
Lie Tools Package

Version 1.03

User’s Guide

Miguel Torres-Torriti

17 May 2004

1

Copyright and License for Non-commercial Use

Lie Tools Package is copyright:

c© Miguel Torres-Torriti, 2001-2004; (migueltt@cim.mcgill.ca).

Lie Tools Package is freely available at http://www.cim.mcgill.ca/∼migueltt/ltp/ltp.html.

You may freely use this software for non-commercial purposes. It may not be used for com-
mercial purposes without an additional license.

You can redistribute it and/oral modify it under the terms of this license (see details in the
license file). You must include this license and these conditions must apply to the recipient.

This program is distributed in the hope that it will be useful, but without any warranty;
without even the intended or implied warranty of merchantability or fitness for a partic-

ular purpose.

You use this software entirely at your own risk. If you choose to use this software,
by your actions you acknowledge that any consequential damage whatever is entirely your
responsibility. In no event will the copyright holder be liable to you for any damage that
could arise directly or indirectly by the use of this software, or the inability to use it.

Mapler is a trademark of Waterloo Maple Inc.

2

Contents

1 Introduction 8

1.1 Capabilities of the Lie Tools Package 8

1.2 Target Audience for the Lie Tools Package 9

1.3 System Requirements . 9

1.4 Background Information and Reference Material 10

2 Compiling, Installing and Loading the Lie Tools Package 11

2.1 Compiling LTP . 11

2.2 Installing LTP . 11

2.3 Loading LTP . 11

3 Basic Notions and LTP Formalism 13

4 Practical Applications of Lie Algebras and Groups 20

4.1 Trajectory planning and control 20

4.2 Nonlinear filtering . 23

5 Using LTP: Some Practical Examples 25

5.1 Example 1: Simplification of Lie algebraic expressions 25

5.2 Example 1: Stabilization of a rigid body in space 26

5.2.1 Step 1: Construction of the Hall basis for the Lie algebra of indeterminates L4(X̄3) 27

5.2.2 Step 2: Calculation of the right-hand side of the Wei-Norman equation 30

5.3 Example 2: Finite dimensional realization of a nonlinear filter . . 32

6 Function Reference 35

6.1 createLBobjects . 37

3

6.2 phb . 40

6.3 phbize . 46

6.3.1 posxinphb . 57

6.3.2 bracketlen . 57

6.4 simpLB . 59

6.5 regroupLB . 61

6.6 reduceLB . 63

6.7 cbhexp . 68

6.8 evalLB2expr . 69

6.9 calcLB . 72

6.10 selectLB . 75

6.11 createSubsRel . 76

6.12 codeCBHcf . 80

6.13 reduceLBT . 81

6.14 ad . 83

6.15 ead, eadr . 84

6.16 pead, peadr . 86

6.17 wne, wner . 89

6.18 wnde . 94

7 Topics for Further Improvement 98

7.1 Generation of a k-th order CBH formula (cbhexpr) 98

7.2 Functions for setting-up and solving logarithmic equations automatically 98

7.3 Automatic controller design/synthesis functions 98

A Implementation Notes 99

4

A.0.1 Highlights of some Implementation Issues 100

A.0.2 Recommendations for Improvement 100

5

List of Figures

1 Results for the stabilization of the rigid body. 31

2 Control inputs sequence. 38

3 Lie bracketing tree. 42

4 Flow chart for the phb algorithm (contd. on Fig. 5). 44

5 Flow chart for the phb algorithm (contd. from Fig. 4). 45

6 Flow chart for the phbize algorithm (contd. on Fig. 7). 52

7 Flow chart for the phbize algorithm (contd. from Fig. 6). 53

8 Flow chart for the phbize algorithm (contd. from Fig. 7). 54

9 Flow chart for the phbize algorithm (contd. from Fig. 7). 55

10 Flow chart for the sign removal procedure. 56

11 Flow chart for the simpLB function. 60

6

List of Tables

1 Main functions in LTP. 35

2 Auxiliary functions in LTP. 36

3 Connections between phbize conditions and the Lie bracket properties. 49

7

1 Introduction

The Lie Tools Package (LTP) is a collection of routines whose purpose is to make
easier the task of manipulating Lie algebraic expressions arising in a variety of
problems in engineering and mathematical physics, such as the solution of right-
invariant differential equations evolving on Lie groups. Lie theory is a powerful
tool, helpful in the analysis and design of modern nonlinear control laws for
dynamical systems, nonlinear filters, and the study of particle dynamics. The
practical application of Lie theory often results in highly complex symbolic
expressions that are difficult to handle efficiently without the aid of a computer
software tool. The aim of this package is also to facilitate and encourage further
research relying on Lie algebraic computations.

LTP is implemented in Mapler and can be employed for computations
involving Lie algebras of arbitrary type as it is constructed using a free Lie
algebra of indeterminates as its base. The results obtained with the help of
LTP can subsequently be projected onto the specific Lie algebra arising in the
concrete application of interest by the use of an adequately constructed Lie
algebra homomorphism.

This document is not intended to teach the user the basic concepts in Lie
algebra and Lie group theory. Basic references to Lie theory can be found in
Section 1.4. A brief review of the basic notions and LTP formalism is presented
in Section 3.

1.1 Capabilities of the Lie Tools Package

Existing software packages, such as LiE [21] or Maple’s liesymm package [48, 49],
are very specialized and do not provide the functionality of LTP. Among other
functions, LTP greatly automates and simplifies the following computations:

• Construction of ordered bases for free Lie algebras of indeterminates (Hall
bases).

• Simplification of completely general Lie algebraic expressions with sym-
bolic coefficients.

• Composition of exponential mappings involving indeterminates by means
of Dynkin’s expression for the Campbell-Baker-Hausdorff (CBH) formula.

• Construction of the Wei-Norman equations of logarithmic coordinates of
flows on nilpotent Lie groups.

The above capabilities are unique to LTP and, to the best of our knowledge,
are not provided by other software such as, for example, the liealg package,

8

which was recently developed by Yuly Billig and Matthias Mazzag1, to perform
specific calculations involving Kac-Moody and Virasoro algebras, and their rep-
resentations.

None of the mature computer algebra systems (CAS), such as Axiom (former
Scratchpad II by R. D. Jenks and D. Yun, IBM Watson Laboratories), Derive (D.
R. Stoutemyer), Macsyma (Math Lab Group, MIT), Maple (B. Char, Waterloo
Maple, Inc.), Mathematica (Wolfram Research, Inc.) or Reduce (A. C. Hearn),
provide toolboxes with the functionality of LTP. For surveys and comparative
reviews of the different CAS, the reader is referred to [6, 46], the references
in [38], and the information on symbolic computation available through Inter-
net sites, such as the comprehensive Computer Algebra Information Network
(CAIN)2 or the Symbolic Mathematical Computation Information Center3.

1.2 Target Audience for the Lie Tools Package

LTP is intended for mathematicians, physicists, practicing engineers, as well as
for classroom use to complement the theoretical aspects with practical excer-
cises. It is assumed that the user possess some prior knowledge of the mathemat-
ical concepts in Lie algebra and group theory (for a brief review see Section 3).
In this sense, LTP may assist in communicating the Lie theory concepts to
students in an introductory Lie Theory or Advanced Control Systems course,
but it is not intended as a stand-alone introductory tool. At the same time it
is sophisticated enough to allowresearchers evaluate alternate develop control
strategies, nonlinear filters or simply perform general computations based on
Lie algebraic symbolic calculations.

1.3 System Requirements

LTP has the following operating system requirements:

• Mapler version 6 or higher is installed on your system.

• Recommended RAM memory: 32 MB RAM (the available memory on the
computer may limit the size of the problems handled by LTP).

• For reasonable response times, a computer with a Pentium 266 MHz pro-
cessor or better (or any equivalent machine) is recommended.

1The liealg package has been developed in the School of Mathematics and Statistics, Car-
leton University, and is available at http://mathstat.carleton.ca/∼billig/maple/

2http://www.mupad.de/CAIN/
3http://www.symbolicnet.org/

9

1.4 Background Information and Reference Material

The theory of Lie algebras and groups was originally conceived by the Norwegian
mathematician Sophus Lie (1842-1899) as a tool for the solution of differential
equations and has since then become a discipline in its own right. Lie theory
brings together the mathematical disciplines of algebra and geometry to produce
results relying on group-theoretic and differential geometric developments.

Important basic references in Lie algebras and group theory are the book by
V.S. Varadarajan and J.-P. Serre [43, 36]. A basic reference which is intended
to serve an audience of physicists and engineers is the book by R. Gilmore [13].
For a comprehensive review of the applications of the Lie theory also see [13]
and the book by J. G. F. Belinfante [3], which also presents a surver of some
computational methods.

Results in Lie theory have proved essential in the study of kinematical sym-
metries in both classical and quantum mechanics [9, 33], the construction of
nonlinear filters [7, 23], the analysis of dynamical systems, and the design of
feedback control laws for nonlinear systems [32, 16, 27]. The use of Lie theory
in the study of the symmetries of differential equations is described in [38] from
a practical perspective. The application of Lie theory to the analysis and control
of robotic systems is found in [27, 35, 32] and references therein.

Despite the attention that Lie theory has received in a variety of fields, it
has been limited mainly because of the complexity of the symbolic calculations,
which are often prohibitively difficult to perform by hand, and the lack of ad-
equate software capable of handling completely general symbolic Lie algebraic
expressions.

10

2 Compiling, Installing and Loading the Lie Tools
Package

The distribution of LTP already includes a compiled version of LTP and there-
fore compilation and installation are not necessary unless you decide to change
or add new procedures to the package. Note that if you decide to recompile
LTP, you must check that there do not already exist library files for LTP in
your target directory. You must delete or move the LTP library files to another
location before compiling the package.

2.1 Compiling LTP

The following steps are required for compilation:

1. Update the libname directory path in the file ltp.mws with the directory
where you wish to install your package. This is in order to not interfere
with Maple’s repository.

2. Execute the Maple archive command (march) and the savelib command
written in ltp.mws.

If you wish to recompile, then erase the old repository created for lt and re-
peat the above steps. The package can be compiled from scratch by simply
executing the whole worksheet, however the current libname path must be set
appropriately.

See the Maple documentation for further details on creating packages.

2.2 Installing LTP

LTP will be installed in the directory specified by the libname path at the
time of saving the new library (see the above section on compiling the package),
therefore nothing needs to be done, except if one wishes to relocate the library
to a different directory.

2.3 Loading LTP

To load the LTP package first ensure that the libname path has been set to in-
clude the directory where the package was stored after compilation (or to where

11

it was moved). To add a new directory to the libname path variable, simply exe-
cute: libname:="c:/YourMapleLib/lt",libname; or libname:=libname,"../../lib/"
if you prefer to use relative paths rather absolute ones. However, for the relative
paths approach to work fine your current directory must be the appropriate one,
so either you use the Maple command currentdir to set the directory or you
be sure to open the file by double-clicking on it, or launching xmaple from the
directory where the file is.

Load the library by executing the command with(lt) at the Maple prompt
“>”. Particular functions within the library can also be accessed without loading
the whole module by typing lt[function](args), e.g. lt[createLBobjects](3,4),
followed by a semi-colon or colon, the latter for silent execution of the command
(i.e. the results are not shown on the screen).

Upon loading, the symbolic Lie product operator, denoted in Maple by &*,
is defined. With this notation, the Lie product (or Lie bracket) of two inde-
terminates X and Y , traditionally denoted in the mathematical texts by the
bracket [X,Y], would be represented in Maple as X &* Y.

The & symbol preceding the * indicates the operator is a user defined oper-
ator. Instead of * we could have chosen any other symbol, letter or even word,
however since the [X,Y] is a special type of product, it seems more natural to
use the computer symbol for multiplication in the definition of our custom-built
multiplication operator. The Lie product operator &* is declared as being multi-
linear (in Maple this means that the operator distributes over the addition), and
non-associative, in other words the operator does not distributes over the Lie
product. Note that due to the latter, it is convenient to treat the operator as an
infix operator rather than using prefix notation, however this is not compulsory.

When the package is shutdown (unloaded) the &* operator is unassigned
(freed) and its properties are removed.

12

3 Basic Notions and LTP Formalism

This section provides the basic notions and formalism that constitutes a general
framework for calculations relevant to the behaviour and properties of dynamical
systems. The LTP package relies on this formalism as it is designed to aid
analysis and synthesis of systems of basically unlimited Lie algebraic structure.
In lay terms, the underlying idea of this formalism is to introduce abstract,
but precise algebraic constructs which, under adequately constructed mappings,
project directly onto the corresponding constructs acting on manifolds on which
the particular systems evolve; see for example Remark 4.1.

To this end, let {X1, . . . , Xm} denote a set of indeterminates. For brevity of
notation, let X̄m = (X1, . . . , Xm). Let A(X̄m) denote the free associative algebra
(over R) of noncommutative polynomials in the indeterminates X1, X2, . . . , Xm.
Recall that, given a set X̄m, a free associative algebra on the set X̄m over R, is an
associative algebra A(X̄m) over R, together with a mapping i : X̄m → A(X̄m),
with the following universal property: for each associative algebra A0 and each
mapping f : X̄m → A0, there exists a unique homomorphism of algebras F :
A(X̄m) → A0 such that f = F ◦ i. Members of A(X̄m) have the form of finite
linear combinations

∑

I aIXI , where the summation is over all possible multi-
indices I = (i1, . . . , ik), with ij ∈ {1, . . . ,m}, for j = 1, . . . , k, k ∈ N, in which
the coefficients aI are real numbers. Here XI = Xi1 · · ·Xik

, and XI=∅ = 1,
where, in general, XiXj 6= XjXi as implied by noncommutativity.

Let a Lie product [Xi, Xj] of two indeterminates be defined as the noncom-
mutative polynomial XjXi − XiXj . With this definition of the Lie product
A(X̄m) becomes a Lie algebra. Let L(X̄m) be the subalgebra of A(X̄m) gener-
ated by X̄m. The elements of L(X̄m) are referred to as Lie polynomials.

Further, let L̂(X̄m) denote the Lie algebra of Lie series in X1, . . . , Xm. The
elements of L̂(X̄m) are formal series of the type

∑∞
i=1 aiSi, where ai are coeffi-

cients in K and Si ∈ L(X̄m). Clearly, any element Z ∈ L̂(X̄m) can be written
as a formal infinite series

∑

I aIXI in the indeterminates X1, . . . , Xm, in which
XI is some monomial in X1, . . . , Xm and aI=∅ = 0.

For any element in Z ∈ L̂(X̄m) the formal power series

eZ =
∞∑

k=0

1

k!
Zk (1)

is well defined because 1 /∈ L̂(X̄m). Here, Zk are infinite series in the in-
determinates X1, . . . , Xm obtained by the natural multiplication rule for the
component monomials of Z, XIXJ = XI∗J , where I ∗ J is the juxtaposi-
tion (concatenation) of the components of the multi-indices I and J . The set
Ĝ(X̄m) = {eZ : Z ∈ L̂(X̄m)} is called the set of exponential Lie series in the
indeterminates X1, . . . , Xm.

13

Note that, due to the antisymmetry property and the Jacobi identity of the
Lie product, not all the elements of a Lie algebra L(X̄m) are linearly indepen-
dent. A procedure to construct a basis for any Lie algebra of indeterminates,
while taking into account the dependencies imposed by the antisymmetry and
the Jacobi identities, involves selecting some of the Lie product of X1, . . . , Xm,
which can, for example, be carried out in accordance with the rules given below,
see [32, 36, 4].

Definition 3.1 - Hall basis (HB). Let B denote the basis for L(X̄m), and
let Bi be the i-th element in this basis. Let the length (order) of a Lie product
G, l(G), be defined as the number of indeterminates in the expansion of G, also
given recursively by:

l(Xi) = 1 i = 1, . . . ,m

l([G,H]) = l(G) + l(H)

where G and H are Lie products.

Then a Hall basis is an ordered set of Lie products {Bi} such that:

1. Xi ∈ B, i = 1, . . . ,m

2. If l(Bi) < l(Bj) then Bi < Bj

3. [Bi, Bj] ∈ B if and only if

(a) Bi, Bj ∈ B and Bi < Bj and

(b) either Bj = Xk for some k or Bj = [Bp, Bq] with Bp, Bq ∈ B and
Bp ≤ Bi.

The proof that a Hall basis indeed constitutes a basis for the Lie algebra L(X̄m)
is found in [14, 36].

Remark 3.1 The basis presented above, although already know by P. Hall, was
first introduced by M. Hall [14] and pertains to one of the possible ways in
which a basis for L(X̄m) could be constructed. In fact, the above construction
was generalized by Scützenberger [34] by weakening the degree condition 2 in
Definition 3.1. Viennot, [44], further relaxed condition 2 replacing it by:

2’. If [Bi, Bj] ∈ B \ X̄m then Bi ∈ B and Bi < [Bi, Bj].

The last is so general that it includes the Lyndon basis and the Širšov basis [37],
which is not the case with the original bases of M. Hall; see [30, 24, 25] for a
comprehensive exposition of different bases constructions.

14

The choice of the above, rather restrictive, basis construction was deliberate
for the purpose of the LTP because it is the one most often used in the engi-
neering literature. Nevertheless, it is worth noting that other bases construction
using condition 2’ instead of 2 could prove more advantageous in applications
for which a particular choice of coordinate system is desirable.

With regard to the algorithmic implementation of the package, a choice of
Lyndon basis would possibly offer some advantages. A Lyndon basis is defined
as a set of alphabetically ordered Lyndon words over a given alphabet A (which is
defined as a set of letters). A Lyndon word is any nonempty, finite sequences of
letters which precedes all its nontrivial proper right factors in any alphabetically
ordered set on A; i.e. w is a Lyndon word if for each nontrivial factorization
in terms of sub-words u and v, w = uv, the word w precedes v. From Theo-
rem 5.1 in [30] it follows that each element of the Lyndon basis can be uniquely
rewritten as an element of a Hall basis satisfying Definition 3.1 with condition
2 replaced by 2’. It is the rewriting system of [25] that provides a procedure that
allows one to translate any Lyndon word into an element of a Hall basis, thus
permitting to use words in place of their corresponding Lie bracket expressions.
For example, given the alphabet {1, 2, 3}, the sequence of Lyndon words: 12,
112, 212, 1213, 1223, 3323, translates, in a one-to-one way, into the following
Hall basis elements: [X1, X2], [X1, [X1, X2]], [X2, [X1, X2]], [[X1, X2], [X1, X3]],
[[X1, X2], [X2, X3]], [X3, [X3, [X2, X3]]] in L(X̄3). On the one hand, operating
on words (character strings) requires less memory, but on the other hand, oper-
ations on Lie brackets (binary tree structures) can generally take less processing
time than those involving words.

Let Lk(X̄m) ⊂ L(X̄m) denote the free nilpotent Lie algebra of order k, i.e.
a Lie algebra that can be identified with the quotient L(Xm)/Ik, where Ik ⊂
L(X̄m) is the ideal spanned by all elements of the Hall basis of order strictly
greater than k. Hence, Lk(X̄m) can be formed by assuming that all the Lie
products in L(X̄m) of degree strictly greater than k are equal to zero. The
above procedure can still be employed to construct bases for Lk(X̄m) simply by
forming all the Lie products that satisfy the above properties and whose length
does not exceed k.

By the result of Campbell, Baker, and Hausdorff, known as the CBH formula,
it follows that Ĝ(X̄m) is closed under multiplication, and is in fact a group, as
it can be verified that eZe−Z = 1, for any Z ∈ Ĝ(X̄m). Moreover, the map
exp : L̂(X̄m) → Ĝ(X̄m) is a bijection from L̂(X̄m) onto Ĝ(X̄m). It follows that
for any Z1, Z2 ∈ L̂(X̄m) we can compute a unique Z3 ∈ L(X̄m) such that

eZ1eZ2 = eZ3 (2)

The way to compute Z3 is also delivered by the CBH formula which, in Dynkin’s

15

form, is given by [36, 39]:

Z3 =

∞∑

m=1

∑ (−1)m−1(adZ2
)qm(adZ1

)pm · · · (adZ2
)q1(adZ1

)p1

m
∑m

i=1(pi + qi)
∏m

i=1(pi!qi!)

= Z1 + Z2 +
1

2
[Z1, Z2] +

1

12
([[Z1, Z2], Z2] − [[Z1, Z2], Z1]) (3)

− 1

48
([Z2, [Z1, [Z1, Z2]]] + [Z1, [Z2, [Z1, Z2]]]) + . . .

where the inner sum ranges over all m-tuples of pairs of nonnegative integers
(pi, qi) such that pi + qi > 0. In (3), with the exception of the last term, the
symbol adX denotes the mapping adX : Y 7→ [X,Y] for all Y ∈ L(X̄m), which
is an endomorphism of L(X̄m) underlying the adjoint representation of L(X̄m),
defined as the mapping X 7→ adX . With some abuse of notation, the last
term in (3) should be understood differently and must be evaluated as follows:
adn

Z = 1 if n = 0, adn
Z = Z if n = 1, and adn

Z = 0 if n > 1.

