optimization approach by imposing various operational con-
siderations, such as the robot’s maximum traversable distance.
We then propose an approximative path planning algorithm
with parameterized control over the degree of “social fairness”
in the selection of waypoints from different users. Through
a user study, we compared the performance of the proposed
path planner under different fairness settings and for different
mission scenarios.

Keywords-waypoint-based path planning; multi-human-
single-robot system; constrained optimization; social fairness.

I. INTRODUCTION

We propose a robot path planning algorithm that achieves

coverage of waypoints within a bounded region, where

waypoints are issued by multiple human users. The robot’s

path is constructed using one of several waypoint selection

strategies, while adhering to various operational constraints

such as the maximum traversable distance within a single

session. Our solution aims to satisfy all users, even for cases

where the provided sets of waypoints may differ drastically

from one another. This path planner is suitable for situations

where the robot cannot visit all of the specified locations in

a single session; this may arise when the combined coverage

region well exceeds the robot’s operational range, or when

the users are driven by conflicting mission objectives.

This type of supervisory tele-robotic setup can be po-

tentially applied to a wide variety of applications, most

notably including search and rescue, and planetary explo-

ration. In these contexts, it is often practical to delegate

the task of identifying mission objectives to human experts.

For instance, our research group is interested in applying

this path planner to a heterogeneous multi-robot system

for assisting marine biologists in the study of coral reefs.

Specifically, our robotic aircraft carries out coverage of the

target reef region [1] while streaming live aerial footage to

off-site scientists. These scientists then identify locations for

further inspection, based on their expert domain knowledge

and field experience of coral reefs. Using the proposed

planning algorithm, we can compute a mission path for our

underwater robot [2] to collect up-close footage at as many

of these sites as possible during a single session, so as to

deliver the data back to the biologists in a timely manner.

In this work we present mathematical formulations for

the length-constrained path planning problem using way-

point input from multiple users. We then show that these

Constrained Coverage Planning and Discrete Constrained
Coverage Planning problems are NP-hard. This motivates

the primary contribution of our work, which is a socially-

driven approximative planning algorithm for covering as

many of the users’ points as possible while adhering to

mission-critical constraints, namely the maximum length of

the trajectory, and the robot’s given starting and ending loca-

tions. A key novelty of this planner is its parametric control

over the degree of social fairness of the generated path, in

other words, whether the robot’s trajectory will cover an

evenly distributed or imbalanced subset of waypoints from

each user. More specifically, our planner can be configured

to select waypoints based on the following strategies:

• elitism: where the path covers locations submitted by a

subset of users predominantly;

• egalitarianism: where the path visits an almost equal

number of locations selected by each and every user;

• nearest neighbor: where the goal is to simply cover as

many nearby waypoints as possible.

We further present an evaluation of this collective path

planning algorithm through a user study. In this study,

participants first select waypoints over a bounded terrain

map, while adhering to one of several mission scenarios. In a

follow-up stage, users provide relative preferential rankings

for robot paths generated using multiple parameterizations

of our socially-driven planning algorithm. These rankings

are then used to compare the performance of our waypoint

selection strategies for a variety of mission setups.

II. RELATED WORK

Many research groups have studied human-robot systems

where the task of identifying the robot’s mission objectives is

delegated, or crowdsourced, to human experts. For instance,

Bitton and Goldberg [3] proposed a mixed-initiative con-

trol system for multiple Unmanned Aerial Vehicles (UAV)

to conduct search of a stationary target. Their simulation

framework allows human operators and automated agents

to collaboratively define search locations within a bounded
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region. Their algorithm then computes an optimal target-

to-UAV assignment by minimizing the total number of

search iterations. Another related work involves a multiple-

operator-single-robot setup where the robot is controlled via

a spatial voting scheme based on live camera feedback [4].

The authors applied an interval clustering method to fuse

waypoints from different humans into a single aggregated

robot command. One possible outcome of this technique is

that the robot may not ever satisfy requests from a sub-group

of users, which is an aspect that is addressed by our current

work.