It is worth noticing that the group Ĝ(X̄m) is not a Lie group because it is
infinite dimensional.

As the package is primarily a tool for the analysis of dynamical systems,
it will be applied in the context of groups of transformations acting on the
underlying manifold on which the system evolves, see [43]. For analytic systems
whose accessibility Lie algebras, [32], are finite dimensional, such groups of
transformations can be given the structure of Lie groups; see [29]. It is hence
helpful to define Gk(X̄m), a nilpotent version of Ĝ(X̄m):

Gk(X̄m)
def
= {eZ : Z ∈ Lk(X̄m)} (4)

The group Gk(X̄m) is now a Lie group with Lie algebra Lk(X̄m), see [43]. For a
systematic development it is assumed here that all groups of transformations act
from the right on the underlying manifolds M . With this notation, for x ∈ M ,
the expression xeZ denotes the value of a group action eZ at a point x ∈ M , [36,
p. LG 4.11] or [43, p. 74].

One of the many applications of the LTP package involves the solution of
differential equations defined on Lie groups. As will be explained later, the
trajectories of these equations relate (through a Lie group homomorphism, see
Remark 4.1) to trajectories evolving on Gk(X̄m). It is hence convenient that
Gk(X̄m) is equipped with a coordinate system. Such a coordinate system can
be constructed in terms of a Hall basis and has the advantage of being global
(consisting of a single chart) since Gk(X̄m) is nilpotent, see [41]. In full rigour, if
{B1, B2, . . . , Br} is the r-dimensional Hall basis for a given nilpotent Lie algebra
Lk(X̄m), then any element P in the Lie group Gk(X̄m) has the following unique
representation, [20]:

P = eγ1B1eγ2B2 · · · eγrBr (5)

16

The map P → (γ1, γ2, . . . , γr) establishes a global diffeomorphism between
Gk(X̄m) and R

r and is thus a global coordinate chart on Gk(X̄m). The coordi-
nate system so just introduced falls into the category of Lie-Cartan coordinate
systems of the second kind [36, 32]. Here, we will refer to it using the name of
γ-coordinates.

Equation (5) can be viewed as a way to represent an arbitrary group action
as a composition of elementary group actions defined in terms of the elements
of the Hall basis of the Lie algebra associated with the group. This fact has
been exploited by Wei and Norman in the solution of right-invariant parametric
differential equations evolving on Gk(X̄m):

Ṡ(t) =

(
m∑

i=1

Xiui(t)

)

S(t) (6)

S(0) = I

where m < ∞ (finite), Xi are indeterminate operators independent of t that
generate Lk(X̄m) under the commutator product [Xi, Xj] = XjXi −XiXj , and
ui are scalar functions of t. Here, as S(0) ∈ Gk(X̄m), S(t) evolves on Gk(X̄m).

Therefore, the solution to (6) is given by the product of exponentials:

S(t) = eγ1(t)B1eγ2(t)B2 · · · eγr(t)Br =
r∏

i=1

eγi(t)Bi (7)

where {B1, B2, . . . , Br} is the Hall basis for the Lie algebra Lk(X̄m), and the γi

are scalar functions of time, see [41, 45]. Without the loss of generality, it may
be assumed that Bi = Xi, for i = 1, . . . ,m.

Remark 3.2 The representation (7) of the solution to equation (6) is not unique.
Alternatively, the solution to (6) can be represented using the Lie-Cartan coor-
dinates of the first kind, i.e. it is possible to write

S(t) = e(
∑r

i=1 θi(t)Bi)

where θi : R → R, i = 1, 2, . . . , r, are the “coordinates” of such a solution;
see [22].

Remark 3.3 For an arbitrary set of indeterminates X̄m the Lie algebra L(X̄m)
is really infinite dimensional. A unique solution of (6), however, still exists for

every Lebesgue integrable control function u
def
= [u1, . . . , um] defined on a finite

interval [0, T]. This solution is known to evolve on Ĝ(X̄m), see [40, Prop.
3.1]. Furthermore, the solution of (6) can be written in terms of a formal
power series in the indeterminates X1, . . . , Xm, denoted by Ser(u), and known
as the Chen-Fliess series, see [12, Theorem III.2, p. 22]. The coefficients in

17

Ser(u) are iterated integrals of the control functions u1, . . . , um and for any t,
S(t) = Ser(ut), where S(ut) denotes the Chen-Fliess series with coefficients
evaluated over [0, t].

It has been shown in [41] that the expression of the the solution of (6) in the
form of a Chen-Fliess series Ser(ut) is equivalent to the expression in the form
of a product of exponentials, i.e. for any given control function u, there exist
functions γi : [0, T] → R, i = 1, 2, . . . such that (7) is valid with the product
performed over all members of the P. Hall basis {Bi; i = 1, 2, . . .} for L(X̄m).

A particularly convenient formalism based on chronological algebras intro-
duced for nonstationary vector fields has been introduced in [1] and permits
to re-write the Chen-Fliess series in a very compact and symbolically tractable
form, in which the iterated integrals are re-expressed in terms of the chrono-
logical product operations, see [18, 17]. The chronological calculus has also
been shown useful in the calculation of the logarithm of the Chen-Fliess series,
see [31]; however, the expressions derived there, although relatively simple, pro-
vide a series expansion of this logarithm which may contain linearly dependent
terms.

The γ-coordinates in (7) are shown to satisfy a set of nonlinear differential
equations as is implied by the following derivation, see also [45, 32].

Differentiating (7) yields,

Ṡ(t) =
dS(t)

dt
=

r∑

i=1

γ̇i(t)

i−1∏

j=1

eγjBj Bi

r∏

j=i

eγjBj (8)

Multiplying both sides of (8) by S(t)−1 from the right and using the exponential
formula (see [43, p. 40]):

(eX)Y (e−X) = Y + [X,Y] +
1

2!
[X, [X,Y]] +

1

3!
[X, [X, [X,Y]]] + . . .

=
∑

k=0

1

k!
(adk

X)Y (9)

= (eadX)Y

yields,

Ṡ(t)S−1(t) =

r∑

i=1

γ̇i(t)

i−1∏

j=1

eγjadBj Bi (10)

=
r∑

i=1

Biui(t) (11)

18

with ui(t) = 0 for i = m + 1, . . . , r, as S(t) satisfies (6).

Equating the coefficients on both sides of the last equality gives:








u1(t)
u2(t)

...
ur(t)








︸ ︷︷ ︸

u

=








ξ11(γ) · · · ξ1r(γ)
...

. . .
...

ξr1(γ) · · · ξrr(γ)








︸ ︷︷ ︸

ξ(γ)








γ̇1(t)
γ̇2(t)

...
γ̇r(t)








︸ ︷︷ ︸

γ̇

, γ(0) = 0 (12)

where the ξij(γ) are analytic functions of the γi’s. Clearly, γ(0) = 0 since
S(0) = I.

It is worth noting that there exists a chain of ideals 0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆
Ir = Lk(X̄m) where each In is exactly of dimension n. The order of the ele-
ments in the Hall basis {B1, . . . , Br} is such that is the ideal In is generated by
{Bn, . . . , Br}, which implies that the multiplication table for Lk(X̄m) satisfies:

[Bi, Bj] =
r∑

n=i

cij
n Bn, for i > j (13)

It can be shown, see [45], that such a multiplication table implies that ξ(γ)
is lower triangular and invertible for all t. Hence, (12) yields the system of
differential equations for the computation of the γ-coordinates in explicit form:

γ̇(t) = ξ−1(γ)u(t), γ(0) = 0 (14)

Equation (14) will be referred to as the Wei-Norman equation. Its solution
delivers S(t) of (7) which solves (6). The explicit formulæfor the solution of (14),
in terms of iterated integrals, are also given in [41]; see also [18, Thm. 4.10, p.
297].

19

4 Practical Applications of Lie Algebras and Groups

The practical relevance of the concepts introduced in the previous section and
a few applications are discussed in this section. A rigorous exposition of the
examples presented and the associated assumptions can be found in [16, 23, 32]
and references therein.

4.1 Trajectory planning and control

A wide class of nonlinear control systems can be described by an ordinary dif-
ferential equation which is affine in the controls:

ẋ = f0(x)u0 + f1(x)u1 + . . . + fm(x)um = f(x, u) (15)

where x ∈ M is the state of the system, M is the manifold on which the system
evolves, fi : M → TM, i = 0, 1, . . . ,m, are analytic vector fields defined on
M, and ui ∈ R, i = 0, 1, . . . ,m, are scalar, measurable, control functions.

The control problem for (15), with u
def
= [u0, u1, . . . , um] ∈ R

m+1, becomes
challenging if m+1 < n. Equation (15) can be thought to represent both driftless
systems, and systems with drift (if u0 = 1). Practical examples can be found
in [32, 27, 35] and include robotic manipulators, mobile robots, underwater
vehicles, and rigid bodies in space.

With reference to systems described by (15), the theory of Lie algebras and
groups is known to be helpful in the following:

• Establishing the controllability properties of the system.

• Developing control laws that stabilize the system to a given equilibrium
point, or ensure tracking of a desired reference trajectory.

Chow’s Theorem delivers a conclusive result for the determination of com-
plete controllability for driftless system (15). Chow’s result involves the verifi-
cation of the Lie algebra rank condition (LARC), see [32]:

L(f0, f1, . . . , fm)(p) = TpM (16)

for any p ∈ M , where L(f0, f1, . . . , fm)(p)
def
= span{f(p) ∈ TpM |f ∈ L(f0, f1, . . . , fm)}

and TpM is the tangent space to M at p.

The LARC hence requires the construction of a spanning set (ideally a basis)
for the Lie algebra of vector fields L(f0, f1, . . . , fm). To this end the LTP pack-
age is used as follows. For a sufficiently large k, a Hall basis {B1, B2, . . . , Br}
is first generated for Lk(X̄m+1) and then each Lie product Bi, i = 1, 2, . . . , r

20

of this basis is mapped into a corresponding Lie product of vector fields in
L(f0, f1, . . . , fm) by using the evaluation map, defined by Ev : Xi → fi, for
i = 0, 1, . . . ,m, which assigns fi to Xi, i = 0, 1, . . . ,m, in any formal Lie product
Bi, i = 1, 2, . . . , r. The evaluation map becomes the canonical Lie algebra homo-
morphism if L(f0, f1, . . . , fm) = Lk(f0, f1, . . . , fm), i.e. when L(f0, f1, . . . , fm)
is nilpotent.

For systems with drift the LARC only ensures accessibility of the system,
i.e. that the reachable set at any p ∈ M has a non-empty interior, see [32]. The
computation of a basis for L(f0, f1, . . . , fm) is however still useful since the di-
mension of the set L(f0, f1, . . . , fm)(p) and the highest order of the Lie products
appearing in L(f0, f1, . . . , fm)(p) reveal the difficulty of controlling (15).

Assuming that system (15) is completely controllable, a variety of Lie algebraic-
based control synthesis methods have been proposed in the literature, see for
example [27, 32].

Pivotal to controllability considerations, the design, and the derivation of
control strategies for system (15) is the capability to generate equivalent system
motions in directions outside the span of the vector fields fi, i = 0, 1, . . . ,m.
For simplicity of exposition, assume at first that piece-wise constant switching
controls are employed for this purpose. Then, such motions can be achieved by
concatenation of trajectories of (15) which, at every point x ∈ M , are tangent
to elements of span{fi, i = 0, 1, . . . ,m} at x ∈ M . To this end, the LTP package
proves helpful in determining the vector field, which over a given interval of time
T , yields motions equivalent to any desired concatenation. More precisely, let
0 = t0 < t1 < t2 < . . . < ts = T be a partition of a given interval [0, T], let

ε̄
def
= {εi = ti − ti−1; i = 1, . . . , s}, and let ū be a sequence of constant controls

by ū
def
= {ui ∈ R

m+1; i = 1, . . . , s} each of which is applied over [ti−1, ti]. Addi-

tionally, let gi(x)
def
= f(x, ui), i = 1, . . . , s, be the vector fields constituting the

right-hand sides of system (15) that correspond to ui, i = 1, . . . , s. Employing
the CBH formula (3), the package can then help to determine the vector field
f̄(x, ū, ε̄) such that for any p ∈ R

n, the solution to (15), xū, corresponding to
the sequential application of the constant controls satisfies:

xū(T) = p eε1g1 · · · eεsgs = p eT f̄ (17)

where, eεg denotes the flow of the differential equation ẋ = g so that p eεg is the
solution of this equation with initial condition p ∈ M , evaluated at time ε.

For arbitrary ū, ε̄, equation (17) is guaranteed to hold only if the Lie algebra
of vector fields L(f0, f1, . . . , fm) is nilpotent, all the vector fields involved are
real, analytic, and complete, as then the CBH formula is known to hold globally;
see [29, p. 95] and [43, p. 195]. When L(f0, f1, . . . , fm) is not nilpotent, the
package can only provide an approximate expression for f̄ , and generally, (17)
will be valid only locally, i.e. for sufficiently small T . A natural way to ob-

21

tain such an approximation is to employ the LTP package using Lk(X̄m+1)
in place of L(X̄m+1), where L(f0, f1, . . . , fm) is the image of L(X̄m+1) under
the evaluation map Ev. Under the same evaluation map Lk(X̄m+1) maps into
∼Lk(f0, f1, . . . , fm), a truncated version of L(f0, f1, . . . , fm).

Remark 4.1 The use of Lk(X̄m+1) in place of L(X̄m+1) is a valid way to
obtain an approximation of f̄ in view of the results in [40] which also provide a
link between the purely abstract algebraic formalism of Section 3 and the actual
solution of (15).

More precisely, if u is a Lebesgue integrable control function on [0, T], then
the image of the Chen-Fliess series Ser(u), under the evaluation map Ev,
Ev(Ser(u)), is a formal series of partial differential operators acting on smooth
functions defined on the manifold M. If φ ∈ C∞(M) then application of
Ev(Ser(u)) to φ yields a formal series of C∞ functions on M denoted Ev(Ser(u))(φ).
In [40, Prop. 4.3, p. 698], this series is actually shown to converge to φ◦xu, the
composition of φ with the solution of system (15) corresponding to u. Specifi-
cally, it was shown that: for analytic, complete vector fields f0, f1, . . . , fm, any
compact set U ⊂ R

m+1 and, any compact set K ⊆ R
n, there exists a time

horizon T > 0 such that the formal power series Ev(Ser(ut))(φ)(p) (evalu-
ated at p ∈ M) actually converges uniformly to φ ◦ xu(t) for t ∈ [0, T], where
xu(t) : [0, T] → M is the solution of (15), with x(0) = p, for any p ∈ K, and
any integrable u : [0, T] → U . Furthermore, a precise upper bound was obtained
in the same reference for the difference between φ◦xu and the N -th partial sum
of the series Ev(Ser(ut))(φ)(p) for t ∈ [0, T]:

|φ ◦ xu(t) − Ev(SerN (ut))(φ)(p)| ≤ DN tN+1 (18)

for all N ∈ {1, 2, 3, . . .}, p ∈ K, u as defined above, and all t ∈ [0, T], where
SerN (ut) denotes the truncated series obtained by considering terms only up to
order N in the Chen-Fliess series Ser(u), and DN is a constant.

In view of the last remark, an “approximation” to f̄ can be calculated em-
ploying the LTP package for repeated application of the CBH formula to per-
form formal calculations associated with the composition of the formal expo-
nential maps on Lk(X̄m+1). Precisely, if Yi ∈ Lk(X̄m+1) corresponds to gi via
Ev(Yi) = gi, for i = 1, 2, . . . , s, then repeated application of the CBH formula
yields Ȳ ∈ Lk(X̄m+1) such that

eε1Y1 · · · eεsYs = eT Ȳ (19)

Also, it follows that exp(T Ȳ) can be expressed as Serk(ūT) (a partial sum
Ser(ūT) containing only Lie monomials up to order k). Therefore, it is only

in the sense of (18) that f̃
def
= Ev(Ȳ) can be considered an approximation

to f̄ . Note that (18) can be applied with φ as coordinate functions on M

22

which immediately implies increasing proximity of trajectories p etf̃ and p etf̄

for t ∈ [0, T], with increasing order k of nilpotent truncation.

Rather than using piece-wise constant controls, it is often more convenient
to calculate the flows of dynamical systems such as (15) with control functions
ui, i = 1, . . . ,m, which are only integrable. For this purpose, a generalized
CBH formula (logarithm of the Chen-Fliess series) for nonstationary vector
fields would have to be employed as mentioned in Remark 3.3. The product
expansion (7) and the associated formula (14), would however still be valid.

4.2 Nonlinear filtering

Lie algebraic methods originally conceived as tools for the analysis of nonlinear
systems have also found application in nonlinear filtering problems; the reader
is referred to [23] for a complete expository review. In the nonlinear filter-
ing problem the objective is to estimate the state of a stochastic process x(t)
which cannot be measured directly, but may be inferred from measurements of
a related observation process y(t).

Typical filtering problems consider the following signal observation model:

dx(t) = f(x(t))dt + g(x(t))dv(t), x(0) = x0
(20)

dy(t) = h(x(t))dt + dw(t), y(0) = 0

where x, v and y, w are R
n and R

m valued processes, respectively, and v and
w have components which are independent, standard Brownian processes. Fur-
thermore, f, h and g are assumed to be smooth functions.

Essential for the estimation of the state is the conditional probability density
of the state, ρ(t, x), given the observation {y(s); 0 ≤ s ≤ t}. It is well known,
see [10], that ρ(t, x) is obtained by normalizing a function σ(t, x) which is the
solution of the Duncan-Mortensen-Zakai (DMZ) bilinear, stochastic, partial dif-
ferential equation:

dσ(t, x) = L0σ(t, x)dt +
m∑

i=1

Liσ(t, x) ◦ dyi(t), σ(0, x) = σ0(x) (21)

where ◦dy(t) denotes the Fisk-Stratonovitch differential of the observation pro-
cess y(t), the differential operator L0, given by:

L0 =
1

2

n∑

i=1

∂2

∂x2
i

−
n∑

i=1

fi
∂

∂xi
−

n∑

i=1

∂fi

∂xi
− 1

2

m∑

i=1

h2
i (22)

is defined on the space of smooth functions D(Rn) on R
n with compact support,

and where Li is the operator of multiplication by hi, i = 1, . . . ,m. Here, σ0 ∈

23

M+(Rn) is the probability density of the initial point x0, and M+(Rn) denotes
the space of nonnegative bounded measures on R

n.

A particularly useful concept associated with the DMZ equation is the es-
timation Lie algebra, as introduced in [5], which is defined as the Lie algebra
generated by the differential operators L0, . . . , Lm (the Lie product of operators
is calculated in a standard way, i.e. [X,Y]φ = X(Y φ)−Y (Xφ), for any smooth
function φ). The structure and dimensionality of the estimation Lie algebra is
directly related to the existence of a finite dimensional recursive filter for the
computation of ρ(t, x), see [23]. It has been shown that if the estimation Lie
algebra can be identified with a Weyl algebra of any order, then no non-constant
statistics exist for the computation of the conditional density ρ(t, x) with a fi-
nite dimensional filter; see references in [23]. In this context, the LTP package is
helpful in the computation of the generators for the Weyl algebras as it permits
to compute the Lie product in a coordinate independent fashion.

In the special case when the estimation Lie algebra is finite dimensional and
solvable, (see [43] for the definition of solvability), the DMZ equation can be
solved via an extension of the Wei-Norman formalism. Such a construction will
be illustrated by an example employing the Lie tools package.

24

5 Using LTP: Some Practical Examples

The Maple code for the examples presented in this section is distributed with
LTP, which may be obtained at: http://www.cim.mcgill.ca/∼migueltt/ltp/ltp.html.

Any Lie product which is written in terms of the algebra generators only, will
henceforth be referred to as a Lie monomial. By the property of distributivity
over scalar multiplication, an arbitrary Lie bracket is a product of a symbolic
coefficient and a Lie monomial.

The main and auxiliary functions provided by LTP are summarized in Ta-
ble 1, p. 35, and Table 2, p. 36, respectively. Auxiliary functions are invoked by
the main functions, but are also made directly available to the user to allow for
perusal of intermediate results. Such an organization of the package facilitates
the addition of new functions. See Section 6, p. 35, for details on the function’s
syntax, their algorithmic implementation, and other aspects.

Prior to invoking any function in the package, two special variables need to
be declared, under arbitrary names, to signify: the number of generators in the
Lie algebra L(X̄m) and its assumed order of nilpotency. The values of these
variables are limited only by the available computer memory.

The examples presented in the next two sections consider a set of Lie algebra
generators X̄3 = (X1, X2, X3) and a HB, denoted by B, for a nilpotent Lie
algebra L4(X̄3) with degree of nilpotency k = 4. The generators X̄3 and the
basis B are easily obtained by executing the package function phb(3,4); the
resulting basis B is shown in § 5.2.

5.1 Example 1: Simplification of Lie algebraic expressions

To explain some of the capabilities of the package we consider a few examples.

To simplify the following expression x := [αX3, [αX2, (α+β2)X1]]), in which
α and β are considered to be symbolic scalars, the function y:=simpLB(x) is
invoked and returns the result: (α3 + α2β2)[X3, [X2, X1]], as well as, but sepa-
rately, the scalar part of it, (α3 + α2β2), and the Lie monomial [X3, [X2, X1]].
Such an answer form facilitates further calculations; for example when the ex-
pression needs to be rewritten in terms of elements of the basis B. The latter can
be accomplished by subsequently invoking the function phbize(y[3]), which
acts on the third argument of the result.

Another example, where skillful simplification is essential, is provided by the
composition of exponential mappings eZ1eZ2 = eZ3 , with Z1 and Z2 declared as
two simple Lie polynomials: Z1 = a1X1+a2X2+a3X3, Z2 = b1X1+b2X2+b3X3,

25

and with ai, bi, i = 1, 2, 3, declared as symbolic scalars. Employing the CBH
formula in Dynkin’s form, (3), a truncation of the series for Z3 involving brackets
up to order n = 4 is obtained by invoking first the function cbhexp(Z1,Z2,n).
This produces a complicated expression involving 231 Lie products of indetermi-
nates, which are further simplified by executing the function reduceLB(Z3,B).
This reduces Z3 into its expression in the Hall basis B which, in this particular
case, counts only 29 components. The first 12 terms of the final result are shown
below:

Z3 := (a1 + b1)X1 + (a2 + b2)X2 + (a3 + b3)X3 +
1

2
(a1b2 − a2b1)[X1, X2]

+
1

2
(a1b3 − a3b1)[X1, X3] +

1

2
(a2b3 − a3b2)[X2, X3]

+
1

12
(a2

1b2 − b1a1b2 + b2
1a2 − a1a2b1)[X1, [X1, X2]]

+
1

12
(b2

1a3 − a1a3b1 − b3a1b1 + a2
1b3)[X1, [X1, X3]]

+
1

12
(a1a2b2 − b2

2a1 + b1a2b2 − a2
2b1)[X2, [X1, X2]]

+
1

12
(b2a3b1 − a3a2b1 − b3a1b2 + a1a2b3)[X2, [X1, X3]]

+
1

12
(b2

2a3 − a3a2b2 − b2a2b3 + a2
2b3)[X2, [X2, X3]]

+
1

12
(a1a3b2 − b3a1b2 − a3a2b1 + b1a2b3)[X3, [X1, X2]] + . . .

5.2 Example 1: Stabilization of a rigid body in space

The usefulness of LTP for practical applications in control of dynamical systems
is illustrated by an example of an underactuated rigid body in space for which,
after the application of a suitable feedback transformation, the model equations
are:

ẋ = f0(x) + f1(x)u1 + f2(x)u2 (23)

where, f0(x) = (sin(x3) sec(x2)x5 + cos(x3) sec(x2)x6)
∂

∂x1

+ (cos(x3)x5 − sin(x3)x6)
∂

∂x2

+ (x4 + sin(x3) tan(x2)x5 + cos(x3) tan(x2)x6)
∂

∂x3
+ a x4x5

∂

∂x6
,

f1(x) =
∂

∂x4
, f2(x) =

∂

∂x5
, and ẋ = [ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6]

T

Here u1 and u2 are the actuating controls, a is a scalar constant, f0 is the drift
vector field, and f1 and f2 are the input vector fields. For details on the model

26

derivation see, for example [8], and references therein.

The construction of stabilizing feedback control for systems such as (23) can
be carried out employing different approaches; one such approach is proposed
in [26]. As a point of further interest, it is worth pointing out that model (23)
does not lend itself directly to the application of the method in [26] as its con-
trollability Lie algebra is not nilpotent. Its application is made feasible only with
the reference to a suitable nilpotent “approximation” of the original system; rig-
orous criteria for obtaining such approximations can be found in [15]. Here, it is
demonstrated that even a trivial approximation amounting to a straightforward
nilpotent truncation of the controllability Lie algebra for the original system is
sufficient for stabilization. The truncation is merely required to preserve con-
trollability of the system. This is justified by the result in [20, Thm. 2]), which
shows that the steering error introduced while employing a truncated version of
the controllability Lie algebra is a decreasing function of the distance between
the initial and target points. It follows that the steering error can be controlled
by selecting an adequately small time horizon T . Both the degree of nilpotency
and the horizon T can be selected on a trial and error basis by requesting peri-
odic decrease in a Lyapunov function which is a directly verifiable criterion for
the adequacy of the truncation.

In this context, system (23) is assumed to be approximated by another
system of a similar structure

ẋ = g0(x) + g1(x)u1 + g2(x)u2 (24)

whose controllability Lie algebra, L(g0, g1, g2), corresponds to a nilpotent trun-
cation of L(f0, f1, f2) of some finite order. The order of truncation is selected
so that the truncated system is STLC (see Theorem 7.3 in [42]). To follow
this process, sufficiently many elements in the basis for L(f0, f1, f2) need to be
known, and one way to proceed is to generate bases for Lk(X̄3), k = 2, 3, . . . in
ascending order, to select the smallest k for which the image of Lk(X̄3) (under
the evaluation map Ev) is STLC.

5.2.1 Step 1: Construction of the Hall basis for the Lie algebra of
indeterminates L4(X̄3)

For k = 4, a Hall basis for L4(X̄3) is first constructed by invoking B:=phb(3,4),
which yields B as a list of 32 elements, conveniently denoted by BI , I ∈ I, where

the set of multi- I def
= {I = (i1, . . . , i4) : ij ∈ {1, 2, 3}, 1 ≤ j ≤ 4} contains all

Hall words of length not exceeding four using the alphabet {1, 2, 3}; see Re-
mark 3.1.

To evaluate the images gI
def
= Ev(BI), I ∈ I, of the elements in the Hall basis

27

B the vector fields f0, f1, f2 are declared as symbolic expressions in Maple, and
the function calcLB is invoked, remembering that fi−1 = Ev(Bi), i = 1, 2, 3.

The 29 brackets computed in this way are:

g01(x) = [f0, f1] = [0, 0,−1, 0, 0,−a x5]
T

g02(x) = [f0, f2] = [− sin(x3)/ cos(x2),− cos(x3),− sin(x3) tan(x2), 0, 0,−a x4]
T

g001(x) = [f0, [f0, f1]] =

=











(cos(x3) x5 − sin(x3) x6 + cos(x3) a x5)/ cos(x2)
− sin(x3) x5 − cos(x3) x6 − sin(x3) a x5

sin(x2) (cos(x3) x5 − sin(x3) x6 + cos(x3) a x5)/ cos(x2)
0
0
0











g002(x) = [f0, [f0, f2]] =

=











cos(x3) x4/ cos(x2) (−1 + a)
− sin(x3) x4 (−1 + a)

(cos(x2) x6 − cos(x3) sin(x2) x4 + cos(x3) sin(x2) a x4)/ cos(x2)
0
0
0











g102(x) = [f1, [f0, f2]] = [0, 0, 0, 0, 0,−a]T

g201(x) = [f2, [f0, f1]] = g10(x)

g0102(x) = [[f0, f1], [f0, f2]] = [cos(x3)/ cos(x2),− sin(x3), cos(x3) sin(x2)/ cos(x2), 0, 0, 0]T

g0001(x) = [f0, [f0, [f0, f1]]] =

=















−x4/ cos(x2) (sin(x3) x5 + cos(x3) x6 + 2 sin(x3) a x5)
−x4 (cos(x3) x5 − sin(x3) x6 + 2 cos(x3) a x5)





(+ cos(x2) x5 x5 + cos(x2) a x5 x5 − sin(x2) sin(x3) x5 x4 . . .
. . . − sin(x2) cos(x3) x6 x4 − 2 sin(x3) sin(x2) a x4 x5 . . .

. . . + cos(x2) x6 x6)/ cos(x2)







0
0
0















g0002(x) = [f0, [f0, [f0, f2]]] =

=















−(− sin(x3) x4 x4 + sin(x3) x4 x4 a + cos(x3) x5 x6 − sin(x3) x6 x6)/ cos(x2)
cos(x3) x4 x4 − cos(x3) x4 x4 a + sin(x3) x5 x6 + cos(x3) x6 x6





(− sin(x2) cos(x3) x5 x6 − sin(x2) sin(x3) x4 x4 a . . .
. . . + sin(x2) sin(x3) x4 x4 − x4 x5 cos(x2) . . .

. . . + sin(x2) sin(x3) x6 x6 + 2 cos(x2) a x4 x5)/ cos(x2)







0
0
0















g1002(x) = [f1, [f0, [f0, f2]]] = (−1 + a) ∗ g15(x)

g2001(x) = [f2, [f0, [f0, f1]]] = (1 + a) ∗ g15(x)

and gI = [0, 0, 0, 0, 0, 0]T , for I = 12, 101, 112, 202, 212, 0112, 0212, 1001, 1101,

28

1102, 1112, 2002, 2101, 2102, 2112, 2201, 2202, 2212.

The desired nilpotent truncation of L(f0, f1, f2) (valid in the neighborhood
of the origin only) can thus be obtained by assuming that

g001 = g002 = g0001 = g0002 = [0, 0, 0, 0, 0, 0]T , (25)

as indeed, the values of these brackets evaluated in the neighborhood of the ori-
gin are negligibly small. Considering the latter, together with the Lie products
which are zero, and the following dependencies among the above Lie products:

g201 = g102, g1002 = (−1 + a)g0102, g2001 = (1 + a)g0102, (26)

which correspond (via evaluation map Ev) to the following symbolic dependen-
cies between the elements of B:

BI = 0, B201 = B102, B1002 = (−1 + a)B0102, B2001 = (1 + a)B0102, (27)

for I = 12, 001, 002, 101, 112, 202, 212, 0112, 0212, 0001, 0002, 1001, 1101, 1102,
1112, 2002, 2101, 2102, 2112, 2201, 2202, 2212, a basis for the controllability
Lie algebra for system (24) can thus be defined as:

Bg
def
= {g0, g1, g2, g01, g02, g102, g0102}

It can be verified that L(g0, g1, g2) is indeed nilpotent if (25) is enforced, and
that such nilpotent L(g0, g1, g2) corresponds to an STLC system as required.

Additionally, the ordering of this basis satisfies the condition (13), which
guarantees that the Wei-Norman equation can be given in the explicit form (14).

The feedback design approach developed in [26] now calls for the computa-
tion of an open-loop piece-wise constant control ū : [0, T] → R

3 such that the
γ-coordinates for system (24) satisfy

γ(T, ū) ∈ R(T,U e(p)) (28)

where γ(T, ū) is the value of the γ-coordinates at time T and corresponding
to the control ū. The set U e(p) is a set of admissible “extended controls”
which provide for a monotonic decrease of a given Lyapunov function along
the trajectories (originating at a given point p) of the extended system to (24)
defined as:

ẋ = g0(x) + g1(x)v1 + g2(x)v2 + g01(x)v3 + g02(x)v4

+g102(x)v5 + g0102(x)v6
x(0) = p

The set R(T,U e(x)) is the reachable set for system (29) in the γ-coordinates
space while employing controls from U e(p).

In this context, the idea behind the feedback stabilization algorithm is the
following. As has been pointed out in [26], for each ū satisfying (28) there exists

29

an extended control v ∈ U e(p) such that the γ-coordinates of (24) and (29)
match at time T ; i.e. γ(T, ū) = γe(T, v), where γe are the γ-coordinates of the
flow of the extended system (29). This fact immediately implies that the chosen
Lyapunov function decreases (periodically) along the trajectories of the original
system (23) (for a precise meaning of “periodical decrease” see [26]). To this
end, the method in [26] requires the construction of the Wei-Norman equations
for systems (24) and (29) where the LTP package yet again comes useful.

5.2.2 Step 2: Calculation of the right-hand side of the Wei-Norman
equation

The derivation of the Wei-Norman equation is carried out in two steps. The
product term in the right-hand side of (10) is first computed by invoking the
LTP function wner, in which the basis elements BI need to be replaced by gI ,
I = 0, 1, 2, 01, 02, 102, 0102. Next, the coefficients corresponding to the basis
elements gI , on both sides of equation (10)–(3) are equated using the LTP
function wnde.

More precisely, the LTP function wner ought to be invoked with the fol-
lowing parameters: rhwne:=wner(r,k − 1,B, Bg, lbdt), where r = 7 is the
dimension of the basis Bg, k = 4 is the degree of nilpotency, and lbdt is the list
of linear dependencies (27). The resulting expression is:

rhwne := γ̇0f0 + γ̇1f1 + γ̇2f2 + (γ̇1γ0 + γ̇3)[f0, f1] + (γ̇2γ0 + γ̇4)[f0, f2]

+(γ̇3γ2 + γ̇4γ1 + γ̇5)[f1, [f0, f2]] + (γ̇4γ3 + γ̇5γ0a + γ̇6)[[f0, f1], [f0, f2]]

The function wnde(rhwne,r,B,lbdt) is applied to the above result return-
ing the matrix ξ(γ) (see equation (12)) and the set of equations:

v0 = γ̇0

v1 = γ̇1

v2 = γ̇2

v3 = γ̇1γ0 + γ̇3

v4 = γ̇2γ0 + γ̇4

v5 = γ̇3γ2 + γ̇4γ1 + γ̇5

v6 = γ̇4γ3 + γ̇5γ0a + γ̇6

30

The inversion of ξ(γ) results in the following Wei-Norman equation:













γ̇0

γ̇1

γ̇2

γ̇3

γ̇4

γ̇5

γ̇6













=













1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 −γ0 0 1 0 0 0
0 0 −γ0 0 1 0 0
0 γ0γ2 γ0γ1 −γ2 −γ1 1 0
0 −aγ2

0γ2 γ0γ3 − aγ2
0γ1 aγ0γ2 aγ0γ1 − γ3 −aγ0 1

























v0

v1

v2

v3

v4

v5

v6













with γi(0) = 0, i = 0, 1, . . . , 6.

A feasible control ū satisfying the inclusion (28) is found as follows. First, (29)
is integrated symbolically over [0, T] and solved with respect to the extended
controls vi, i = 0, . . . , 6 evaluated at T to yield a symbolic expression for
the reachable set R(T,U e(p)), now given as a set of admissible coordinate
values γ(T, ū) for the original system. Next, a control ū is found by solv-
ing (28) using standard nonlinear programming techniques; see [26] for details
of this calculation. Stabilization is achieved by repetitive solution of (28) as
shown by simulation results in Figure 1 which correspond to an initial condi-
tion x0 = [−0.1 0 0.2 0 0 0.1]T . These results were obtained using a quadratic
Lyapunov function V (x) = 1

2‖x‖2 and piece-wise constant controls ū consisting
of at most five switching times in any interval of length T = 0.1.

0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

Time

x(
t)

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

x
5
(t)

x
6
(t)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

V
(k

T
)

(a) State trajectory x(t). (b) Function V (x(t))
for t = kT , k = 0, 1, . . . , 35.

Figure 1: Results for the stabilization of the rigid body.

31

5.3 Example 2: Finite dimensional realization of a non-
linear filter

The aim here is to construct a finite dimensional realization of a nonlinear filter
for the stochastic system described by (see [28, 19]):

dx(t) = dv(t), x(0) = x0
(29)

dy(t) = x(t)dt + dw(t)

where v and w are independent Brownian motions. As suggested in [5] such
a realization can be derived by applying Lie algebra techniques to the DMZ
equation for the unnormalized conditional density σ(t, x), given the observation
process {y(s); 0 ≤ s ≤ t} for system (29). The DMZ equation here is

dσ(t, x) = L0σ(t, x) + L1σ(t, x) ◦ dy(t), σ(0, x) = σ0(x), σ0 ∈ L2(R)

where the differential operators L0, L1 : D(R) → L2(R) are defined by the
following expressions on their common invariant domain D(R) which is dense
in L2(R) (see [28]):

L0 =
1

2

∂2

∂x2
− x2

2
, L1 = x

It will first be shown that the estimation Lie algebra LE
def
= L(L0, L1) for the

above problem is finite dimensional and solvable. Then, the solution of the
Cauchy problem for any given σ0 ∈ L2(R), representing the conditional density
of x(0), can be written in the form of a product of exponentials, see [23]:

σ(t, x) =
r∏

i=0

eγi(t)Liσ0(x) (30)

where Li, i = 0, . . . , r is a basis for the Lie algebra LE . The exponential etLi rep-
resents here a strongly continuous one-parameter semi-group operator defined on
a Banach space L2(R) and corresponding to the infinitesimal generator Li. The
last representation is only valid if the Baker-Campbell-Hausdorff-Zassenhaus
formula:

etLiLj =

(∞∑

m=0

tm

m!
(adLi)

mLj

)

etLi (31)

holds for all the Li, Lj , i, j = 0, . . . , r. As pointed out in [28] the validity of (31)
is guaranteed if there exists a common, dense (in L2(R)), invariant under LE ,
set of analytic vectors for the estimation Lie algebra spanned by Li, i = 0, . . . , r.
Such a set can be constructed as the linear span of eigenvectors of the operator
L0.

To check the solvability of LE , the differential operators L0 and L1 are first
defined in Maple as follows:

32

> L0:=xi->(1/2)*diff(xi,x$2)-(1/2)*x^2*xi;

L1:=xi->x*xi;

L0 := ξ → 1

2

∂2ξ

∂x2
− x2

2
ξ

L1 := ξ → x ξ

A basis for the Lie algebra of operators L(L0, L1) is obtained by considering
a free nilpotent Lie algebra Ln(X0, X1), where n is a sufficiently high order
and calculating its P. Hall basis. For example, for n = 7, the P. Hall basis for
L7(X0, X1), B = {B1, . . . , B41} counts 41 elements and is constructed by invok-
ing B:=phb(2,7). In this process, the package also delivers explicit bracket ex-
pressions for the basis elements in B which are omitted here for reason of brevity.
Identifying Li−1 = Ev(Bi), i = 1, 2, the basis elements in B can thus be evalu-
ated next by executing the LTP function calcLBdiffop(B[i],B[1..2],[L0,L1],[x]),
for i= 3, 4, . . . , 41, yielding:

L2
def
= Ev(B3) = [L0, L1] =

∂

∂x

L3
def
= Ev(B4) = [L0, [L0, L1]] = x = Ev(B2) = L1

L4
def
= Ev(B5) = [L1, [L0, L1]] = −1

It can further be verified that the application of the evaluation map Ev to
the remaining brackets in the basis B reveals several linear dependencies be-
tween Li−1 = Ev(Bi), i = 1, . . . , 41: L5 = L26 = L2, L11 = L35 = L1,
L8 = −L12 = −L20 = L31 = −L36 = −L4, and Li = 0, for the remaining Lie
products. From this calculation it follows that a basis for L(L0, L1) can be de-

fined as {L0, L1, L2, L4} def
= {L0, L1, [L0, L1], [L1, [L0, L1]]}. These calculations

also show that the derived Lie algebra [LE , LE] is spanned by L2 and L4, and
is nilpotent because [L2, L4] = Ev(B10) = 0. Hence, the Lie algebra LE is
solvable, by Corollary 5.3 in [36].

The representation (30) now becomes:

σ(t, ·) = eγ0(t)L0eγ1(t)xeγ2(t)
∂

∂x e−γ3(t)σ0 (32)

is hence valid globally, see [45], and the functions γi, i = 0, . . . , 3 can be com-
puted by quadrature of the Wei-Norman equations. The analytic expression for
the Wei-Norman equations can be derived by executing the sequence of com-
mands:

r:=4; # Basis dimension.

max_bracket_order:=6; # Degree of nilpotency minus one.