Cummings et al. [5] studied the benefits of allowing a

human operator to adjust robot paths that are generated using

a planning algorithm, within the context of lunar exploration.

Their user study revealed that the improvements to the path

quality varied depending on the evaluation criterion used by

the human, be it the duration, distance, terrain slope, or fuel

limitations of the path.

A similar body of work addresses the problem of shared

control over a pan-tilt streaming video camera, which has

been studied by Song et al. [6] and by Liu et al. [7].

Furthermore, several groups [8], [9] have evaluated crowd-

sourcing as a viable alternative to solving challenging visual

recognition problems within robotic systems.

Finally, the collective path planning problem in this

work is related to multi-armed bandit problems [10], [11]

and exploration-exploitation-style planning strategies that

attempt to maximize the utility of the bandit or path given

a limited number of trials. A key difference however is that

these problems in general allow the plan to be revised based

on updated observations, whereas our formulation leads to a

fixed path that is carried out by the robot without alterations.

Similar off-line planning problems have been studied in the

area of constrained network routing [12], and, in addition,

various randomized planning algorithms [13] have been

applied to off-line exploration-exploitation schemes [14].

III. COLLECTIVE PATH PLANNING PROBLEMS

We consider a multiple-user-single-robot setup where the

robot’s role is to visit and collect data at various locations

of interest using an omni-directional sensor. Given a map of

the bounded operational region, each human user is tasked

with identifying locations of interest for the robot to visit,

based on a given mission objective that might differ among

users. As a result, these sets of locations could potentially be

dissimilar and far from each other, due to varying selection

criteria, priorities, and preferences. Despite this, we would

like to compute a path that allows the robot to cover as many

of these locations as possible within a single session.

A. Constrained Coverage Planning

We begin by presenting a generalized version of the

problem, which we refer to as Constrained Coverage Plan-
ning (CCP). Formally, we assume that users i = 1..m have

corresponding interest functions Ii(x,y), whose range is [0,1]
over a common and bounded 2-D Cartesian map M. In order

to compare different users’ interests, we also require that

these functions be normalized:

∫∫
M

Ii(x,y)dxdy = 1 for all i = 1..m

Next we denote s and t as the starting and ending positions

of the robot’s path, which are assumed to be given as part of

the mission setup. We also assume that the robot is equipped

with an omni-directional sensor with fixed radius r.

The objective of the CCP problem is to find a path P in

Cartesian space that satisfies the following conditions:

(I) the collective user interest covered by P is maximal

among all possible paths from s to t;
(II) P starts at s and ends at t; and

(III) the Euclidean arc length of the path P is less than a

given maximum distance threshold L.

To express (I) mathematically, we define Pr as the area

around the path obtained by dilating1 P by r. Finding

a path P that maximizes the collective user interest thus

corresponds to solving the following optimization problem:

argmax
P

m

∑
i=1

∫∫
Pr

Ii(x,y)dxdy (1)

In order to generate a feasible path that the robot can execute

within a single session, our optimization objective must

adhere to pragmatic constraints, namely (II) and (III). The

former condition covers setups where the robot is exploring

a region while on route to a final destination, as well as other

missions where the robot surveys its surroundings and then

returns to the home base. Constraint (III) is motivated by the

limited battery life of certain types of robotic vehicles. We

make the simplifying assumptions that the omni-directional

sensor is operating continuously and that the robot is moving

at a fixed speed. Consequently, we can empirically derive the

maximum distance, L, traversable by a given robotic vehicle.

B. Discrete Constrained Coverage Planning

In order to solve Eq. 1, each user must provide their

interest values Ii(x,y) over all positions within the bounded

operational region. In general this process is tedious and

impractical, especially for cases where there are many

concentrated sub-regions with high levels of interest. We

thus propose the Discrete Constrained Coverage Planning
(D-CCP) variant of the problem, where instead of querying

for Ii(x,y) directly, we elicit from each user i = 1..m an

unordered set of points Si that corresponds to a sample-based

approximation of their underlying interest function Ii(x,y).
This sample-based approximation can be expressed as:

1In other words, Pr is the Minkowski sum of P with a disk of radius r.
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Ii(x,y)≈
⎧⎨
⎩

1
|Si| if (x,y) ∈ Si

0 otherwise

⎫⎬
⎭ (2)

This discretization allows us to formulate D-CCP as a

graph-based planning problem. Specifically, we consider a

complete graph G = (V,E) overlaid on top of the Cartesian

map, where the vertices are V = {s, t}∪S for S = ∪i Si, and

where edges are weighted by the Euclidean distance between

their two endpoints. For instances of the problem where the

robot’s sensing range happens to be significantly smaller

than the distance between vertices in G, the optimization

formulation in Eq. 1 then reduces to finding a path P on

G that visits the maximum number of unique nodes in V ,

while adhering the constraints (II) and (III).

We now define 1[v∈Pr ] ∈ {0,1} as the indicator variable

that is equal to 1 iff node v is covered by Pr, and we

also define 1[(u,v)∈P] ∈ {0,1} to be 1 iff edge (u,v) ∈ P.

Furthermore, we denote d(u,v) to be the Euclidean distance

between the points u,v∈V . These are used in the constrained

optimization formulation of D-CCP, as shown below:

max
P

m

∑
i=1

∑
v∈Si

1[v∈Pr ]

subject to ∑
(u,v)∈E

1[(u,v)∈P] d(u,v)≤ L; and

P is a simple path from s to t.
By considering only instances where points not in the

piecewise-linear path P are not covered by its dilated coun-

terpart Pr, the exact solution can be potentially computed

using an integer program. One of the key challenges with

this approach is to express the connectivity of the path using

a polynomial number of constraints, so that the construction

of the problem itself constitutes a feasible computation.

Though this issue has been addressed [15], [16] previously,

we chose not to follow the integer programming paradigm

since it does not guarantee polynomial running time.

C. Complexity Analysis

The following theorem is the main motivation for the

approximative planning algorithm that we shall present in

Section IV.

Theorem 1. Both the generalized and discrete Constrained
Coverage Planning problems are NP-hard.

Proof: Our proof involves a Turing reduction from a

version of the Traveling Salesman Problem to D-CCP and

then to CCP. It has been shown that the decision version of

the discretized Euclidean Traveling Salesman Problem (DE-

TSP) is NP-complete [17]. DE-TSP addresses the question

of whether there exists a Hamiltonian cycle of an integer
length of at most L that moves through a set of integer-
valued points, Si, based on a modified Euclidean distance

metric d(x1,x2) = �‖x1− x2‖2�.

Any arbitrary instance of DE-TSP can be mapped into

an instance of D-CCP or CCP in polynomial time. This is

achieved by first considering one of the points as the robot’s

starting and ending locations, i.e. v = s = t for some v ∈ S.

Next, we set the sensor radius r to be sufficiently small so

as to prevent implicit coverage of the additional points as

the robot moves from one point to the next in the path, i.e.:

r < argmin
a,b,c ∈ S

{
Dist(a,

−−→
b− c)

}

where Dist(a,
−−→
b− c) measures the point-to-line-segment Eu-

clidean distance, and where the argmin{·} excludes co-linear

point triplets. This can be computed in O(|S|3) time.

We can further reduce the DE-TSP instance into the

general CCP formulation by defining Ii(x,y) according to

Eq. 2. DE-TSP can thus be solved by verifying if the exact

solution to D-CCP or CCP for a given L covers all available

points. Since we have shown that CCP and D-CCP are

Turing-reducible to an NP-complete problem in polynomial

time, we conclude that they are both NP-hard.

IV. SOCIALLY-DRIVEN COLLECTIVE PATH PLANNER

We now present a greedy algorithm that produces an

approximative solution to the Discrete Constrained Coverage

Planning (D-CCP) problem. This iterative algorithm begins

by setting a candidate path as the straight line from the

robot’s starting and ending locations. Then, during each

cycle of the path construction process, waypoints that are

not in the candidate path are assigned utility scores, to be

explained below. Our algorithm repeatedly selects the point

with the highest utility and merges it into the candidate path,

until the maximum distance threshold L is reached.