33

wn:=wner(r,max_bracke_order,BB,B,[SR]):

wnfe:=wnde(wn,r,{},BB,{}):

F_g:=eval(wnfe[1]):

The symbol [SR] is a Maple list containing the dependencies between the mem-
bers of the basis B after application of the evaluation map Ev as derived above.
The symbol F_g assumes value of the matrix ξ(γ) of equation (12) and is here:

F g :=







1 0 0 0
0 1 + 1

2γ2
0 + 1

24γ4
0 + 1

720γ6
0 γ0 + 1

6γ3
0 + 1

120γ5
0 0

0 γ0 + 1
6γ3

0 + 1
120γ5

0 1 + 1
2γ2

0 + 1
24γ4

0 + 1
720γ6

0 0
0 0 γ1 1







The entries (2, 2) and (3, 3) of F g can be clearly be recognized as the first few
terms in the Taylor series expansion for cosh. Similarly, the entries (2, 3) and
(3, 2) are recognized as the first few terms of the Taylor series for sinh. Now,
it can be verified that if the above calculations are repeated using a Hall basis
of order n > 7, then the entries of F g will contain higher order terms of these
Taylor series. Thus, by induction, it can be shown that these entries truly are
the cosh and sinh functions, so that the Wei-Norman equations for (32) in the
form (14) are given by:

γ̇0 = 1, γ̇1 = cosh(γ0)dy(t), γ̇2 = − sinh(γ0)dy(t), γ̇3 = sinh(γ0)γ1dy(t) = −γ̇2γ1

where u = [1 dy(t) 0 0]T .

The solution of these Wei-Norman equations constitutes the joint-sufficient
statistics for the linear filtering problem of (29). Now, Mehler’s formula (see [28])
allows to obtain the explicit expression for the one parameter semi-group eγ0(t)L0

in the form of an integral operator as follows:

eγ0(t)L0φ(x) = etL0φ(x) =

∫ ∞

−∞

1

2π sinh(t)
e−1/2 coth(x2+y2)e

xy
sinh(t) φ(y)dy (33)

for any φ ∈ D(R). Since (etxφ)(x) = etxφ(x) and (et ∂
∂x φ)(x) = φ(x + t), then,

finally, (32) and (33) combine into:

σ(t, x) =

∫ ∞

−∞

1

2π sinh(t)
e−1/2 coth(x2+y2)e

xy
sinh(t) eγ3(t)eγ1(t)yσ0(γ2(t) + y)dy

which is an explicit formula for the nonlinear filter for (29).

34

6 Function Reference

This section contains the description of the LTP functions. The functions and
their purpose are summarized in the table below.

Acronyms
CBH - Campbell-Baker-Hausdorff formula
LB - Lie bracket or product
LTP - Lie Tools Package
PHB - Philip Hall basis

Table 1: Main functions in LTP.

Function Purpose

cbhexp
Calculates the exponent Z3 ∈ L̂(X̄m) resulting from the composition of
exponential mappings in equation (2) via the CBH formula (including
brackets up to a given order k).

createLBobjects

Declares the generators X̄m of the Lie algebra Lk(X̄m). If needed,
it also permits to declare any number of linear combinations of these
generators

∑
m

i=1
aiXi with symbolic coefficients ai. The LTP assigns

a name to each linear combination allowing it to be used by other LTP
functions.

phb
Declares the generators X̄m of the free nilpotent Lie algebra Lk(X̄m)
of degree k and constructs a Hall basis for Lk(X̄m).

phbize Expresses any Lie monomial X ∈ Lk(X̄m) in the Hall basis.

reduceLB
Reduces a general Lie polynomial S ∈ Lk(X̄m) with symbolic coeffi-
cients to its simplest form in a given HB.

reduceLBT
Given a list of dependencies between the elements of the HB, reduces
a general Lie polynomial S ∈ Lk(X̄m) with symbolic coefficients to its
simplest form.

regroupLB
Applies the distributivity properties (over addition and scalar multipli-
cation) of the Lie product to an arbitrary Lie polynomial in S ∈ L(X̄m)
and collects its terms.

simpLB

Applies the distributivity over scalar multiplication property to a given
Lie product X ∈ L(X̄m) and returns the simplified product αY = X,
together with its scalar symbolic component α, and the Lie monomial
Y ∈ L(X̄m).

wner
Computes the right-hand side of equation (10) and expresses it in the
HB, treating γ̇i and γi, i = 1, . . . , r as symbolic scalars.

wnde
Constructs the differential equation for the logarithmic coordinates γi

given by the Wei-Norman equation (12).

35

Table 2: Auxiliary functions in LTP.

Function Purpose

ad Calculates (adn

X
)Y for X, Y ∈ L(X̄m).

bracketlen Returns the length l(G) of a Lie product G ∈ L(X̄m).

calcLB
Given the symbolic expressions for two vector fields in the canonical
coordinate system, calculates their Lie product.

calcLBdiffop
Given the symbolic expressions for two partial differential operators,
calculates their Lie product.

codeCBHcf
Generates code in either Fortran or C for the evaluation of the scalar
symbolic coefficients in a given Lie polynomial S ∈ L(X̄m).

createSubsRel

Creates Maple substitution relations for the the symbolic evaluation
of controls ui, i = 0, . . . , m in the dynamic system (15). These sub-
stitution relations can then be used to permit calculations involving
systems with drift and to accommodate for piece-wise constant con-
trols of arbitrary symbolic magnitude, as well as to allow the controls
to switch at arbitrary symbolic moments in time.

ead
Computes the series expansion of (eX)Y (e−X) = (eadX)Y . for X, Y ∈

L(X̄m) including brackets up to a given order.

eadr

Computes the series expansion of (eX)Y (e−X) = (eadX)Y . for X, Y ∈

Lk(X̄m); re-expresses the result in the HB and further simplifies it
according to a given list of dependencies involving the elements of the
HB.

evalLB2expr
Returns a symbolic Maple expression for later evaluation of a Lie prod-
uct of two vector fields, possibly containing symbolic scalars.

pead Computes the product of exponentials
∏

n

i=1
e
adXi Xn+1 for X, Y ∈

L(X̄m) including brackets up to a given order.

peadr

Computes the product of exponentials
∏

n

i=1
e
adXi Xn+1 for X, Y ∈

Lk(X̄m); re-expresses the result in the HB and further simplifies it
according to a given list of dependencies involving the elements of the
HB.

posxinphb Returns the position index i of a Lie product Bi in the HB.

selectLB
Extract, as a Maple symbolic expression for later use, the part of a
given Lie polynomial S ∈ L(X̄m) which contains brackets up to, greater
than, or equal to a given order.

36

6.1 createLBobjects

Purpose Create (declare) Lie algebra generators and control inputs.

Syntax createLBobjects(nGen,sLen);

Description This function creates the symbolic variables representing the Lie
algebra generators and the control inputs. The function assumes
the variables do not exist, so if the variables exists, they will be
replaced by the new ones, with the corresponding assumptions
without warning to the user. Adding a line to check for the
existence of already assigned variables is simple and can be done
as for the function phb. In general, however, verifying variables
redefinition should not be really necessary since the amount of
variables regarding a particular problem or system is directly
related to the system model, which should only be changed at
the time of declaring the system generators and inputs and not
at some intermediate step of the symbolic manipulations.

Arguments nGen Number of Lie algebra generators.
sLen Length of the sequence of inputs, i.e. the number

of switchings in the input sequence.

Examples Declaration of vector fields for a system with drift, 2 inputs and
a sequence of control inputs of length 4 (i.e. four switches).

> createLBobjects(3,4);

Generators Input Sequences

f0~ u0_1~ u0_2~ u0_3~ u0_4~

f1~ u1_1~ u1_2~ u1_3~ u1_4~

f2~ u2_1~ u2_2~ u2_3~ u2_4~

Span of Generators for each segment of the control sequence

f_1:=f0*u0_1+f1*u1_1+f2*u2_1

f_2:=f0*u0_2+f1*u1_2+f2*u2_2

f_3:=f0*u0_3+f1*u1_3+f2*u2_3

f_4:=f0*u0_4+f1*u1_4+f2*u2_4

37

Discussion In the above example, f0, f1, f2 represent the vector fields
which generate the Lie algebra. The tilde ~ symbol at the end of
each variable indicates that some assumptions have been made
on these variables. The “subindex” _i, after each variable var
indicates the corresponding time interval, thus the expression
var_i corresponds to the particular value of var in the time
interval i of the input sequence. An arbitrary input sequence
with 4 switches is illustrated in Fig. 6.1.

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

In
pu

t

Time

u1
1

u1
2

u1
3

u1
4

u2
1

u2
2

u2
3

u2
4

Input u1
Input u2

Figure 2: Control inputs sequence.

Notes Notice that the the system in the example is drift-free, however
it is possible to obtain a system with drift by simply setting the
controls u0 to 1. This can be easily achieved with the Maple
command subs for substituting expressions.

Limitations The current implementation does not allow to select a name for
the generators or controls which are set to f and u, respectively.

38

Bugs In the current implementation the controls u are assumed to be
of type real, even if they could be in any other field from the
theoretical point of view. The reason for this is an apparent bug
in Maple which returns true for the command is(x,scalar) for
any x, even if x is assumed to be of type vector! Thus assuming x
of type scalar causes a problem, since a generator of vector type
will also be regarded by Maple as scalar and the simplification
routines will fail to recognize it as a generator. To circumvent
this problem, for the moment we use type real when we mean
scalar, and type vector for the generators.

39

6.2 phb

Purpose Generate a Philip Hall basis.

Syntax B:=phb(m,k);

Description This function constructs a list containing the Philip Hall ba-
sis (PHB) for a nilpotent Lie algebra of degree k generated by
m generators. The elements in the PHB are elements of the
Lie algebra selected in way such that the dependencies between
brackets, imposed by the anti-symmetry property and the Ja-
cobi identity, are taken into account.

Arguments m Number of Lie algebra generators.
k Order of nilpotency, i.e. brackets of length k+1 and

higher are equal to zero.

Examples Construct a Philip Hall basis for a nilpotent algebra of order 4
generated by 3 vector fields.

> B:=phb(3,4);

B:=[f0~, f1~, f2~, f0~ &* f1~, f0~ &* f2~, f1~ &* f2~,

f0~ &* (f0~ &* f1~), f0~ &* (f0~ &* f2~), f1~ &* (f0~ &* f1~),

f1~ &* (f0~ &* f2~), f1~ &* (f1~ &* f2~), f2~ &* (f0~ &* f1~),

f2~ &* (f0~ &* f2~), f2~ &* (f1~ &* f2~),

(f0~ &* f1~) &* (f0~ &* f2~), (f0~ &* f1~) &* (f1~ &* f2~),

(f0~ &* f2~) &* (f1~ &* f2~), f0~ &* (f0~ &* (f0~ &* f1~)),

f0~ &* (f0~ &* (f0~ &* f2~)), f1~ &* (f0~ &* (f0~ &* f1~)),

f1~ &* (f0~ &* (f0~ &* f2~)), f1~ &* (f1~ &* (f0~ &* f1~)),

f1~ &* (f1~ &* (f0~ &* f2~)), f1~ &* (f1~ &* (f1~ &* f2~)),

f2~ &* (f0~ &* (f0~ &* f1~)), f2~ &* (f0~ &* (f0~ &* f2~)),

f2~ &* (f1~ &* (f0~ &* f1~)), f2~ &* (f1~ &* (f0~ &* f2~)),

f2~ &* (f1~ &* (f1~ &* f2~)), f2~ &* (f2~ &* (f0~ &* f1~)),

f2~ &* (f2~ &* (f0~ &* f2~)), f2~ &* (f2~ &* (f1~ &* f2~))]

Notes This function also declares the symbol for the Lie product op-
erator denoted by &* if it was not previously assigned. This
is only to ensure that &* and its properties (see Loading LTP
in section 2.3 have been assigned in case it was manually re-
moved. The &* operator is created by default at startup when
the package is loaded.

Limitations There aren’t any known limitations, besides the normal limita-
tions imposed by the memory of the machine.

40

See Also phbize.

Algorithm The Philip Hall Basis

Due to the antisymmetry property and the Jacobi identity not
all the elements of the Lie algebra L(g1, . . . , gm) generated by
g1, . . . , gm are linearly independent. One possible method for
constructing a basis which takes into account the dependencies
imposed by the mentioned properties is to list all the generators
g1, . . . , gm and select some of their Lie products according to
the Philip Hall procedure described next [32].

Denote by B the basis, and let Bi be the i-th element in the
basis. Define the length l(G) of a Lie product G as the number of
generators in the expansion for G or, alternatively in a recursive
way:

l(gi) = 1 i = 1, . . . ,m (34)

l([G,H]) = l(G) + l(H) (35)

where G and H are Lie products.

Then a Philip Hall basis is an ordered set of Lie products {Bi}
satisfying:

1. gi ∈ B, i = 1, . . . ,m

2. If l(Bi) < l(Bj) then Bi < Bj

3. [Bi, Bj] ∈ B if and only if

(a) Bi, Bj ∈ B and Bi < Bj and

(b) either Bj = gk for some k or Bj = [Bp, Bq] with
Bp, Bq ∈ B and Bp ≤ Bi.

For proofs that a Philip Hall basis is indeed a basis for the Lie
algebra generated by g1, . . . , gm the reader is referred to:

J-P. Serre. Lie Algebras and Lie groups. W. A. Benjamin, New
York, 1965.

M. Hall. The Theory of Groups. Macmillan, 1959.

A Philip Hall basis which is nilpotent of order k can also be
constructed from the above definition by simply constructing
all the Lie products that satisfy the properties in the above
definition and have length not greater than k.

41

Implementation Notes
The implementation of the algorithm is illustrated in the flow
chart of Figs. 4-5. For further details and remarks on the
implementation the reader is referred to the source code.

From a practical perspective, the basis B can be built in such a
way that only condition 3 needs to be checked, since condition
1 must be assumed true for all initial generators and 2 may
be satisfied by performing the multiplications in an orderly
manner, as briefly described next.

Condition 3 is implemented within the dashed block labeled
“Create bracket [Bi, Bj]”, shown in Fig. 5.

The bracketing procedure (i.e. the procedure for generating
new Lie products or brackets) can be though of as a breeding
process. We must distinguish between to groups per “breeding
season” (iteration), the offspring and the parents.

On the first iteration the generators are treated as offspring
and are crossed between them. On the second iteration, the
offspring are called parents (since they will be crossed they
will become parents), and their offspring are the new offspring.
Parents are crossed only with their offspring and not between
them, since this happened in the previous iteration. While
offspring are crossed between them and also their parents to
cover all possible combinations. All the newborns are now
called offspring and the ones that were offspring are now in the
group of parents. And life goes on...

Offspring are “cross-fertilized” as shown in Fig. 6.2.

A B C

[A,B] [A,C] [B,C]

Figure 3: Lie bracketing tree.

42

Note that the [B,C], [C,A] and [B,A] are not valid offspring
since they violate condition 2, assuming a lexicographical order
is followed, i.e. A, B, C, are respectively the first, second and
third generators.

Now there are two groups: parents A, B, C and offspring [A,B],
[A,C], [B,C], denoted AB, AC and BC for short. Offspring will
reproduce again as graphically described in the above figure,
but also they will be crossed with their parents. All parents are
crossed with all offspring, in the following way:

AxAB AxAC AxBC

BxAB BxAC BxBC

CxAB CxAC CxBC

Where ’x’ stands for crossed with, i.e. represents the Lie product
operator. Note that some of the crossings must be eliminated
by rule 3, namely AxBC.
In the flow chart of Figs. 4-5, b denotes the bracketing iteration
(breeding season), gold is the number of brackets that have been
multiplied (crossed) at least once, gtot is the number the total
number of brackets including parents and offspring updated at
the end of the iteration. Note that gtot is note incremented as
the breeding occurs since its value is necessary to close loop L3,
in Fig. 5, to keep track of the new brackets the variable gacum
is used, instead, and its value will be passed to gtot once the
loop L3 is completed. The index i points to each element in the
initial population, and is associated with the first term in the
bracket [Bi, Bj], while the index j associated with the second
term in the bracket is set to start at the value of jmin according
to whether the the crossings will be done between the offspring
only (jmin = i + 1) or between the parents and the offspring
(jmin = gold + 1).

43

phb:(m, k)→ B
m: number of generators
k: order of nilpotency

Declare generators Xi

i = 0, . . . ,m − 1
Incorporate Xi’s in B

gtot := m
gold := 0

gacum := gtot

for
b := [1..k − 1]

L.1

for
i := [1..gtot]

L.2

A

(Details on next page).

B

gold := gtot
gtot := gacum

Return B

Figure 4: Flow chart for the phb algorithm (contd. on Fig. 5).

44

A

Set index jmin.

jmin :=

{
i + 1 if i > gold

gold + 1 otherwise

jmin ≤ gtot
0

1

for
j := [jmin..gtot]

L.3

b ≥ 2 ∧ i ≤ gold
0

1

op(1, Bj) ≤ Bi
0

1

gacum := gacum + 1
B := {B, [Bi, Bj]}

Remove brackets
of order ≥ k

B

gacum := gacum + 1
B := {B, [Bi, Bj]}

Create bracket [Bi, Bj]

Figure 5: Flow chart for the phb algorithm (contd. from Fig. 4).

45

6.3 phbize

Purpose Transform any Lie bracket to a bracket or linear combination
of brackets in the PHB. If the input Lie bracket is already an
element of the PHB, then it is returned unchanged.

Syntax xr:=phbize(x,B);

Description The function phbize(x,B) transforms the Lie bracket x to a
corresponding bracket or linear combination of brackets in the
PHB, if x is not already in the PHB which must be passed in
the second argument B. It is assumed that x is a pure bracket ,
i.e. the scalar parts have been removed (see the function
simpLB, which allows to obtain the pure bracket as explained
there).

NOTE: This function accepts arguments x of order higher than
the degree of nilpotency of the Lie algebra, and which might
exceed the degree of the highest order brackets in the basis. If
the order of the term x exceeds the degree of nilpotency, but
it is composed by the product of two elements in the PHB, the
result returned will be correct. However, for more complicated
brackets the result will be a partial simplification, not necessarily
and element of the PHB, and thus the result must be interpreted
with care.

Arguments x Some pure Lie bracket.
B Philip Hall basis

46

Examples The following examples consider the PHB B shown in the exam-
ple for the command phb on page 40.

> phbize(f0&*(f1&*f0),B);

-(f0~ &* (f0~ &* f1~))

The six combinations of 3-generator brackets and their equiva-
lences in terms of PHB elements are calculated below. Notice
the implicit use of the anti-commutativity law and Jacobi iden-
tity, the latter relating the first three or last three brackets.

> phbize(f0&*(f1&*f2),B);phbize(f2&*(f0&*f1),B);phbize(f1&*(f2&*f0),B);

> phbize(f0&*(f2&*f1),B);phbize(f2&*(f1&*f0),B);phbize(f1&*(f0&*f2),B);

-(f2~ &* (f0~ &* f1~)) + (f1~ &* (f0~ &* f2~))

f2~ &* (f0~ &* f1~)

-(f1~ &* (f0~ &* f2~))

(f2~ &* (f0~ &* f1~)) - (f1~ &* (f0~ &* f2~))

-(f2~ &* (f0~ &* f1~))

f1~ &* (f0~ &* f2~)

47

Algorithm This routine considers implicitly both the anti-symmetry
property and the Jacobi identity, through the verification of
the conditions for the construction of the PHB (cf. PHB
algorithm 40), since the conversion of any bracket to an
element, or a linear combination of the elements, in the PHB
must result in an bracket that complies with the rules used
for the construction of the PHB. As previously mentioned, the
rules for the construction of the PHB take into account the
anti-symmetry property and the Jacobi identity to select only
the independent brackets from all possible combinations.

So the main steps of the phbize algorithm consist in verifying
which rule or rules are violated by the Lie bracket, if it is not
already in the PHB, and making the appropriate correction so
that the condition is satisfied by the resulting bracket. Assum-
ing the Lie any Lie bracket x can be decomposed into its left
and right operands by respectively applying the functions lo and
ro to x, i.e. lo(x) and ro(x return the left and right operand
of x, respectively. And assuming also that the operations lo(·)
and ro(·) can be composed iteratively to obtain, say the right
operand of the left operand ro(lo(x)), then the main steps of
the phbize procedure in strict order can be summarized as:

1. Verify x ∈ B.

2. Verify lo(x) 6= ro(x).

3. Verify lo(x) ∈ B and ro(x) ∈ B.

4. Verify len(lo(x)) < len(ro(x)) ⇔ pos(lo(x), B) <
pos(ro(x), B).

5. Verify pos (lo(ro(x))) ≤ pos (lo(x)).

Where the functions len(x) and pos(x,B) return the length
(i.e. the number of operands) of the bracket x and the position
of x in the basis B, respectively.

The above rules are related to the Lie bracket properties and the
rules for the construction of the PHB. Particular connections
can be made between the above conditions and the Lie bracket
properties or the conditions in the phb algorithm (cf. p. 40).
This relations are summarized in the Table 6.3 below.

48

phbize condition phb condition Lie product property

1 1 -
2 - anti-symmetry

3 ∧ 4 3.a anti-symmetry
4 2 anti-symmetry
5 3.b Jacobi identity

Table 3: Connections between phbize conditions, phb

construction rules and the Lie bracket properties.

All the conditions in the above table associated with the anti-
symmetry property should imply the reordering (swapping) of
the operands of x, with the exception of the phbize condition 2,
which should return zero, since by the anti-symmetry property
[a, b] = [b, a] ⇔ [a, b] + [a, b] = 0 ⇒ [a, b] = [b, a] = 0 only if
a = b. In the case the bracket x does not satisfy the condition
associated with the Jacobi identity, then phbize should return
the sum of the two other terms in the Jacobi identity.

Figs. 6-7 show the flow chart illustrating the algorithm for
the application for the verification of the above rules and the
transformation of x into an element in the PHB B.

The functions len(x) and pos(x,B) mentioned above, have been
implemented and called bracketlen and posxinphb. These
two functions are available to the user, though their immedi-
ate use does not seem strictly necessary. Both, bracketlen and
posxinphb are described in the next subsections.

49

Remarks At this point it is worth to make some remarks on how a
procedure to construct a basis for some Lie algebra, such as the
one described to construct the Philip Hall basis can be devised.

The first observation is the obvious dependency imposed by
anti-symmetry property between a bracket and its commuted
product. By taking into account this simply property, we are
basically prescribing that we either consider [f, g] or −[g, f]
but not both, so selecting the first bracket leads to establishing
some order, in this case a lexicographical order. Thus, the
ordered basis condition 1 for phb is somewhat implicit due to
the anti-symmetry, which also leads to condition 2.

Next, if three ordered generators f, g, h are considered, it is not
difficult to see that there are 6 possible ways in which their
product can occur. This 6 ordered triples are fgh, fhg, hfg, hgf,
ghf and gfh. Considering these combinations of f, g and h, the
Jacobi identity can be written only in the next two ways:

[f, [g, h]] +[h, [f, g]] +[g, [h, f]] = 0
m m m

−[f, [h, g]] −[h, [g, f]] −[g, [f, h]] = 0
(36)

Note that the second equation simply results from the first one
by applying the anti-symmetry property to the right operand of
each Lie product. Note also that other forms of the Jacobi iden-
tity in which the left operand has length 2 are discarded since
this violate the ordering rule 2 (pos(lo(x), B) < len(ro(x), B)).

So basically, all what is needed is to select the dependent
and independent terms in the above Jacobi identity. The
independent terms must belong to the basis B and therefore
they must already be such that they satisfy the ordering and
the anti-symmetry properties.

Checking the terms in (36) it is possible to identify those that
do not satisfy the ordering condition 4, and the condition 5, as
indicated in the equation (37), below. All the terms that do not
satisfy 4 can easily be brought to a form that is the the basis
B by simply swapping the elements in the right operand and
making a sign correction. The exception to the last statement
is the first term in the second equation of (37) which if corrected
by swapping the operands of the right operand, then it violates
condition 5 since pos(lo(ro([f, [g, h]]))) = pos(g) is greater than
pos(lo([f, [g, h]])) = pos(f). Thus, the first term in (37) is the
dependent term, since it cannot be brought into a form that is in
the basis B by simply swapping operands in the right operand
and therefore it will have to be expressed as the sum of the
two terms that have been marked with a

√
in (37), which are

elements of the basis B.
50

[

×5
︷︸︸︷

f, [g, h]] +

√

[h, [f, g]] +[g, [

×4
︷︸︸︷

h, f]] = 0

−[f, [

×4
︷︸︸︷

h, g]] −[h, [

×4
︷︸︸︷

g, f]] −
√

[g, [f, h]]= 0

(37)

So now the final equation for the dependent Lie product in terms
of the independent basis brackets as

[f, [g, h]] := −[h, [f, g]] + [g, [f, h]] (38)

which for an indeterminate bracket x can be written in the gen-
eral form

[lo(x), [lo(ro(x)), ro(ro(x))]] :=

−[ro(ro(x)), [lo(x), lo(ro(x))]] (39)

+[lo(ro(x)), [lo(x), ro(ro(x))]]

as also shown in the last process box of the flow chart in Fig. 7.

Sign removal The sign removal is not a function, but rather a process
required to deal with brackets of the form −x, since the basis
PHB B only contains the positive version of the brackets.

Suppose that x is indeed an element of B, then −x does not need
any processing, since it is evidently a bracket expressed in terms
of x ∈ B, however from an implementation standpoint, checking
the membership of −x in B fails to return a positive answer, and
the the program must be adapted to handle this case. This can
easily be achieved by first checking if the symbolic variable has
a minus sign in front; if so, then the sign must be stored and
the membership to B of the negated bracket must be checked
instead. Once some possible processes have been performed on
the variable, the result is negated previous been returned to
recover the sign of the original bracket passed as input to the
phbize function (as well as some other functions of the LTP).
This process of sign removal and restoration is shown in the flow
chart of Fig. 10.

See Also posxinphb(x), bracketlen(x)

51

phbize(x, B)
Properties applied:
Ordering, antisymmetry and Jacobi identity.
Inputs:
[1] x: simple Lie product.
[2] B: A Phillip Hall basis.
x := X ∈ B
x := [lo, ro] = (lo)& ∗ (ro)
Output:
[1] x′ ∈ B

B

x ∈ B
∧

x ≡ 0

1

0

Return B

lo = ro 1

0

Return 6 0

nops(lo) = 1
∧

nops(ro) = 1

1

0

poslo := posxinphb(lo, B)

posro := posxinphb(ro,B)

poslo = −1
∨

posro = −1

1

0

Error: lo ∨ ro /∈ B

poslo > posro 1 Return −(ro)& ∗ (lo)

A

Process brackets of order > 2

Figure 6: Flow chart for the phbize algorithm (contd. on Fig. 7).

52

A Process brackets of order > 2

length(ro)
<

length(lo)

1

0

Reorder to [shorter, longer]

phbize(−(ro& ∗ lo), B)
B

length(ro)
=

length(lo)

(> 1)

1

0

Reorder to [ro, lo]
if posro < poslo

C

Apply the
Jacobi Identity

D

Figure 7: Flow chart for the phbize algorithm (contd. from Fig. 6).

53

phbize(x,B) (contd)

C Reorder to [ro, lo] if posro < poslo

lo /∈ B
1

0

lo := phbize(lo, B) B

ro /∈ B
1

0

ro := phbize(ro,B) B

lo = ro 1

0

Return 6 0

poslo := posxinphb(lo, B)

posro := posxinphb(ro,B)

posro < poslo 1

0

Return −(ro)& ∗ (lo)

Return (lo)& ∗ (ro)

Figure 8: Flow chart for the phbize algorithm (contd. from Fig. 7).

54

phbize(x,B) (contd)

D Apply Jacobi Identity

lo /∈ B
1

0

lo := phbize(lo, B) B

ro /∈ B
1

0

ro := phbize(ro,B) B

loro := op(1, ro)

nops(ro) > 1 10 roro := op(2, ro)roro := 0

poslo := posxinphb(lo, B)

posloro := posxinphb(loro,B)

poslo < posloro 1

0

Apply Jacobi Identity
(−phbize(roro& ∗ (lo& ∗ loro), B)+

+phbize(loro& ∗ (lo& ∗ roro), B))
B

Return sign adjusted (lo)& ∗ (ro)

Figure 9: Flow chart for the phbize algorithm (contd. from Fig. 7).

55

xin

Sign Removal Process

Variables Initialization
x := xin

signx := 1

op(1, x) = −1 1

0

signx := −1 (Store sign)

x := −x (Remove sign)

Some homogeneous process f : x 7→ f(x)

satisfying f(λx) = λf(x)

...
xout := f(x)

Sign Restitution
xout := singx ∗ xout

xout

Figure 10: Flow chart for the sign removal procedure.

56

6.3.1 posxinphb

Purpose Return the position of the Lie bracket x in the basis B.

Syntax p:=posxinphb(x,B);

Description The command posxinphb, returns the position of x within the
PHB, if it exists otherwise returns −1. It is assumed that x is
a , i.e. the scalar parts have been removed (see function simpLB

below which allows to obtain the pure bracket).

Arguments x Some pure Lie bracket.
B Philip Hall basis

Examples Consider the PHB B, given in example for the function phb in
p. 40. Then

> p:=posxinphb(f1~ &* (f1~ &* (f0~ &* f1~)),B);

p:=22

Notes This function is required by the phbize routine. It has been pro-
vided to the user for his/her convenience, however it is unlikely
that it will really be needed.

6.3.2 bracketlen

Purpose Return the length of the Lie bracket x.

Syntax l:=bracketlen(x);

Description This function also expects a pure bracket as posxinphb (see
simpLB below for the explanation of the pure bracket concept)
and returns the length, also known as order or depth of the Lie
bracket. The length of any generator is one, for any other Lie
product x it is the number of terms (operands) in the expansion
of x.

Arguments x Some pure Lie bracket.

57

Examples Consider the PHB B, given in example for the function phb in
p. 40. Then the length of the third and twenty-second elements
of B can be found as:

> l1:=bracketlen(B[3]);

> l2:=bracketlen(B[22]);

l1:=1

l2:=4

Notes This function is required by the phbize routine. It has been pro-
vided to the user for his/her convenience, however it is unlikely
that it will really be needed.

58

6.4 simpLB

Purpose Simplify a Lie bracket according to the property of distributivity
over scalar multiplication, and return the scalar part and the
simplified pure Lie bracket.

Syntax xs:=simpLB(x);

Description The command simpLB simplifies any Lie bracket based on
the distributivity over scalar multiplication property. This
command returns the scalar terms of the Lie bracket grouped
together multiplying a Lie monomial (i.e. a Lie bracket
containing only generators of the Lie algebra without any scalar
coefficients).

This function returns a list (a Maple sequence) of three ele-
ments: the simplified bracket in the form scalar ∗ pure bracket,
the scalar part, the pure bracket, in the first, second and third
positions of the list. The elements in the list can be accessed
individually by appending the index selector after the name of
the output variable or after the invocation of the function, i.e. if
xs:=simpLB(x), then xs[2] corresponds to the second element
in the output list stored in xs. Similarly if only the second ele-
ment is required, simpLB can be invoked as z:=simpLB(x)[2];
in this case z does not contain a list but only the second element
of the list produced by simpLB.

Arguments x Any Lie bracket.

Examples As an example consider the simplification of [αf2, [αf1, (α +
β2)f0]]), which should return the scalar part (α3 + α2β2) and
the pure bracket [f2, [f1, f0]]. This can be easily achieved as
follows:

> x:=(a*f2) &* ((a*f1) &* ((a+b^2)*f0));

2

x := a~ f2~ &* (a~ f1~ &* (a~ + b~) f0~)

> z:=simpLB(x);

3 2 2 2 2

z := (a~ + a~ b~) (f2~ &* (f1~ &* f0~)), a~ (a~ + b~),

f2~ &* (f1~ &* f0~)

> z[3];

f2~ &* (f1~ &* f0~)

59

Algorithm The algorithm behind the implementation of this function is
illustrated in the flow chart of Fig. 11.

The main idea is to decompose each element in the Lie product
into its scalar and vector (Lie indeterminate) part. If there is no
Lie product operator &* standing between the operands, simply
the scalar and vector parts are returned, otherwise the function
recursively calls itself to further decompose the operands into
scalar and vector parts. As shown in the bottom right process
box of the flow chart in Fig. 11, the scalar part of x is the
multiplication of the scalar parts of the left and right operands
of x, while the pure bracket of x is the multiplication in the Lie
product of the left and right pure operands of x, which are also
obtained by calling simpLB with the respective operand as an
argument, thus simpLB calls itself until no Lie product operator
&* is found.

simpLB(x)
Property applied:
Distributivity over scalar multiplication.
Input: Any Lie element or product.
x := αX
x := (lop)& ∗ (rop)
Output:
[1] sca(x)*liebracket(x)
[2] sca(x)
[3] liebracket(x)

operator(x)=&∗0 1

sca:=simpLB(lop)[2]*simpLB(rop)[2];
vec:=simpLB(lop)[3]&∗simpLB(rop)[3];

sca:=part(x)[1];
vec:=part(x)[2];

Figure 11: Flow chart for the simpLB function.

60

6.5 regroupLB

A possible alternative name for this function is collectLB.

Purpose Regroup (collect) summands in an expression in terms of its Lie
brackets. The only properties applied are the distributivity over
the Lie products and the distributivity over scalar multiplica-
tion. The anti-symmetry and Jacobi identities are not applied,
however (cf. reduceLB instead). Neither reduces the terms to
a form in the PHB, to this end use instead reduceLB, which is
more powerful, but obviously requires a PHB.

Syntax p:=regroupLB(x);

Description The command regroupLB groups together brackets which are
equal, in other words the scalar parts collected in terms of their
common Lie bracket; i.e. the underlying properties applied are
that of distributivity over the Lie products and over the scalar
multiplication. The command invokes simpLB to obtain the
scalar part and the pure (simplified) Lie bracket, the scalar parts
multiplying equal brackets are summed and expressed as a new
factor of the corresponding simplified Lie bracket (the common
factor). This function is mostly based on finding like members
in a list and conceptually simple, thus no further algorithmic
details will be included.

Arguments x Some polynomial in the Lie brackets, i.e. a summa-
tion of Lie brackets.

Note The regroupLB does not apply the anti-commutativity or anti-
symmetry property, neither the Jacobi identity. To reduce an
expression to its simplest (shortest) form, use reduceLB, which
is more powerful in the sense that it takes into account the
anti-symmetry and Jacobi properties, however it requires the
specification of a PHB.

Examples First consider as a simple example the following:

> z:=f0&*f1+(u0_1*f0)&*f1;

z := (f0~ &* f1~) + (f0~ u0_1~ &* f1~)

> regroupLB(z);

(1 + u0_1~) (f0~ &* f1~)

As a second, more complex example, consider the linear combi-
nation of vector fields f_1, f_2 and f_3 given in the exam-
ple for the function createLBobjects on page 37. And let
z:=f_1&*(f_2+f_3);, then

61

> z:=f_1&*(f_2+f_3);

z:=(f0~ u0_1~ &* f0~ u0_2~) + (f0~ u0_1~ &* f1~ u1_2~)

+ (f0~ u0_1~ &* f2~ u2_2~) + (f0~ u0_1~ &* f0~ u0_3~)

+ (f0~ u0_1~ &* f1~ u1_3~) + (f0~ u0_1~ &* f2~ u2_3~)

+ (f1~ u1_1~ &* f0~ u0_2~) + (f1~ u1_1~ &* f1~ u1_2~)

+ (f1~ u1_1~ &* f2~ u2_2~) + (f1~ u1_1~ &* f0~ u0_3~)

+ (f1~ u1_1~ &* f1~ u1_3~) + (f1~ u1_1~ &* f2~ u2_3~)

+ (f2~ u2_1~ &* f0~ u0_2~) + (f2~ u2_1~ &* f1~ u1_2~)

+ (f2~ u2_1~ &* f2~ u2_2~) + (f2~ u2_1~ &* f0~ u0_3~)

+ (f2~ u2_1~ &* f1~ u1_3~) + (f2~ u2_1~ &* f2~ u2_3~)

> regroupLB(z4);

(u0_1~ u0_2~ + u0_1~ u0_3~) (f0~ &* f0~)

+ (u0_1~ u1_2~ + u0_1~ u1_3~) (f0~ &* f1~)

+ (u0_1~ u2_2~ + u0_1~ u2_3~) (f0~ &* f2~)

+ (u1_1~ u0_2~ + u1_1~ u0_3~) (f1~ &* f0~)

+ (u1_1~ u1_2~ + u1_1~ u1_3~) (f1~ &* f1~)

+ (u1_1~ u2_2~ + u1_1~ u2_3~) (f1~ &* f2~)

+ (u2_1~ u0_2~ + u2_1~ u0_3~) (f2~ &* f0~)

+ (u2_1~ u1_2~ + u2_1~ u1_3~) (f2~ &* f1~)

+ (u2_1~ u2_2~ + u2_1~ u2_3~) (f2~ &* f2~)

The latter example clearly shows that only the distribu-
tivity over scalar multiplication is applied, since terms like
(f0~ &* f0~) are not made zero, neither factors of, for exam-
ple, (f0~ &* f1~) and (f1~ &* f0~) are collected together.

Implementation Notes
The first implementation of this function suffered of some memory
problems, due to some problem in the way Maple handles the
memory of sequences and lists. A work around this problem was
to transform the list into an array and back into a list to eliminate
certain elements in a simple ways using the subsop function from
Maple. The details can be found in the source code.

It’s worth to mention that for larger control systems and models,
memory limitations might occur even if memory is formally allocated
with the functions to declare arrays, especially if a high order CBH
formula (cf. cbhexp, p. 68) is employed. A possible approach to face
memory related obstacles is to decrease the order of the CBH used.
The exponent returned by cbhexp is a sum of approximately 2mn

brackets, where m is the number of generators, n the order of the
CBH formula employed. For example, in the case of three generators
(m = 3) and a third order CBH (n = 3), the CBH exponent would
have more than 2 × 33 = 54 elements in the sum. For the case of
of m = 3 and n = 4 the number of elements increases drastically to
more than 162, actually the number of summands is 231 when the
elements of order smaller than 4 are taken into account.

62

6.6 reduceLB

Purpose Reduce an expression in terms of Lie brackets to its simplest
form in terms of brackets in the PHB.

Syntax p:=reduceLB(x,B);

Description The routine reduceLB is similar to regroupLB explained
above, but more powerful in the sense that it allows a greater
simplification of a general Lie expression (any Lie polynomial,
i.e. a summation of Lie products) by reducing every bracket
to a valid product in the Philip Hall basis. The algorithmic
implementation of this routine is simple and involves only three
steps: regrouping the original input by invoking regroupLB,
transforming every element in the regrouped expression to
a valid PHB element by means of the phbize function, and
regrouping the last result once more, again invoking regroupLB.

NOTE: This function accepts arguments x with brackets of order
higher than the degree of nilpotency of the Lie algebra, and which
might exceed the degree of the highest order brackets in the basis.
Since this function relies on phbize, if there are terms in x
exceeding the degree of nilpotency, but that are composed by the
Lie product of two elements in the PHB, the result returned will
be correct. However, for more complicated brackets the result
will be a partial simplification containing brackets which do not
really belong to the PHB, and thus the result must be interpreted
with care.

Arguments x Any Lie polynomial.
B Philip Hall basis

63

Example Consider the simplification of the exponent resulting from the
composition of the flows corresponding to the vector fields f_1

and f_2 from the example for the function createLBobjects

(p. 37. The exponent of the composition of flows can be
calculated by means of the function cbhexp (p. 68. Assume the
PHB B is the same one given in the example for the function
phb in p. 40.

The expansion of the exponent is not shown below since its
231 terms require 7 double-spaced pages of 55 lines each,
nevertheless it can be found in the examples included with the
source code. Assume the PHB B is the same one given in the
example for the function phb in p. 40.

Note in the example below how the resulting exponent zr has
only 29 summands, compared to the 231 in the initial expression
for the exponent z!

> z:=cbhexp(f_1,f_2):

> zr:=reduceLB(z,B);

zr := (- 1/12 u2_2~ u0_1~ u1_2~ + 1/12 u0_1~ u2_1~ u1_2~

- 1/12 u2_1~ u1_1~ u0_2~ + 1/12 u0_2~ u1_1~ u2_2~)

(f2~ &* (f0~ &* f1~)) + (- 1/12 u0_2~ u0_1~ u1_2~ ...

64

2 2

... + 1/12 u0_1~ u1_2~ + 1/12 u0_2~ u1_1~

- 1/12 u0_1~ u1_1~ u0_2~) (f0~ &* (f0~ &* f1~))

+ (- 1/2 u2_1~ u1_2~ + 1/2 u1_1~ u2_2~) (f1~ &* f2~) + (

- 1/24 u1_2~ u1_1~ u0_1~ u2_2~ + 1/24 u2_1~ u0_2~ u1_1~ u1_2~

) (f1~ &* (f1~ &* (f0~ &* f2~))) + (1/12 u1_2~ u2_1~ u0_2~

- 1/12 u2_1~ u1_1~ u0_2~ - 1/12 u2_2~ u0_1~ u1_2~

+ 1/12 u0_1~ u1_1~ u2_2~) (f1~ &* (f0~ &* f2~)) +

2 2

(1/24 u2_1~ u0_2~ u0_1~ - 1/24 u0_2~ u0_1~ u2_2~)

(f0~ &* (f0~ &* (f0~ &* f2~)))

+ (1/2 u0_1~ u1_2~ - 1/2 u1_1~ u0_2~) (f0~ &* f1~) + (

2

1/12 u0_2~ u2_1~ - 1/12 u0_1~ u2_1~ u0_2~

2

- 1/12 u2_2~ u0_1~ u0_2~ + 1/12 u0_1~ u2_2~)

2

(f0~ &* (f0~ &* f2~)) + (- 1/12 u1_2~ u0_1~

+ 1/12 u0_1~ u1_1~ u1_2~ + 1/12 u0_2~ u1_1~ u1_2~

2

- 1/12 u1_1~ u0_2~) (f1~ &* (f0~ &* f1~)) +

2 2 2 2

(1/24 u0_2~ u1_1~ - 1/24 u1_2~ u0_1~)

2

(f1~ &* (f0~ &* (f0~ &* f1~))) + (- 1/12 u2_1~ u0_2~

+ 1/12 u0_2~ u2_1~ u2_2~ + 1/12 u2_1~ u0_1~ u2_2~ ...