These utility scores reflect a parameterized degree of

social fairness by taking into account the following factors:

• In general, to ensure coverage of the most number of

points, the increase in path length during each iteration

should be minimal. Therefore, points that are farther

away from the current candidate path should have lower

utility scores than those that are closer.

• If we prefer the equal inclusion of points from different

users, then higher utility scores should be assigned to

points belonging to users that have few points already

included in the current candidate path.

• If we instead prefer to incorporate as many points as

possible from a subset of users into the path, then the

algorithm should assign higher utility scores to their

points that are closer to the current candidate path.

• If we do not consider the fair or biased distribution

of each user’s points, then the utility scores should

be inversely proportional to the distance between each

point to the candidate path.

Based on these guidelines, if in the k-th iteration the algo-

rithm has a candidate path Pk, then for the next iteration we
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define the following utility assignments for the remaining

unvisited points v ∈ Si belonging for a given user i:

U(v) =
( |Si ∩ Pk|

∑m
i=1 |Si|

)− f
1

Dist(v,Pk)
(3)

where Dist(v,Pk) is the Euclidean distance2 between the

point v and the piecewise-linear candidate path Pk.

This utility scoring scheme is configurable via a social
fairness parameter f : when f = 0, the algorithm behaves

in a “nearest neighbor” (NN) setting, where the next point

to be inserted is the one closest to the current candidate

path, regardless of which user it comes from. When f > 0,

then the choice of the next point will be among those from

users with the least number of points already included in

the candidate path, provided that the distances to said points

are small. This parameter setting reflects an “egalitarian”
(EG) strategy. In contrast, when f < 0 then users with the

most points already included in the candidate path will be

preferred, provided that their unvisited points are close to

the candidate path; this reflects an “elitist” (EL) strategy.
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Figure 1. Ratio of the utility scores U(v2)/U(v1) for two users, plotted
against the social fairness parameter q and the ratio of the closest-point-to-
path distances d1,d2. The solid purple curve depicts the decision boundary
for which user’s point is chosen by our algorithm.

Fig. 1 illustrates which of two users’ closest waypoint

to the candidate path is selected by our algorithm as we

vary the fairness parameter f and the ratio of the distances

d1,d2 of these waypoints. In this setup, we assume that the

first user has more waypoints already in the candidate path

than the second user. The decision boundary is located at
d1/d2 = 1 for the nearest neighbor setting ( f = 0), and this

boundary is shifted to be more or less favorable to the user

with the fewer number of chosen waypoints as f increases

or decreases from 0.

2Also, to handle cases where |Si ∩ Pk|= 0, in practice we add a small ε
to both the numerator and denominator in Eq. 3 to avoid division by zero.

Algorithm 1 Socially-driven collective path planner

Inputs: Disjoint sets S1,S2, ...,Sm ∈ S of each user’s points;

robot’s starting position s and ending position t;
maximum path length L, where L≥ ‖s− t‖2; and

degree of fairness f ∈ R.

Output: An ordered sequence of points P from s to t.

P← (s, t)
pathAugmented← true

V = S∪{s, t}
while pathAugmented do

pathAugmented← false

Φ←V \P
while Φ 
= /0 do

φ ← argmax
v∈Φ

U(v)

if length(P∪{φ})≤ L then
P← P∪{φ}
pathAugmented← true

break
Φ←Φ\{φ}

return P

V. USER STUDY

We conducted a user study to determine which way-

point selection strategy would result in the highest user

satisfaction, in terms of maximizing coverage based on

their assigned mission objectives. We hypothesize that no

single strategy will always out-perform others in all possible

scenarios, since we suspect that the performance of a given

planner configuration (i.e. value for f ) will depend on the

similarities of the different users’ interest functions Ii(x,y).
Various characteristics of a mission setup can affect the

similarity of different users’ Ii(x,y). One key characteristic

is the spatial concentration of the objective regions: if the

most relevant regions for a given objective are concentrated

within small and isolated areas, then the users’ waypoints

would be likely to be spatially similar. On the other hand, if

these regions span across relatively large areas, then it is less

certain whether users would select waypoints that are close

to each other. Another prominent factor is the specificity in

the wording of the task objective. In particular, a precise and

objectively-defined objective criterion would be more likely

to lead to sets of similar waypoints, in contrast to a vaguely-

defined objective that would require interpretation from each

user. Furthermore, situations where the robot is time-shared

by several groups of users with different agendas may also

result in disparate waypoint sets.