65

2

... - 1/12 u2_2~ u0_1~) (f2~ &* (f0~ &* f2~))

2

+ (u2_2~ + u2_1~) f2~ + (1/12 u1_2~ u2_1~

- 1/12 u2_1~ u1_1~ u1_2~ - 1/12 u1_2~ u1_1~ u2_2~

2

+ 1/12 u1_1~ u2_2~) (f1~ &* (f1~ &* f2~))

+ (u1_2~ + u1_1~) f1~ + (u0_1~ + u0_2~) f0~ + (

2

1/48 u2_1~ u0_2~ u1_1~ u1_2~ + 1/48 u0_2~ u1_1~ u2_2~

2

- 1/48 u1_2~ u2_1~ u0_1~ - 1/48 u1_2~ u1_1~ u0_1~ u2_2~)

(f2~ &* (f1~ &* (f0~ &* f1~))) +

2 2 2 2

(1/24 u0_2~ u2_1~ - 1/24 u2_2~ u0_1~)

(f2~ &* (f0~ &* (f0~ &* f2~))) +

2 2

(- 1/24 u0_2~ u0_1~ u1_2~ + 1/24 u0_2~ u0_1~ u1_1~)

(f0~ &* (f0~ &* (f0~ &* f1~))) + (

2

- 1/48 u2_1~ u2_2~ u0_1~ u1_2~ - 1/48 u1_1~ u2_2~ u0_1~

2

+ 1/48 u0_2~ u2_1~ u1_2~ + 1/48 u2_1~ u0_2~ u1_1~ u2_2~)

(f2~ &* (f1~ &* (f0~ &* f2~))) +

2 2

(1/24 u0_2~ u1_1~ u1_2~ - 1/24 u1_2~ u1_1~ u0_1~)

(f1~ &* (f1~ &* (f0~ &* f1~))) + ...

66

... (1/24 u2_1~ u0_2~ u1_1~ u2_2~ - 1/24 u2_1~ u2_2~ u0_1~ u1_2~)

(f2~ &* (f2~ &* (f0~ &* f1~))) + (

2

- 1/48 u2_1~ u0_2~ u0_1~ u1_2~ - 1/48 u1_2~ u0_1~ u2_2~

2

+ 1/48 u0_2~ u2_1~ u1_1~ + 1/48 u0_2~ u1_1~ u0_1~ u2_2~)

(f2~ &* (f0~ &* (f0~ &* f1~)))

+ (- 1/2 u2_1~ u0_2~ + 1/2 u0_1~ u2_2~) (f0~ &* f2~) +

2 2

(1/24 u0_2~ u2_1~ u2_2~ - 1/24 u0_1~ u2_2~ u2_1~)

(f2~ &* (f2~ &* (f0~ &* f2~))) +

2 2

(- 1/24 u1_2~ u1_1~ u2_2~ + 1/24 u1_2~ u2_1~ u1_1~)

(f1~ &* (f1~ &* (f1~ &* f2~))) +

2 2

(1/24 u2_1~ u1_2~ u2_2~ - 1/24 u2_2~ u2_1~ u1_1~)

(f2~ &* (f2~ &* (f1~ &* f2~))) + (1/12 u2_1~ u1_1~ u2_2~

2 2

- 1/12 u2_2~ u1_1~ - 1/12 u2_1~ u1_2~

+ 1/12 u1_2~ u2_1~ u2_2~) (f2~ &* (f1~ &* f2~)) +

2 2 2 2

(1/24 u1_2~ u2_1~ - 1/24 u1_1~ u2_2~)

2

(f2~ &* (f1~ &* (f1~ &* f2~))) + (1/48 u0_2~ u2_1~ u1_1~

+ 1/48 u2_1~ u0_2~ u0_1~ u1_2~

2

- 1/48 u0_2~ u1_1~ u0_1~ u2_2~ - 1/48 u1_2~ u0_1~ u2_2~)

(f1~ &* (f0~ &* (f0~ &* f2~)))

> nops(zr);

29

67

6.7 cbhexp

Purpose Calculate the exponent corresponding to the composition of
flows of vector fields according to the CBH formula (up to order
4 brackets).

Syntax z:=cbhexp(x,y);

Description The function cbhexp computes and returns the exponent Z in
eZ = eX ◦ eY , the composition of flows of two vector fields X
and Y , calculated according to the Campbell-Baker-Hausdorff
(CBH) formula for the composition of the flows (exponential
mappings) acting on the right. The exponent Z is approximated
by the 4th order CBH formula given below (see[43]):

Z = X + Y +
1

2
[X,Y] +

1

12
([X, [X,Y]] − [Y, [X,Y]])

− 1

48
([Y, [X, [X,Y]]] + [X, [Y, [X,Y]]])

Arguments x, y Lie algebra generators or Lie polynomials, i.e. lin-
ear combinations of Lie elements (brackets).

Examples See example for the function reduceLB on page 63.

68

6.8 evalLB2expr

Purpose Evaluate a LB to a symbolic or Maple expression.

Syntax e:=evalLB2expr(x,vars);

Description The command evalLB2expr, takes a Lie monomial as input (cf.
simpLB, p. 59 and returns two expressions with the expansion of
the Lie bracket according to its definition involving the partial
derivatives of the vector fields. The first expression of the output
displays an implicit evaluation of the bracket (i.e. the derivatives
are not actually computed). The second expression corresponds
to a form in terms of the Jacobians that are not evaluated until
the explicit definition of the vector fields takes place.

Arguments x A pure Lie bracket.
vars Array or vector of variables in terms of which

the elements of the indeterminates are defined,
e.g. vars = [x1, ..., xn] if fij : (x1, ..., xn) →
fij(x1, ..., xn). Where fij is the jth element of
the indeterminate fi.

Examples The following examples show respectively the implicit and ex-
plicit evaluation of a second order and a third order Lie bracket.

> z1:=g0&*g1;

> z2:=g1&*(g0&*g2);

> evalLB2expr(z1,x)[1];z1e:=evalLB2expr(z1,x)[2];

> evalLB2expr(z2,x)[1];z2e:=evalLB2expr(z2,x)[2];

z1 := g0 &* g1

z2 := g1 &* (g0 &* g2)

/d \ /d \

|-- g1| g0 - |-- g0| g1

\dx / \dx /

z1e := matadd(multiply(jacobian(g1, x), g0),

-multiply(jacobian(g0, x), g1))

69

/d //d \ /d \ \\

|-- ||-- g2| g0 - |-- g0| g2|| g1

\dx \\dx / \dx / //

/d \ //d \ /d \ \

- |-- g1| ||-- g2| g0 - |-- g0| g2|

\dx / \\dx / \dx / /

z2e := matadd(multiply(jacobian(matadd(

multiply(jacobian(g2, x), g0), -multiply(jacobian(g0, x), g2))

, x), g1), -multiply(jacobian(g1, x), matadd(

multiply(jacobian(g2, x), g0), -multiply(jacobian(g0, x), g2))))

> g0:=vector([-x2,u^2*x1]);

> g1:=vector([tan(x1),tan(x2)]);

> g2:=vector([x2,1]);

> x:=[x1,x2];

[2]

g0 := [-x2, u x1]

g1 := [tan(x1), tan(x2)]

g2 := [x2, 1]

x := [x1, x2]

> with(linalg,jacobian,multiply,matadd);

[jacobian, multiply, matadd]

> eval(z1e);

> eval(z2e);

[2 2 2 2]

[-(1 + tan(x1)) x2 + tan(x2), (1 + tan(x2)) u x1 - u tan(x1)]

70

[2 2 2

[u tan(x1) - (1 + tan(x1)) (u x1 + 1),

2 2 2]

-u tan(x2) + (1 + tan(x2)) u x2]

Notes The following issues must be considered when using
evalLB2expr:

• The input Lie bracket must be a pure bracket.

• Note the functions jacobian, multiply and matadd (from
the linalg package) shouldn’t be in the Maple environ-
ment before calling evalLB2expr, otherwise they must be
unassigned using unassign.

• The Lie algebra generators must be free of assumptions.
The vector type assumption might be a frequent cause of
problems if the user forgets to remove this or any other
assumption from the variable. The reason for having
assumption-free variables is that the function jacobian

from the linalg package cannot handle variables on which
some previous assumption was made.

• To obtain a fully (explicitly) evaluated Lie bracket it is
necessary to load the linalg package or at least the func-
tions within this package shown in the above example.

• The invocation of the commands should follow this par-
ticular order: define the Lie monomial, calculate its ex-
pansion with evalLB2expr, define the corresponding gen-
erators, load the linalg package (jacobian, multiply and
matadd commands), and finally, evaluate the expansion
via eval.

Operator Substitution
It’s worth to mention that this function is simple thanks to
the capability of Maple for performing operator substitution.
The code for this routine is perhaps a good example on how to
perform an operator substitution.

71

6.9 calcLB

Purpose Calculates a LB in terms of the definitions for each generator of
an algebra of vector fields.

Syntax e:=calcLB(x,listgen,listgendef,vars);

Description This function performs an explicit calculation of Lie bracket of
vector fields, i.e. calculates the Jacobians of the vector fields
and makes the appropriate multiplications between the Jaco-
bians and the vector fields. To this end, the function requires
a list with the names of the symbolic variables that represent
the vector fields, a list with the actual definitions of the corre-
sponding vector fields, and an array with the variables in terms
of which the vector fields are defined.

Arguments x A pure Lie bracket.
listgen List of Lie algebra generators (indeterminates). e.g.

[f0, f1, f2].
listgendef

List with the respective definition for each indeter-
minate in listgen. It is assumed that the indetermi-
nates are vector fields, thus the definition of each
indeterminate should be stored in a vector type.
e.g. Let

> f0d:=vector([-x2,a*x1]);

> f1d:=vector([x1*x2,x2]);

> f2d:=vector([0;2*x1^2]);

then listgen should be [f0d, f1d, f2d].
vars Array or vector of variables in terms of which

the elements of the indeterminates are defined,
e.g. vars = [x1, ..., xn] if fij : (x1, ..., xn) →
fij(x1, ..., xn). Where fij is the jth element of
the indeterminate fi.

72

Example The following examples show respectively the implicit and ex-
plicit evaluation of a second order and a third order Lie bracket.
In the following example the Lie brackets z1 and z2 are defined
first. Note that z1 is defined in terms of Lie elements f0 and
f1, while z2 is expressed in terms of the Lie elements g0, g1 and
g2. The explicit evaluations of the brackets z1 and z2 are given
in z1e and z2e, respectively. Next the definitions for the g’s are
given, but not for the f’s. Notice that once the linalg package
has been loaded, the evaluation of z2e, using Maple’s eval, ac-
tually calculates (fully evaluates) the Lie bracket according to
the definitions of the g’s, while the eval(z1e) returns an error,
obviously because the f’s have not been explicitly defined. How-
ever, using calcLB at the end of this example, the bracket z1 is
explicitly calculated. The arguments to calcLB are z=[f0,f1]

a list containing the elements in terms of which the bracket z1
is defined, a second list with the corresponding definitions of f0
and f1 given respectively in g0 and g1, and finally the array x

of variables in terms of which the g’s are defined.

> z1:=f0&*f1;

> z2:=g1&*(g0&*g2);

> z1e:=evalLB2expr(z1,x)[2];

> z2e:=evalLB2expr(z2,x)[2];

z1 := f0~ &* f1~

z2 := g1 &* (g0 &* g2)

z1e := matadd(multiply(jacobian(f1~, x), f0~),

-multiply(jacobian(f0~, x), f1~))

z2e := matadd(multiply(jacobian(matadd(

multiply(jacobian(g2, x), g0), -multiply(jacobian(g0, x), g2))

, x), g1), -multiply(jacobian(g1, x), matadd(

multiply(jacobian(g2, x), g0), -multiply(jacobian(g0, x), g2))))

73

> g0:=vector([-x2,u^2*x1]);

> g1:=vector([tan(x1),tan(x2)]);

> g2:=vector([x2,1]);

> x:=[x1,x2];

[2]

g0 := [-x2, u x1]

g1 := [tan(x1), tan(x2)]

g2 := [x2, 1]

x := [x1, x2]

> with(linalg,jacobian,multiply,matadd);

[jacobian, multiply, matadd]

> eval(z1e); # Just to show that it cannot be evaluated without

> # the proper definitions for the vector fields...

Error, (in jacobian) wrong number (or type) of arguments

> eval(z2e);

[2 2 2

[u tan(x1) - (1 + tan(x1)) (u x1 + 1),

2 2 2]

-u tan(x2) + (1 + tan(x2)) u x2]

> # z[1..2] are the first to components of the previously

> # defined z:=phb(3,4); (see the example for the phb function,

> # in which z[1..2] corresponds to the list ’[f0, f1]’).

> calcLB(z1,z[1..2],[g0,g1],x);

[2 2 2 2]

[-(1 + tan(x1)) x2 + tan(x2), (1 + tan(x2)) u x1 - u tan(x1)]

Notes This function invokes the procedure evalLB2expr in order to
perform the calculation, but does not require to load the linalg
package.

See Also evalLB2expr.

74

6.10 selectLB

Purpose Select Lie brackets of certain order in a given expression.

Syntax e:=selectLB(x,k,s)

Description Selects the Lie brackets in a given expression x which are of
order smaller, equal or greater than k, according to whether the
third argument s is less, equal or greater than zero, respectively.

Arguments x Expression containing Lie brackets (list, sum, etc.).
k Bracket degree (also referred to as order or length).
s < 0 - Select brackets of order < k.

= 0 - Select brackets of order = k.
> 0 - Select brackets of order > k.

Examples Consider the expression zr in the example for the function
reduceLB on page 63. The the summation of brackets of or-
der 2 can be obtained by invoking:

> selectLB(zr,2,0);

(1/2 u0_1~ u2_2~ - 1/2 u2_1~ u0_2~) (f0~ &* f2~)

+ (- 1/2 u1_1~ u0_2~ + 1/2 u0_1~ u1_2~) (f0~ &* f1~)

+ (- 1/2 u2_1~ u1_2~ + 1/2 u1_1~ u2_2~) (f1~ &* f2~)

75

6.11 createSubsRel

Purpose Create substitution relations for the exponent expression result-
ing from the CBH composition.

Syntax e:=createSubsRel(nGen,sLen);

Description Creates substitution relations to replace the scalars in the
standard result from the composition of flows via the func-
tion cbhexp. Namely, the scalars u_i_k will be replaced by
epsilon_k*u_i_k. The system is assumed to be drift free, i.e.
there is a control u_0_k, for all k, that multiplies the first vector
field f_0. If the system has drift then set u_0_k=1, for all k.
Use the substitution relation in conjunction with the command
subs as illustrated in the example.
The function returns three lists of substitution relations, in
which:

• The first list contains basic substitution relations of the
u_i_k=epsilon_k*u_i_k, where epsilon_k represents
the length of the time interval for which the controls u_i_k
are applied.

• The second list sets u_0_k=1 for all k. This list is neces-
sary if the system is a system with drift.

• The third list sets epsilon_k=epsilon, i.e. these sub-
stitution relations must be used if the time intervals are
equal duration.

Arguments nGen Number of Lie algebra generators.
sLen Length of the sequence of inputs, i.e. the number

of switching in the input sequence.

Examples Consider a nilpotent Lie algebra of degree 3, generated by 3
vector fields, and a sequence of inputs of length 2. The corre-
sponding expressions for span of generators at each instant of
the input sequence is given below.

f_1:=f0*u0_1+f1*u1_1+f2*u2_1

f_2:=f0*u0_2+f1*u1_2+f2*u2_2

The composition of the above f_1 and f_2 using the CBH, yields
after simplification the following expression:

76

cf := (1/2 u1_1~ u2_2~ - 1/2 u2_1~ u1_2~) (f1~ &* f2~)

+ (u0_1~ + u0_2~) f0~ + (u1_1~ + u1_2~) f1~ + (

- 1/12 u1_1~ u2_1~ u0_2~ + 1/12 u0_2~ u2_1~ u1_2~ ...
... + 1/12 u0_1~ u1_1~ u2_2~ - 1/12 u1_2~ u0_1~ u2_2~)

(f1~ &* (f0~ &* f2~)) + (- 1/12 u0_1~ u2_1~ u0_2~

2 2

+ 1/12 u0_2~ u2_1~ + 1/12 u0_1~ u2_2~

- 1/12 u0_2~ u0_1~ u2_2~) (f0~ &* (f0~ &* f2~)) +

+ (1/2 u0_1~ u2_2~ - 1/2 u2_1~ u0_2~) (f0~ &* f2~)

+ (u2_1~ + u2_2~) f2~

+ (1/2 u0_1~ u1_2~ - 1/2 u0_2~ u1_1~) (f0~ &* f1~) + (

2

1/12 u0_1~ u1_1~ u1_2~ - 1/12 u1_2~ u0_1~

2

- 1/12 u1_1~ u0_2~ + 1/12 u0_2~ u1_1~ u1_2~)

2

(f1~ &* (f0~ &* f1~)) + (- 1/12 u2_1~ u1_2~

+ 1/12 u1_2~ u2_1~ u2_2~ + 1/12 u1_1~ u2_1~ u2_2~

2

- 1/12 u2_2~ u1_1~) (f2~ &* (f1~ &* f2~)) + (

1/12 u0_1~ u2_1~ u1_2~ - 1/12 u1_2~ u0_1~ u2_2~

- 1/12 u1_1~ u2_1~ u0_2~ + 1/12 u0_2~ u1_1~ u2_2~)

(f2~ &* (f0~ &* f1~)) + (- 1/12 u0_1~ u1_1~ u0_2~

2 2

+ 1/12 u0_2~ u1_1~ + 1/12 u0_1~ u1_2~

- 1/12 u0_2~ u0_1~ u1_2~) (f0~ &* (f0~ &* f1~)) + (

2

1/12 u0_1~ u2_1~ u2_2~ - 1/12 u2_2~ u0_1~

2

- 1/12 u2_1~ u0_2~ + 1/12 u0_2~ u2_1~ u2_2~)

2

(f2~ &* (f0~ &* f2~)) + (1/12 u1_1~ u2_2~

- 1/12 u1_2~ u1_1~ u2_2~ - 1/12 u1_1~ u2_1~ u1_2~

2

+ 1/12 u1_2~ u2_1~) (f1~ &* (f1~ &* f2~))

77

Now the substitution relations are created with nGen=3 and
sLen=2.

> srl:=createSubsRel(nGen,sLen);

srl := {u0_2~ = epsilon2~ u0_2~, u1_2~ = epsilon2~ u1_2~,

u2_2~ = epsilon2~ u2_2~, u0_1~ = epsilon1~ u0_1~,

u1_1~ = epsilon1~ u1_1~, u2_1~ = epsilon1~ u2_1~},

{u0_2~ = 1, u0_1~ = 1},

{epsilon2~ = epsilon~, epsilon1~ = epsilon~}

The final step requires the use the command subs to simplify
the expression for cf using the relations in srl as follows:

> cfr:=subs(srl[3],subs(srl[2],subs(srl[1],cf)));

2 2

cfr := (1/2 epsilon~ u1_1~ u2_2~ - 1/2 epsilon~ u2_1~ u1_2~)

(f1~ &* f2~) + 2 epsilon~ f0~

+ (epsilon~ u1_1~ + epsilon~ u1_2~) f1~ + (

3 3

- 1/12 epsilon~ u1_1~ u2_1~ + 1/12 epsilon~ u2_1~ u1_2~

3 3

+ 1/12 epsilon~ u1_1~ u2_2~ - 1/12 epsilon~ u1_2~ u2_2~)

(f1~ &* (f0~ &* f2~))

2 2

+ (1/2 epsilon~ u2_2~ - 1/2 epsilon~ u2_1~) (f0~ &* f2~)

+ (epsilon~ u2_1~ + epsilon~ u2_2~) f2~

2 2

+ (1/2 epsilon~ u1_2~ - 1/2 epsilon~ u1_1~) (f0~ &* f1~)

3 3 2

+ (1/6 epsilon~ u1_1~ u1_2~ - 1/12 epsilon~ u1_2~

3 2

- 1/12 epsilon~ u1_1~) (f1~ &* (f0~ &* f1~)) + (

3 2

- 1/12 epsilon~ u2_1~ u1_2~

3

+ 1/12 epsilon~ u1_2~ u2_1~ u2_2~ ...