A. Experiment Setup

To determine the effects of the aforementioned mission

characteristics on the performance of our waypoint selection

strategies, we devised the following missions:
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(a) Life on Mars scenario (b) Coral Reef Survey scenario

Figure 2. Waypoints submitted by 44 users, depicted as distinctly-colored circles, (a) for the Life on Mars scenario, where the objective is to inspect
large craters; and (b) for the Coral Reef Survey scenario, where the goal is to identify colorful corals. The Mars satellite map is courtesy of Google Earth
and partners (ESA/DLR/FU Berlin, Image NASA / USGS); the stitched reef photo is courtesy of Katrine Turgeon. (Note: color images.)

(1) Life on Mars: Given a satellite map of a region on

Mars, users are tasked to pinpoint locations for a rover

to explore, in the search for signs of life. Users are told

to assume that there is higher likelihood of finding life

signs in large craters.

(2) Coral Reef Survey: Given a stitched map of a coral

reef, the mission objective is to catalog fish species

near colorful corals using an autonomous underwater

vehicle with a downward-facing camera.

(3A) Search and Rescue: Users are informed of an injured

person who is on the roof of a tall building within an

urban area. The objective is thus to identify possible

locations for an unmanned aerial vehicle to inspect, in

search of this individual.

(3B) Insect Survey: While provided with the same urban map

as in (3A), users are asked to identify green spaces such

as trees and terraces, so that a quadrotor can catalog the

insect population near these locations.

We conducted a number of trials where we asked users

to mark 10 locations of interest over a given map. We then

divided the user base into two groups, and fed the waypoints

for each user group into our socially-driven planner. Specifi-

cally, our algorithm generated paths using 4 fairness settings:

egalitarian (EG, f = 40), nearest neighbor (NN, f = 0),

nearest elitist (NE, f = −2), and elitist (EL, f = −40).

Whereas the first two pair of trials involved missions (1)

and (2) respectively, the third pair of trials was designed

specifically to elicit distinct interest functions Ii(x,y), by

combining waypoints from half of the users for mission (3A)

and the other half from (3B). We subsequently asked users

to rank the four generated paths based on the objective of

their mission for each of the three scenarios involved. This

user study was carried out through a web-based interface for

selecting waypoints and for ranking paths.

B. Results and Analysis

Our study involved 44 participants in total that were

divided randomly into two groups of 22 users each. Each of

the two groups was asked to evaluate paths for three different

scenarios, and hence we obtained 132 path rankings in total.

As can be seen in Fig. 2, the chosen waypoints from

the majority of participants are concentrated near distinct

regions perceived to be most relevant to the mission ob-

jectives.In addition, the clusters of points in Fig. 2(a) are

more localized than those in Fig. 2(b), which is consistent

with our hypothesis that a concise and objectively-defined

mission criterion (i.e. large craters) is more likely to result

in similar interest functions Ii(x,y) as opposed to a more

interpretive criterion (i.e. colorful corals).

Fig. 3 shows the paths generated using the 4 fairness

settings for the third scenario, which involved both missions

(3A) and (3B). We observe that paths generated using the

nearest neighbor and nearest elitist strategies are the least

spread out from the robot’s starting and ending locations,

which were set to the center of the map in this user study.

Also, the egalitarian (EG) path in Fig. 3(a) covers waypoints

from a large number of users, though some of users had more

waypoints selected than others based on their proximity to

the evolving path. Furthermore, Fig. 3(d) illustrates that the

elitist path primarily covered roofs based on the waypoints

from a single user with the Search and Rescue scenario

(3A), and thus spanned across the entire operational region.

In contrast, the other generated paths visited locations of

interest for both missions (3A) and (3B), and hence were

less spread out.

Our results are in the form of lists of preferences, each

of which reflects a strictly ordered ranking (i.e. one without

ties) to the paths generated using different waypoint selec-

tion strategies.
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(a) Path generated by an egalitarian (EG, f = 40) strategy (b) Path generated by a nearest neighbor (NN, f = 0) strategy

(c) Path generated by a nearest elitist (NE, f =−2) strategy (d) Path generated by an elitist (EL, f =−40) strategy

Figure 3. Paths generated by 4 fairness configurations of our socially-driven planner, for the mixed scenario of “Search and Rescue” (3A) and “Insect
Survey” (3B). Each dilated path covered waypoints from multiple users, which are differentiated by the color of the markers. The starting and ending
locations in this trial are both located at the center of the map and are not depicted. The 3-D satellite map is courtesy of Google Earth and DigitalGlobe.

To evaluate the overall ranking for the different strate-

gies, we computed their average ranking positions and

corresponding standard deviation values across users within

each trial. In cases where all the standard deviations are

small, then the ordering established by each strategy’s mean

position provides a good indication of the aggregated user

preference.

For cases where the users provided drastically different

rankings, we determined the overall ordering using the

Kemeny-Young ranking rule [18]. This rule generates an

aggregated ranking by maximizing the number of pairwise

agreements between the solution and each user’s ordering.

The Kemeny-Young ranking also minimizes the sum of

pairwise disagreements with all the preference lists, known

as the Kendall tau distance, which is useful in reflecting the

aggregate response across users. Furthermore, this ordering

has the desirable property of satisfying Condorcet’s crite-
rion: if a specific waypoint selection strategy is preferred

over all others through pairwise comparisons, then it would

be ranked in the highest position overall.

We also applied the Friedman test to each set of rankings

for a given trial in order to assess the variability among the

rankings from different users. When the resulting p value

is smaller than a reasonable threshold (e.g. p < 0.05) we

then consider the aggregated ranking to reflect consistent

behavior across users in a statistically significant manner.

Table I presents the average and Kemeny-Young ag-

gregated rankings and the corresponding Friedman test p-

values for each of our six 22-user trials. The Kemeny-Young

rankings revealed no clear preference between the egalitarian

(EG) and elitist (EL) strategies for trials 1-22-1, 1-22-2, 2-

22-1 and 2-22-2. This is mainly attributed to the fact that

users selected very similar locations for missions (1) and

(2), as can be seen in Fig. 2(a) and Fig. 2(b). Since these

results are all statistically significant (i.e. p < 0.05), we

deduce that egalitarian (EG) and elitist (EL) strategies are

likely to be preferred in situations where users share similar

opinions on regions of interest. In these cases, our results

also suggest that the nearest neighbor (NN) and near elitist

(NE) strategies are consistently less preferred.

For the two trials involving the third scenario, which

combined waypoints from missions (3A) and (3B) (i.e. 3-22-

1 and 3-22-2), the elitist (EL) strategy emerged as the most

preferred among our users. The egalitarian (EG) strategy,

on the other hand, was not ranked consistently, though

these results were not statistically significant (i.e. p > 0.05).
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Table I
AVERAGE AND AGGREGATED PATH RANKINGS, ALONG WITH

FRIEDMAN’S TEST FOR STATISTICAL SIGNIFICANCE, FOR SIX 22-USER

TRIALS AND FOR THREE COMBINED 44-USER DATASETS.

[Scenario]- Relative Ranking Friedman
[# Users]-[Trial] (Best) (Worst) p-value

1-22-1
Mean EL EG NE NN

< 0.01
K-Y EL EG NE NN

1-22-2
Mean EL/EG EL/EG NE NN

< 0.01
K-Y EG NE EL NN

2-22-1
Mean EG NN EL NE

< 0.05
K-Y EG EL NN NE

2-22-2
Mean EL EG NE NN

< 0.01
K-Y EL EG NE NN

3-22-1
Mean NN EL EG NE
K-Y EL EG NE NN

0.06

3-22-2
Mean EL NN NE EG
K-Y EL NE NN EG

0.27

1-44-1
Mean EL EG NE NN

< 0.01
K-Y EL NN NE EG

2-44-1
Mean EL EG NN NE

< 0.01
K-Y EL EG NE NN

3-44-1
Mean NN EL NE EG
K-Y EL NN NE EG

0.06

K-Y: Kemeny-Young aggregated ranking; NN: Nearest Neighbor;
NE: Nearest Elitist; EL: Elitist; EG: Egalitarian.