78

3

... + 1/12 epsilon~ u1_1~ u2_1~ u2_2~

3 2

- 1/12 epsilon~ u2_2~ u1_1~) (f2~ &* (f1~ &* f2~)) + (

3 3

- 1/12 epsilon~ u1_1~ u2_1~ + 1/12 epsilon~ u2_1~ u1_2~

3 3

+ 1/12 epsilon~ u1_1~ u2_2~ - 1/12 epsilon~ u1_2~ u2_2~)

3

(f2~ &* (f0~ &* f1~)) + (1/6 epsilon~ u2_1~ u2_2~

3 2 3 2

- 1/12 epsilon~ u2_2~ - 1/12 epsilon~ u2_1~)

3 2

(f2~ &* (f0~ &* f2~)) + (1/12 epsilon~ u1_1~ u2_2~

3

- 1/12 epsilon~ u1_2~ u1_1~ u2_2~

3

- 1/12 epsilon~ u1_1~ u2_1~ u1_2~

3 2

+ 1/12 epsilon~ u1_2~ u2_1~) (f1~ &* (f1~ &* f2~))

Note the sequential (and not simultaneous) substitution, first of
the relations in srl[1], in the inner function call, then of those
in srl[2] and finally those in srl[3]. If the system has no
drift then only the first (inner-most) substitution is required.
The third substitution must be done if the time intervals in the
sequence of inputs are equal.

79

6.12 codeCBHcf

Purpose Generate code in C or Fortran for the scalar coefficients of some
Lie expression in terms of Lie products (not necessarily in a
PHB).

Syntax e:=codeCBHcf(expr,B,language);

Description Generates code in C or Fortran for the scalar coefficients of
some Lie expression in terms of Lie products (not necessarily in
a PHB).

Arguments expr A Lie algebra generator, bracket or Lie polynomial.
B A Philip Hall basis or an empty list.
language Either of the strings C or fortran.

Examples Consider the P. Hall basis B, of example for the function phb

on page 40, and the Lie polynomial zr given in the example for
the function reduceLB on page 63. Then, the expressions in the
C language for the scalar coefficients of a given Lie polynomial,
for example, given by the first and third terms in zr can be
obtained as:

> codeCBHcf(op(1,zr)+op(3,zr)*epsilon,z,C);

1. B[12] = ‘&*‘(f2,‘&*‘(f0,f1))

t0 = -u2_2*u0_1*u1_2/12.0+u0_1*u2_1*u1_2/12.0

-u2_1*u1_1*u0_2/12.0+u0_2*u1_1~*u2_2/12.0;

2. B[6] = ‘&*‘(f1,f2)

t0 = (-u2_1*u1_2+u1_1*u2_2)*epsilon/2.0;

Providing a P. Hall basis is not essential, however a list or set
containing at least one element must be given instead, as shown
by the next example.

> codeCBHcf(op(1,z6r)+op(3,z6r)*epsilon,[[]],fortran);

1. B[-1] = []

t0 = -u2_2*u0_1*u1_2/12+u0_1*u2_1*u1_2/12

#-u2_1*u1_1*u0_2/12+u0_2*u1_1*u2_2/12

2. B[-1] = []

t0 = (-u2_1*u1_2+u1_1*u2_2)*epsilon/2

Note above that the element which would correspond to a P. Hall
basis is simply a list containing an empty list, [[]], but could
have been also [‘‘], or any other list containing one element,
but never an empty expression, such as [].

80

6.13 reduceLBT

Purpose Substitute Lie Bracket Table relations in a Lie polynomial writ-
ten in terms of PHB elements.

Syntax e:=reduceLBT(x,B,lbt);

Description This procedure is similar to reduceLB, it simplifies a Lie
polynomial given in x to a expression in terms of elements
in the PHB in B, but additionally substitutes the dependent
brackets in the PHB according to Lie bracket table relations
passed to the procedure in lbt. The table defining the de-
pendent brackets in terms of independent ones is passed as
a list. In the case that all elements in the PHB are linearly
independent, then lbt should be an empty set or list, and the
result returned by reduceLBT will be equal to that obtained by
using reduceLB if there are no brackets of order higher than
the degree of nilpotency. To make this clearer we stress the
following characteristic of this procedure:

Unlike reduceLB, this procedure eliminates from the expression
x all those Lie brackets of order higher than the degree of nilpo-
tency, i.e. sets them to zero.

Arguments x Any Lie polynomial.
B The Philip Hall basis.
lbt The Lie bracket table (lbt) is a set or list of substi-

tution relations defining the dependencies between
the elements of the PHB. For example, if B denotes
the PHB, then Lie bracket table could be defined
as:
lbt:=[B[4]=B[1]+2*B[2],B[6]=0,B[7]=B[5]]

The Lie bracket table could also be an empty list
or set, e.g. lbt:={}.

81

Examples Consider the Lie polynomial x given by:

2

x := 1/2 dg3 g1 (f0 &* (f0 &* f2))

+ dg4 g2 (f1 &* (f0 &* f1))

and the Lie bracket table sr,

> sr:={B[4]=B[1]+6*B[2]};

sr := {f0 &* f1 = f0 + 6 f1}

The function reduceLBT with the P. Hall basis given in the
example for the phb function on page 40, yields

> reduceLBT(x,B,sr);

2

1/2 dg3 g1 (f0 &* (f0 &* f2)) - dg4 g2 f0 - 6 dg4 g2 f1

Implementation Notes
This function basically relies only on reduceLB and Maple’s
subs function. The algorithm is rather simple, the procedure
repeatedly tries to replace the dependent relations in x using
the substitution relations in lbt until there are no more depen-
dent terms (brackets) in x. At every substitution iteration, the
function reduceLB is called to simplify the expression.

82

6.14 ad

Purpose Implement the adjoint operator (adn
X) applied n times to Y ,

which corresponds to the n-times Lie bracketing of X with Y .

Syntax e:=ad(x,y,n);

Description This procedure implements the adjoint operator (adn
X) applied n

times to Y and which corresponds to the n-times Lie bracketing
of X with Y , i.e.

(ad0
X)Y = (adX)0Y = Y

(adX)Y = [X,Y]

(adn
X)Y = (adn−1

X)(adX)Y = (adn−1
X)[X,Y]

= (adX)(adn−1
X)Y = [x, (adn−1

X)Y]

Arguments x, y A pair of elements of the Lie algebra or Lie poly-
nomials.

n The number of times x will be bracketed with y.

Example The calculation of the Lie bracket [f1, [f1, f0]] = (ad2
f1

)f0 can
be performed as follows:

> ad(f1,f0,2);

f1~ &* (f1~ &* f0~)

83

6.15 ead, eadr

Purpose Compute the Taylor series expansion of (eX)Y (e−X) =
(eadX)Y .
eadr, reduces the Lie brackets in the expression to elements in
the PHB and further simplifies it according to the supplied Lie
bracket table.

Syntax e:=ead(x,y,n);
e:=eadr(x,y,n,B,lbt);

Description Compute the Taylor series expansion of the exponential for-
mula (9):

(eX)Y (e−X) = Y + [X,Y] +
1

2!
[X, [X,Y]] +

1

3!
[X, [X, [X,Y]]] + . . .

=
∑

k=0

1

k!
(adk

X)Y

= (eadX)Y

up to terms of order n. Details concerning the above formula
can be found in [43], (see theorem 2.13.2, p. 104).

eadr, reduces the Lie brackets in the expression to elements in
the PHB and further simplifies the expression according to the
supplied Lie bracket table. If the Lie bracket table is an empty
list or set, no additional simplifications are carried out.

Arguments x, y A pair of elements of the Lie algebra or Lie poly-
nomials.

n Order of the Taylor series expansion (n will be the
order of the highest order bracket in the expansion).

eadr additionally requires:
B A Philip Hall basis.
lbt A Lie bracket table defining the dependencies be-

tween elements of the PHB; see definition in the
section for the function reduceLBT on page 81. It
can be an empty list or set if no dependencies be-
tween the brackets in the PHB exist.

84

Examples The Taylor series expansion for exponential of the operator adf1

acting on f0, denoted by eadf1 f0, may be calculated as:

> z:=ead(f1,f0,3);

z := f0~ + (f1~ &* f0~) + 1/2 (f1~ &* (f1~ &* f0~))

+ 1/6 (f1~ &* (f1~ &* (f1~ &* f0~)))

which simplified using the reduceLB command results in

> reduceLB(z,B);

f0~ - (f0~ &* f1~) - 1/2 (f1~ &* (f0~ &* f1~))

- 1/6 (f1~ &* (f1~ &* (f0~ &* f1~)))
The above result could also be obtained in single step using
the procedure eadr, which automatically reduces the brackets
to basis brackets in the PHB given in B (see example for phb

on page 40. If a Lie bracket table is also provided then the
expression will be further simplified. Note that in the following
example the Lie bracket table is an empty set, thus no additional
simplifications take place.

> eadr(f1,f0,3,B,{});

f0~ - (f0~ &* f1~) - 1/2 (f1~ &* (f0~ &* f1~))

- 1/6 (f1~ &* (f1~ &* (f0~ &* f1~)))

See Also ad.

85

6.16 pead, peadr

Purpose Compute the product of exponentials
∏n

i=1 eadXi Xn+1.

Syntax e:=pead(n,max bracket order,X);
e:=peadr(n,max bracket order,X,B,lbt);

Description Computes the product of exponentials
∏n

i=1 eadXi Xn+1.
peadr, reduces the Lie brackets in the expression to elements in
the PHB, and further simplifies the expression according to the
supplied Lie bracket table. If the Lie bracket table is an empty
list or set, no additional simplifications are carried out.

Arguments n Number of products of exponentials.
max bracket order

The maximum bracket order in the exponential se-
ries expansion of eadx ; see ead, eadr on page 84.

X Label or name for the (indeterminate) elements of
the Lie algebra, or name of the list containing the
names of each element of the Lie algebra basis.
In the case the Lie algebra basis has been con-
structed in terms of a P. Hall basis, X must
contain the list of elements in the PHB that
are linearly independent. If all the elements in
the PHB are regarded as linearly independent,
then X must be the name of the list that con-
tains the PHB, and this this procedure would
be invoked as pead(n,max bracket order,B) or
peadr(n,max bracket order,B,B,lbt), where B

contains the PHB.

peadr additionally requires:
B A Philip Hall basis.
lbt A Lie bracket table defining the dependencies be-

tween elements of the PHB; see definition in the
section for the function reduceLBT on page 81. It
can be an empty list or set if no dependencies be-
tween the brackets in the PHB exist.

86

Examples In this first example the computation of
∏2

i=1 eadxi
x3 is consid-

ered. Here xi are Lie algebra indeterminates, and the Taylor
series expansion of the exponential ad operator is computed up
to brackets of order two.

> pead(2,2,x);

x[3] + g2 x[2] &* x[3] + 1/2 (g2 x[2] &* g2 x[2] &* x[3])

+ (g1 x[1] &* x[3]) + (g1 x[1] &* g2 x[2] &* x[3])

+ 1/2 (g1 x[1] &* (g2 x[2] &* g2 x[2] &* x[3]))

+ 1/2 (g1 x[1] &* (g1 x[1] &* x[3]))

+ 1/2 (g1 x[1] &* (g1 x[1] &* g2 x[2] &* x[3]))

+ 1/4 (g1 x[1] &* (g1 x[1] &* (g2 x[2] &* g2 x[2] &* x[3])))

For the next example consider the P. Hall basis B of the ex-
ample for the function phb on page 40. The computation of
∏2

i=1 eadBi
B3 yields,

> pead(2,2,B);

f2~ + (g2 f1~ &* f2~) + 1/2 (g2 f1~ &* (g2 f1~ &* f2~))

+ (g1 f0~ &* f2~) + (g1 f0~ &* (g2 f1~ &* f2~))

+ 1/2 (g1 f0~ &* (g2 f1~ &* (g2 f1~ &* f2~)))

+ 1/2 (g1 f0~ &* (g1 f0~ &* f2~))

+ 1/2 (g1 f0~ &* (g1 f0~ &* (g2 f1~ &* f2~)))

+ 1/4 (g1 f0~ &* (g1 f0~ &* (g2 f1~ &* (g2 f1~ &* f2~))))

Note that the above computation does not yields an expression
whose elements are in the P. Hall, if this additional simplification
is required then using peadr we obtain:

> peadr(2,2,B,B,{});

2

f2~ + g2 (f1~ &* f2~) + 1/2 g2 (f1~ &* (f1~ &* f2~))

2

+ g1 (f0~ &* f2~) + 1/2 g1 (f0~ &* (f0~ &* f2~))

87

Note that in the above example the degree of the highest or-
der brackets is three, unlike when pead was used, where the
highest order brackets are of degree five. This is due to the
fact that peadr calls reduceLBT to make simplifications, thus
brackets in the series expansion whose order is higher than
max bracket order are eliminated.

See Also ad, ead, eadr.

88

6.17 wne, wner

Purpose Compute the right-hand side of the Wei-Norman formula:
∑r

k=1 Xkuk = Ṡ(t)S−1(t), where S(t) =
∏r

k=1 egk(t)Xk and

Ṡ(t) = dS(t)
dt .

Syntax e:=wne(r,max bracket order,X);
e:=wner(r,max bracket order,X,B,lbt);

Description Computes the right-hand side of the Wei-Norman formula:

r∑

k=1

Xkuk = Ṡ(t)S−1(t) (40)

where uk are scalar time-dependent functions, i.e. uk : t → R,
Xk are indeterminate elements independent of time that define
a basis for an arbitrary Lie algebra, and with

S(t) =

r∏

k=1

egk(t)Xk (41)

and

Ṡ(t) =
dS(t)

dt
=

r∑

i=1

ġi(t)

i−1∏

j=1

egjXj Xi

r∏

j=i

egjXj (42)

The Lie algebra generated by the Xk is required to be finite
dimensional.

The above expressions for S(t) and Ṡ(t), together with the ex-
ponential formula given in equation (9) allow to express the
right-hand side of the Wei-Norman equation as:

Ṡ(t)S−1(t) =

r∑

i=1

ġi(t)

i−1∏

j=1

egjadXj Xi (43)

Hence, this procedure can be implemented in a simple way in
terms of the functions ead, eadr and pead, peadr.

wner, reduces the Lie brackets in the expression to elements in
the PHB, and further simplifies the expression according to the
supplied Lie bracket table. If the Lie bracket table is an empty
list or set, no additional simplifications are carried out.

89

Arguments r Dimension of the Lie algebra basis. In particular,
if a PHB is considered as a general basis, then r
corresponds to the number of Lie brackets in the
PHB which are independent.

max bracket order
The maximum bracket order in the exponential se-
ries expansion of eadx ; see ead, eadr on page 84.

X Label or name for the (indeterminate) elements of
the Lie algebra, or name of the list containing the
names of each element of the Lie algebra.
In the case the Lie algebra basis has been con-
structed in terms of a P. Hall basis, X must
contain the list of elements in the PHB that
are linearly independent. If all the elements
in the PHB are regarded as linearly indepen-
dent, then X must be the name of the list
that contains the PHB, and this this procedure
would be invoked as wne(r,max bracket order,B)

or wner(r,max bracket order,B,B,lbt), where B
contains the PHB.

wner additionally requires:
B A Philip Hall basis.
lbt A Lie bracket table defining the dependencies be-

tween elements of the PHB; see definition in the
section for the function reduceLBT on page 81. It
can be an empty list or set if no dependencies be-
tween the brackets in the PHB exist.

90

Examples The examples below consider the P. Hall basis B for a nilpotent
Lie algebra of degree four generated by three indeterminates
f0, f1 and f2, obtained in the example for the function phb on
page 40. The maximum bracket order in the series expansion of
the exponential that will be considered in the next examples is
equal to three (i.e. the degree of nilpotency minus one, so that
the resulting brackets are always contained in the PHB).
In the following two examples assume that the actual basis for
the Lie algebra is of dimension 4. Notice that in the first example
has an empty Lie bracket table, i.e. all the elements in B are
independent.

> w2r:=wner(r,max_bracket_order,B,B,{});

w2r := dg1~ f0~ + dg2~ f1~ + (dg2~ g1~ + dg4~) (f0~ &* f1~)

2

+ (1/2 dg2~ g1~ + dg4~ g1~) (f0~ &* (f0~ &* f1~)) +

3 2

(1/6 dg2~ g1~ + 1/2 dg4~ g1~)

(f0~ &* (f0~ &* (f0~ &* f1~))) + dg3~ f2~

+ dg3~ g2~ (f1~ &* f2~)

2

+ 1/2 dg3~ g2~ (f1~ &* (f1~ &* f2~))

3

+ 1/6 dg3~ g2~ (f1~ &* (f1~ &* (f1~ &* f2~)))

+ dg3~ g1~ (f0~ &* f2~)

2

+ 1/2 dg3~ g1~ (f0~ &* (f0~ &* f2~))

3

+ 1/6 dg3~ g1~ (f0~ &* (f0~ &* (f0~ &* f2~)))

+ dg4~ g3~ (f2~ &* (f0~ &* f1~))

2

+ 1/2 dg4~ g3~ (f2~ &* (f2~ &* (f0~ &* f1~)))

+ dg4~ g2~ (f1~ &* (f0~ &* f1~))

2

+ 1/2 dg4~ g2~ (f1~ &* (f1~ &* (f0~ &* f1~)))

+ dg4~ g1~ g2~ (f1~ &* (f0~ &* (f0~ &* f1~)))

91

A similar calculation to the previous one, but with the assump-
tion that the bracket B6 = [f1, f2] is zero, yields:

> w5r:=wner(r,max_bracket_order,B,B,{B[6]=0});

w5r := dg1~ f0~ + dg2~ f1~ + (dg2~ g1~ + dg4~) (f0~ &* f1~)

2

+ (1/2 dg2~ g1~ + dg4~ g1~) (f0~ &* (f0~ &* f1~)) +

3 2

(1/6 dg2~ g1~ + 1/2 dg4~ g1~)

(f0~ &* (f0~ &* (f0~ &* f1~))) + dg3~ f2~

+ dg3~ g1~ (f0~ &* f2~)

2

+ 1/2 dg3~ g1~ (f0~ &* (f0~ &* f2~))

3

+ 1/6 dg3~ g1~ (f0~ &* (f0~ &* (f0~ &* f2~)))

+ dg4~ g3~ (f2~ &* (f0~ &* f1~))

2

+ 1/2 dg4~ g3~ (f2~ &* (f2~ &* (f0~ &* f1~)))

+ dg4~ g2~ (f1~ &* (f0~ &* f1~))

2

+ 1/2 dg4~ g2~ (f1~ &* (f1~ &* (f0~ &* f1~)))

+ dg4~ g1~ g2~ (f1~ &* (f0~ &* (f0~ &* f1~)))

As expected, the difference w2r-w5r shown below contains only
terms of the bracket B6 = [f1, f2] which was assumed to be zero
in the simplification of w5r.

3

+ 1/6 dg3~ g2~ (f1~ &* (f1~ &* (f1~ &* f2~)))

2

+ 1/2 dg3~ g2~ (f1~ &* (f1~ &* f2~))

+ dg3~ g2~ (f1~ &* f2~)

92

Note that an actual computation in Maple of ’w2r-w5r;’ returns
an expression that contains terms, such as:

(-dg1~ + dg1~) f0 +

+ (-dg2~ g1~ - dg4~ + dg2~ g1~ + dg4~) (f0~ &* f1~) + ...

that are not simplified to zero because each time wner is invoked,
different variables dg1, dg2, etc., are created at each time (i.e.
the variables have the same name, but they do not correspond to
the same instance of a unique variable in the Maple space, in fact
they are instances of different variables). Although this does not
seem so far to cause significant problems, its is worth to mention
that if one wishes to make comparisons between expressions it
would probably be convenient to modify the routines wne and
wner so that they declare variables g and dg in the global space
as unique instances.

See Also ead, eadr, pead, peadr.

References See [32] and references therein for an explanation on the deriva-
tion of the Wei-Norman equations.

93

6.18 wnde

Purpose Construct the differential equation for the logarithmic coordi-
nates gk of the Wei-Norman formula, see wne, wner.

Syntax e:=wnde(x,r,max bracket order,B,lbt);

Description Constructs the differential equation for the logarithmic coordi-
nates gk of the Wei-Norman formula. This function equates the
coefficients of the Xk in the left-hand side of the Wei-Norman
equation 40 to the corresponding coefficients of Xk in the right-
hand side 43, yielding a set of equations of the form:

u1 = F1(g1, . . . , gr)ġ1

u2 = F2(g1, . . . , gr)ġ2

...

ur = Fr(g1, . . . , gr)ġr

or equivalently in matrix form as

u = F (g)ġ (44)

where u, g, ġ ∈ R
r, and F (g) : R

r → R
r×r. This procedure

returns in its first argument the matrix F (g) and the set of
equations of the form uk = Fk(g1, . . . , gr)ġk, k = 1, . . . , r for
as a second output element. In order to equate the coefficients
on each side of the Wei-Norman equation, this function requires
the right-hand side as calculated with the procedure wne.