This meant that different users were not consistent in their

preference orderings, which we anticipated given that half

of the participants were interested in paths covering rooftops

while the other half preferred paths near trees and grass

terraces. Whereas the elitist strategy produced paths that

addressed either mission (3A) or (3B) predominantly, the

other strategies lead to paths that attempted to satisfy the two

conflicting objectives simultaneously. Our results indicate

that users in general did not prefer the latter set of paths.

The histogram plots in Fig. 4 depict the distribution of

user preferences for each of the three scenarios, based on

preference lists from all 44 participants, In conjunction with

the corresponding orderings shown in Table I (i.e. 1-44-1, 2-

44-1, and 3-44-1), we summarize that the elitist (EL) strategy

was empirically shown to be the most preferred in almost

all the setups. Based on this finding, we observe that an

emphasis on pleasing a subset of users lead to the most

overall user satisfaction. One possible reasoning is because

the chosen waypoints are likely to be representative of a

number of other users’ interests, and thus participants who

did not have their waypoints selected may still be relatively

satisfied with the generated path. In addition, the egalitarian

(EG) strategy exhibited similar performance compared to

the elitist setting for scenarios (1) and (2), though the

egalitarian-based paths were among the least favored in

scenario (3), as seen from Fig. 4(c). We thus conclude that

in a mixed-objective situation, fully pleasing some of the

users completely is more rewarding than partially pleasing

all of the users.

Our results also indicated that the nearest neighbor (NN)

and nearest elitist (NE) settings produced paths that were

almost always least preferred among the four planner con-
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Figure 4. Histogram of rankings of each of the four algorithms by 44
users for the 3 different scenarios.

figurations. Although the nearest neighbor approach con-

structed paths that visited the most waypoints within the

robot’s operational range, user rankings indicated that these

paths were not particularly effective at achieving coverage

of the mission objectives. Our results were influenced in part

by the use of a very restricted maximum traversable lengths

L, which ensured that the generated paths could not perform

dense coverage of the entire operational region. This caused

the paths generated using the nearest neighbor strategy to be

almost always concentrated around a small locality around

the robot’s starting and ending locations. We thus conclude
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that for mission configurations where the robot’s maximum

traversable distance is limited relative to the size of the

operational region, the nearest neighbor strategy will achieve

less coverage across the entire region when compared to the

elitist and egalitarian strategies.

VI. CONCLUSION

In this paper we investigated a multi-objective length-

constrained path planning problem for human-assisted robot

mission planning. Specifically, we proved that both Con-
strained Coverage Planning (CCP) and Discrete Con-
strained Coverage Planning (D-CCP) are NP-hard prob-

lems. Consequently, we proposed an approximative planning

algorithm, which uses waypoints provided from multiple

human users to compute a path that attempts to maximize

the coverage of locations of interest towards one or more

mission objectives, while adhering to the robot’s maximum

traversable distance. This iterative planner also incorporates

an adjustable parameter that determines the degree of social

fairness in its waypoint selection strategy. We further carried

out a user study to examine the performance of these

waypoint selection strategies in different mission scenarios.

Our results indicate that an elitist selection strategy was most

favorable among the majority of users our three scenarios,

while, in contrast, the nearest neighbor strategy resulted in

the least preferred paths overall.

In future work, we plan to investigate the self-

configuration of the degree of fairness in our planner, based

on a history of generated paths on multi-robot missions that

are repeated in the same environment consecutively for many

days. We are also motivated to integrate this planner into

our heterogeneous multi-robot system for assisting marine

biologists in monitoring coral reefs.
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