Arguments x The right-hand side of the Wei-Norman equations
as computed with wne, wner (described on page 89.

r Dimension of the Lie algebra basis. In particular,
if a PHB is considered as a general basis, then r
corresponds to the number of Lie brackets in the
PHB which are independent.

max bracket order
The maximum bracket order in the exponential se-
ries expansion of eadx ; see ead, eadr on page 84.
NOTE: max bracket order is not currently used. It
would be necessary if wnde would directly invoke
wner, instead of passing the result of wner as argu-
ment x.

B A Philip Hall basis.
lbt A Lie bracket table defining the dependencies be-

tween elements of the PHB; see definition in the
section for the function reduceLBT on page 81. It
can be an empty list or set if no dependencies be-
tween the brackets in the PHB exist.

94

Examples Consider the P. Hall basis, B, given in the example for the func-
tion phb on page 40. Additionally, suppose that B6 = [f1, f2] =
0, then the Lie algebra can be expressed in terms of the follow-
ing 14-dimensional basis of independent Lie brackets, in terms
of which w5r is expressed (see example for the function wne,
wner on page 89):

BB := [f0~, f1~, f0~ &* f1~, f0~ &* (f0~ &* f1~),

f0~ &* (f0~ &* (f0~ &* f1~)), f2~, f0~ &* f2~,

f0~ &* (f0~ &* f2~), f0~ &* (f0~ &* (f0~ &* f2~)),

f2~ &* (f0~ &* f1~), f2~ &* (f2~ &* (f0~ &* f1~)),

f1~ &* (f0~ &* f1~), f1~ &* (f1~ &* (f0~ &* f1~)),

f1~ &* (f0~ &* (f0~ &* f1~))]

The Wei-Norman equations can now be calculated using wnde,
note that max bracket order is an empty list, since the current
version of wnde does not of this argument. Notice that lbt is
also an empty list, since in this case we are passing directly the
basis of the Lie algebra BB in the argument for the PHB.

> lc:=wnde(w5r,14,{},BB,{});

3

lq := Fg, {u[9] = 1/6 dg3~ g1~ , u[10] = dg4~ g3~, u[1] = dg1~,

2

u[2] = dg2~, u[3] = dg2~ g1~ + dg4~, u[11] = 1/2 dg4~ g3~ ,

2

u[12] = dg4~ g2~, u[4] = 1/2 dg2~ g1~ + dg4~ g1~,

2

u[13] = 1/2 dg4~ g2~ , u[6] = dg3~,

3 2

u[5] = 1/6 dg2~ g1~ + 1/2 dg4~ g1~ , u[7] = dg3~ g1~,

2

u[14] = dg4~ g1~ g2~, u[8] = 1/2 dg3~ g1~ }

95

The matrix F (g) of logarithmic coordinates g can be obtained
from the first element returned by wnde.

> eval(lc[1]);

[1 0 0 0 0 0 0 0 0 0 0 0 0 0]

[]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[]

[0 g1~ 0 1 0 0 0 0 0 0 0 0 0 0]

[]

[2]

[0 1/2 g1~ 0 g1~ 0 0 0 0 0 0 0 0 0 0]

[]

[3 2]

[0 1/6 g1~ 0 1/2 g1~ 0 0 0 0 0 0 0 0 0 0]

[]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0]

[]

[0 0 g1~ 0 0 0 0 0 0 0 0 0 0 0]

[]

[2]

[0 0 1/2 g1~ 0 0 0 0 0 0 0 0 0 0 0]

[]

[3]

[0 0 1/6 g1~ 0 0 0 0 0 0 0 0 0 0 0]

[]

[0 0 0 g3~ 0 0 0 0 0 0 0 0 0 0]

[]

[2]

[0 0 0 1/2 g3~ 0 0 0 0 0 0 0 0 0 0]

[]

[]

[0 0 0 g2~ 0 0 0 0 0 0 0 0 0 0]

[]

[2]

[0 0 0 1/2 g2~ 0 0 0 0 0 0 0 0 0 0]

[]

[0 0 0 g1~ g2~ 0 0 0 0 0 0 0 0 0 0]

Practical application examples involving the derivation of the
logarithmic coordinates for an underactuated rigid body in
space can be found in the directory ../ltp/dev, in the files
weinorman_rb1.ws and weinorman_rbfull.mws.

96

Notes Care should be put when passing the P. Hall basis, the Lie
bracket table to this function, and the right-hand side of the
Wei-Norman equation. It could be the case that the number
of brackets in each argument are not consistent. This function
attempts to construct the list containing the actual basis for the
Lie algebra from the P. Hall basis and the Lie bracket table. It
also tries to detect situation of argument inconsistency, however
the checking procedure is rather simple still and it may not
correctly identify all possible errors.
To avoid problems perhaps the best way is to provide the func-
tion with the Lie algebra basis and pass it in the argument for
the P. Hall basis and pass an empty list or set as argument for
the Lie bracket table. The disadvantage of this approach is the
possible calculation involved in the determination of a suitable
Lie algebra basis prior to invoking wnde.

See Also wne, wner.

References See [32] and references therein for an explanation on the deriva-
tion of the Wei-Norman equations.

97

7 Topics for Further Improvement

7.1 Generation of a k-th order CBH formula (cbhexpr)

Implementing a procedure that could calculate the terms in the in the exponent
of the CBH formula up to an order k specified by the user. At this point
it is not clear whether this routine would be strictly necessary, but it can be
expected it would for high dimensional systems. A possible approach to solve
this problem would be to use the Dynkin-Campbell-Baker-Hausdorff formula
presented in [32].

7.2 Functions for setting-up and solving logarithmic equa-
tions automatically

In the case when the Lie algebra is non-nilpotent an approximation, such as
truncation of the series expansion of the exponential operator will be necessary
in any attempt to determine an explicit expression for the Wei-Norman equa-
tions. The automatic identification of the convergence of a series to a given
function is in general a very difficult problem and one of the main obstacles to
the implementation of an exact explicit solution.

If the system is non-nilpotent but has a finite-dimensional Lie algebra and
allows a representation as a system on a matrix Lie group, then there exists the
possibility to obtain explicit expressions of the Wei-Norman equations using the
approach proposed in [2].

It would also be convenient to develop concurrently some routines for the
nilpotentization of the system by state feedback and state-space transforma-
tions, since working with the nilpotent version of the system would allow to
obtain an explicit Wei-Norman formula.

7.3 Automatic controller design/synthesis functions

Unless a better (simpler and smoother) nonlinear controller can be devised, one
of the ultimate goals of the package should be to compute the equations for a
suitable implementation of a Lie theory based controller for general nonlinear
control systems described in terms of ordinary differential equations.

98

A Implementation Notes

LTP was implemented in Maple 6. Several Computer Algebra Systems (CAS)
were evaluated, each showing drawbacks and strengths over Maple. Compar-
isons and additional references to CAS can be found in [46]. Unlike some of the
other available CAS, Maple allows the definition of new operators (through the
define command), and to make some assumptions about the properties of the
operator.

Unlike other symbolic packages that are Lisp based and have inherited some
of Lisp’s disadvantages, Maple has a syntax similar to that of the C language.
Maple also supports both the functional (or applicative) and the imperative
(or procedural) programming styles, thus the routines can be implemented and
tested faster than with a purely imperative language like C, which furthermore
lacks of the appropriate data abstractions.

Functional programming languages have some clear advantages over purely
procedural languages. This advantages can be summarized in:

• Problems can be modeled in a simpler and more natural way since func-
tional programming facilitates the expression of concepts and structures
at a higher level of abstraction. This is particularly true for problems
involving symbolic manipulation.

• Recursions (a function calling itself) can be handled in a relatively simple
way.

• The ability to express the problem in terms of recursions makes the code
easier to understand.

• A functional programming language that avoids side effects is more effi-
cient, and easier to optimize.

Imperative programming languages have some strengths too, however it is
not the scope of this document to compare programming styles. It suffices to
say that, ideally a good programming language should not make it difficult
for a programmer to write computationally efficient code while maintaining an
adequate level of abstraction that makes the problem easily expressible in terms
of the language abstractions. In this sense, Maple collects appealing aspects of
each programming style.

It is unlikely that traditional imperative languages such as C and Fortran
would completely loose the popularity they enjoy, even if the well designed
imperative language Java gained acceptance very fast. On the other hand,
Lisp and other modern functional languages like ML or Haskell also have their
supporters. Whether to choose a purely imperative or a functional language

99

depends mostly on the type of problem at hand and how well a particular
language allows a rapid implementation of the solution. Plenty of references
and information on computer languages can be found at [51]. A place to start
for references on functional programming is [52].

A.0.1 Highlights of some Implementation Issues

• Whenever possible, operations have been implemented using a functional
style that avoids side effects, rather than a traditional imperative style.

• Several routines of the package are recursive. Their flow chart descrip-
tion indicates recursion points (points at which the routine calls itself) by
dashed paths joining the recursion point to the routine’s entry point.

A.0.2 Recommendations for Improvement

Even if Maple is a good package there are several reasons for concern (see also
Maple’s Users Group on the Internet):

• Bugs were found in Maple’s routines for defining new operators and for
making assumptions about them.

• Support from the Maple developers is very poor and leaves a lot to be
desired. This impression is shared by many users and can be verified by
taking a look at the Maple Users Group.

• Maple bugs are poorly documented, and developers seem not to have any
systematic approach to fixing them.

• Bugs seem to be history-dependent and what works on one release, might
not on the next.

New implementations of LTP could rely on GiNaC [53], which is an open
framework for symbolic computations recently developed in the C++ program-
ming language. GiNaC extends the well established and standardized C++
language by some fundamental symbolic capabilities, and thus constitutes a con-
venient alternative for large-scale projects in which both numerical and symbolic
calculations are required.

Another option would be to employ Reduce [54], which is a CAS with more
than 30 years of development. Reduce also has a basic function called operator

function that allows the declaration of new user-defined operators (this function
is equivalent to define in Maple). Parts in an expression can be accessed in
Reduce by means of the parts function (op function in Maple). This features

100

would allow to easily implement LTP using Reduce. Like GiNaC, Reduce is
open source, however it is based on Lisp, which might not be so appealing as
C++.

There are other CAS, however they do not provide adequate facilities to
declare new operators, which is a key element in the creation of a software
package like this. For this and other reasons that would be too extense to
discuss here, other CAS are not advisable alternatives. The reader is referred
to [55] and [56] for further information about CAS and related information.

References

[1] A. Agrachev and R. Gamkrelidze, Chronological algebras and nonsta-
tionary vector fields, Journal Soviet Math., 17 (1979), pp. 1650–1675.

[2] C. Altafini, Explicit Wei-Norman formulae for matrix Lie groups, sub-
mitted to Systems Control Lett., Elsevier Science, Feb. 2002, available at
http://www.sissa.it/~altafini.

[3] J. G. F. Belinfante and B. Kolman, A Survey of Lie Groups and
Lie Algebras with Applications and Computational Methods. Society for
Industrial and Applied Mathematics, 1972.

[4] N. Bourbaki, Lie Groups and Lie Algebras, Part I: Chapters 1–3, Her-
mann, Great Britain, 1975.

[5] R. W. Brockett and J. M. C. Clark, The geometry for the conditional
density functions, in Analysis and Optimization of Stochastic Systems, O.
Jacobs et al., eds., Academic Press, New York, 1980, pp. 299–310.

[6] B. Champagne, W. Hereman and P. Winternitz, The computer cal-
culation of Lie point symmetries of large systems of differential equations,
Comput. Phys. Comm., 66 (1991), pp. 319–340.

[7] M. Cohen de Lara, Finite-dimensional filters. Part I: The Wei-Norman
technique, SIAM J. Control Optim., 35 (1997), pp. 980–1001.

[8] V.T. Coppola and N.H. McClamroch, Spacecraft attitude control, in
Control System Applications, W. S. Levine, ed., CRC Press, 2000.

[9] M. Dahleh, A. Peirce, H.A. Rabitz and V. Ramakrishna, Control
of molecular motion, Proc. of the IEEE, 84 (1996), pp. 7–15.

[10] M. H. A. Davis and S. I. Marcus, An introduction to nonlinear filtering,
in Stochastic Systems: The Mathematics of Filtering and Identification and
Applications, M. Hazewinkel and J. Willems, eds., D. Reidel, Dordrecht,
Netherlands, 1981, pp. 55–75.

101

[11] P. Feinsilver and R. Schott, Algebraic Structures and Operator Cal-
culus, Vol. III. Mathematics and Its Applications, Kluwer Academic Pub-
lishers, 1996.

[12] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie
filtrées transitives et séries génératrices non commutatives, Inventiones
Mathematicae, 71 (1983), pp. 521–537.

[13] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications,
John Wiley & Sons, Inc., 1974.

[14] M. Hall, The Theory of Groups, Macmillan, 1959.

[15] H. Hermes, Nilpotent and high-order approximations of vector field sys-
tems, SIAM Rev., 33 (1991), pp. 238–264.

[16] A. Isidori, Nonlinear Control Systems — An Introduction. 2nd ed.,
Springer-Verlag Berlin, 1989.

[17] M. Kawski and H. J.Sussmann, Noncommutative power series and for-
mal Lie-algebraic techniques in nonlinear control theory, in Operators, Sys-
tems, and Linear Algebra, U. Helmke, D. Prätzel-Wolters and E. Zerz, eds.,
Teubner, (1997), pp.111–128.

[18] M. Kawski, The combinatorics of nonlinear controllability and noncom-
muting flows, Abdus Salam ICTP Lecture Notes series, 8 (2002), pp. 223–
312.

[19] P. S. Krishnaprasad, S. I. Marcus, M. Hazewinkel. Current algebras and
the identification problem. Stochastics, v. 11, 1983, pp. 65-101.

[20] G. Lafferriere and H. J. Sussmann, A differential geometric approach
to motion planning, in Nonholonomic Motion Planning, Z. Li, and J. F.
Canny, eds., Kluwer Academic Publishers, 1993, pp. 235–270.

[21] M.A.A. van Leeuwen. LiE, A software package for Lie group computations.
Euromath Bulletin 1, n. 2, 1994.

[22] W. Magnus, On the exponential solution of differential equations for a
linear operator, Commun. Pure Appl. Math., VII (1954), pp. 649–673.

[23] S. Marcus, Algebraic and geometric methods in nonlinear filtering, SIAM
J. Control Optim., 22 (1984), pp. 817–844.

[24] G. Melançon and C. Reutenauer, Lyndon words, free algebras and
shuffles, Canadian J. Math., XLI (1989), pp. 577–591.

[25] G. Melançon and C. Reutenauer, Combinatorics of Hall trees and
Hall words, J. Comb. Th., Ser. A 59 (1992), pp. 285–299.

102

[26] H. Michalska and M. Torres-Torriti, A geometric approach to feed-
back stabilization of nonlinear systems with drift, Systems Control Lett.,
50 (2003), pp. 303-318.

[27] R.M. Murray, Z. Li and S.S. Sastry, A Mathematical Introduction to
Robotic Manipulation, CRC Press, 1994.

[28] D. Ocone, Finite dimensional estimation algebras and nonlinear filtering,
in Stochastic Systems: The Mathematics of Filtering and Identification and
Applications, M. Hazewinkel and J.C. Willems, eds., Reidel, Dordrecht,
1981.

[29] R. Palais, Global Formulation of the Lie Theory of Transformation
Groups, v. 22, Mem. Amer. Math. Soc., AMS, 1957.

[30] C. Reutenauer, Free Lie algebras, Clarendon Press, 1993.

[31] E. Rocha, On computation of the logarithm of the Chen-Fliess series for
nonlinear systems, Lecture Notes in Control and Information Sciences –
Vol. 281: Nonlinear and Adaptive Control: NCN4 2001, Springer-Verlag
Heidelberg, (2003), pp. 317–326.

[32] S.S. Sastry, Nonlinear Systems: Analysis, Stability and Control,
Springer-Verlag New York, Inc., 1999.

[33] D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with
Applications to Physics, Geometry and Mechanics, Springer-Verlag New
York, Inc., 1986.

[34] M.-P. Schützenberger, Sur une propriété combinatoire des algèbres de
Lie libres pouvant être utilisée dans un problème de mathématiques ap-
pliquées, Séminaire P. Dubreil, Faculté des Sciences, Paris, 1958.

[35] J. M. Selig, Geometrical Methods in Robotics, Springer-Verlag New York,
Inc., 1996.

[36] J.-P. Serre, Lie Algebras and Lie groups, W. A. Benjamin, New York,
1965.

[37] A. I. Shirshov, Bases of free Lie algebras, Algebra i Logika Sém., 1 (1962),
pp. 14-19.

[38] W.-H. Steeb, Continuous Symmetries, Lie Algebras, Differential Equa-
tions and Computer Algebra, World Scientific Co., 1996.

[39] R.S. Strichartz, The Campbell-Baker-Hausdorff-Dynkin formula and so-
lutions of differential equations, J. Funct. Anal., 72 (1987), pp. 320–345.

[40] H. J. Sussmann, Lie brackets and local controllability: a sufficient con-
dition for scalar-input systems, SIAM J. Control Optim., 21 (1983), pp.
686–713.

103

[41] H. J. Sussmann, A product expansion for the Chen series, in Theory and
Applications of Nonlinear Control Systems, C. Byrnes and A. Lindquist,
eds., Elsevier Science Publishers B. V. (North Holland), (1986), pp.323-335.

[42] H. J. Sussmann, A general theorem on local controllability, SIAM J. Con-
trol Optim., 25 (1987), pp. 158–194.

[43] V. S. Varadarajan, Lie Groups, Lie Algebras, and their Representations,
Springer-Verlag New York, Inc., 1984.

[44] X. G. Viennot, Algébres de Lie Libres et Monöıdes Libres, Lecture Notes
in Mathematics, Vol. 691, Springer, Berlin, 1978.

[45] J. Wei and E. Norman, On global representations of the solutions of
linear differential equations as products of exponentials, Proc. Amer. Math.
Soc., 15 (1964), pp. 327–334.

[46] Computer Algebra Systems - A Practical Guide. M. J. Wester Editor, John
Wiley & Sons Ltd., 1999.

Books on Maple Programming

[47] A. Heck, Introduction to Maple, Second Edition. Springer-Verlag New
York, Inc., 1996.

[48] B. W. Char, et al., Maple V Library Reference Manual. Springer-Verlag,
1991

[49] B. W. Char, et al., Maple V Language Reference Manual. Springer-Verlag,
1991

[50] R. A. Nicolaides and N. Walkington, Maple a Comprehensive
Introduction. Cambridge University Press, 1996.

Resources on Internet

[51] Computer Languages: http://dmoz.org/Computers/Programming/Languages/

[52] Functional Programming FAQ: http://www.cs.nott.ac.uk/~gmh/faq.html

[53] GiNaC (GNU is Not a CAS): http://www.ginac.de/

[54] Reduce CAS: http://www.uni-koeln.de/REDUCE/

[55] Computer Algebra Information Network (Europe):
http://www.mupad.de/CAIN/

[56] Symbolic Mathematical Computation Information Center (US):
http://www.SymbolicNet.org/

104

	Introduction
	Capabilities of the Lie Tools Package
	Target Audience for the Lie Tools Package
	System Requirements
	Background Information and Reference Material

	Compiling, Installing and Loading the Lie Tools Package
	Compiling LTP
	Installing LTP
	Loading LTP

	Basic Notions and LTP Formalism
	Practical Applications of Lie Algebras and Groups
	Trajectory planning and control
	Nonlinear filtering

	Using LTP: Some Practical Examples
	Example 1: Simplification of Lie algebraic expressions
	Example 1: Stabilization of a rigid body in space
	Step 1: Construction of the Hall basis for the Lie algebra of indeterminates L4("7016X3)
	Step 2: Calculation of the right-hand side of the Wei-Norman equation

	Example 2: Finite dimensional realization of a nonlinear filter

	Function Reference
	createLBobjects
	phb
	phbize
	posxinphb
	bracketlen

	simpLB
	regroupLB
	reduceLB
	cbhexp
	evalLB2expr
	calcLB
	selectLB
	createSubsRel
	codeCBHcf
	reduceLBT
	ad
	ead, eadr
	pead, peadr
	wne, wner
	wnde

	Topics for Further Improvement
	Generation of a k-th order CBH formula (cbhexpr)
	Functions for setting-up and solving logarithmic equations automatically
	Automatic controller design/synthesis functions

	Implementation Notes
	Highlights of some Implementation Issues
	Recommendations for Improvement

