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Abstract

A novel method is presented for the construction of time
varying stabilizing feedback control for nonlinear sys-
tems with drift. The proposed feedback law is a compo-
sition of a periodic time-varying control, and an asymp-
totically stabilizing feedback “correction” term. The
periodic control is obtained through a solution of an
open loop control problem on the associated Lie group
which is posed as a trajectory interception problem in
the Philip Hall coordinates of flows.
Keywords: Stabilization, time-varying feedback con-
trol, systems with drift.

1 Problem Definition and Basic Assumptions

We consider the problem of feedback stabilization of
control systems with drift whose equation of motion is
given by

ẋ(t) = f0(x(t)) +

m∑

i=1

ui(t)fi(x(t)) (1.1)

Here, x(t) ∈ R
n, ui(t) ∈ R, and fi, i = 0, 1, ...,m are

smooth vector fields on R
n. The objective is to con-

struct time varying feedback controls ui(x, t) : R
n ×

R
+ → R, i = 1, ...,m such that system (1.1) is Lya-

punov asymptotically stable. For our construction to
be valid, we need to impose the following hypotheses:

H1. System (1.1) is globally asymptotically control-
lable to zero using piece-wise continuous controls,
i.e. for each initial condition x0 ∈ R

n there ex-
ist piece-wise continuous controls ui : [0,∞) 7→
R, i = 1, . . . ,m such that the corresponding state
trajectory converges to the origin.

H2. The vector fields f0, ..., fm are complete, analytic
and the origin is an isolated equilibrium state of
the unforced system ẋ = f0(x).

H3. Let G
def
= {f0, f1, ..., fm}LA denote the Lie algebra

of vector fields generated by f0, f1, ..., fm. G is
assumed nilpotent and system (1.1) satisfies the
LARC:

dim{f0, ..., fm}LA(x) = n ∀x ∈ R
n − {0} (1.2)

{f0, ..., fm}LA(x)
def
= span{f(x)|f ∈ G} (1.3)
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H4. The vector fields f0, ..., fr form a basis for the al-
gebra G and the motion in the direction of any Lie
bracket fi, i = m+1, ..., r can be realized by piece-
wise continuous open loop controls in the original
system.

2 The Synthesis and Properties of the

Feedback Control

The asymptotically stabilizing control u(x, t), will be
computed as the sum

u(x, t) = w(x, t) + ∆u(x, t) (2.4)

where w ∈ R
m makes (1.1) periodic, and ∆u ∈ R

m is
an additional corrective term which provides for asymp-
totic stabilization.

2.1 Construction of Critically Stabilizing Peri-

odic Control

Consider the Lie bracket extension of (1.1):

ẋ(t) = f0(x(t)) +

r∑

i=1

vi(t)fi(x(t)) (2.5)

defined on x ∈ B(0;R) − {0} , where B(0;R) denotes
a neighbourhood of the origin in which zero is the only
equilibrium state for ẋ = f0(x).

A “critically” stabilizing feedback for the extended sys-
tem is next defined by

v(x)
def
= [v1(x), ..., vr(x)]T = −G(x)†f0(x)

where G(x)
def
= [f1(x), ..., fr(x)] (2.6)

with G(x)† denoting the Moore-Penrose pseudo-inverse
of G. It follows that the trajectories of (2.5) satisfy
ẋ(t) = 0, which is a stable, trivially periodic system.
Moreover, for any initial condition x0 = x(t0), the con-
trol law (2.6) is constant, i.e. v(x(t)) = v(x0)∀ t ≥ t0.
The periodic control w(x, t) is finally obtained from
v(x0) by solving an open loop control trajectory inter-
ception problem (TIP) on an associated Lie group for-
mulated in terms of the logarithmic coordinates of flows
for the original and the extended systems, as described
in [1].

2.2 Asymptotically Stabilizing Correction to the

Periodic Control

Drawing on the idea proposed by Coron and Pomet in [2]
for systems without drift, the control correction term



∆u is found by requiring that the following Lyapunov
function:

V (x, t) =
1

2
‖φ−1

w (x, t)‖2 (2.7)

decreases along the trajectories of the closed loop system
using the combined control (2.4). Here, φw(x0, t) =
xw(t;x0, 0) with xw(t;x0, 0) being the solution of the
TIP in logarithmic coordinates and φ−1

w (x, t) = x0 is the
inverse function of φw which retrieves the starting point
x0 for the trajectory xw(t;x0, 0), given the current state

x at time t. Since V̇ (x, t) = ∇xV (φw(x0, t), t) ·G(x)∆u,
then

∆u = −K [∇xV (φw(x0, t), t) · G(x)]
T

(2.8)

yields

V̇ (x, t) = −K‖ [∇xV (φw(x0, t), t) · G(x)]
T
‖2 ≤ 0 (2.9)

which makes ∆u a good candidate for the asymptoti-
cally stabilizing correcting control. Clearly,

∇xV (x, t) =
[
φ−1

w (x, t)
]T

︸ ︷︷ ︸

x0(t)T

[

∂φw

∂x

∣
∣
∣
∣
(φ−1

w (x,t),t)

]−1

(2.10)

which makes the calculation of ∆u computationally fea-
sible.

2.3 The combined time-varying feedback control

Under our assumptions the following stabilization result
is valid.

Theorem 2.1 [3] Suppose that hypothesis H1-H4 are
valid and that the TIP problem can be solved yielding
w(x, t). Further suppose that for any x0 ∈ B(0;R),
the linearization of system (1.1), along the closed loop
system trajectory corresponding to the periodic con-
trol w(v(x0), t), is a controllable time-varying system.
If the gradient ∇xV can be calculated at any point
(φ−1

w (x, t), t), then the control u(x, t) given by (2.4), is
a locally asymptotically stabilizing feedback law for sys-
tem (1.1).

The proof of can be found in [3], and uses a similar
argument to that of Coron and Pomet [2], shown to be
valid for systems with no drift.

3 Example

Consider the following single-input dynamical system
Σo, on R

3:
Σo : ẋ = f0(x) + f1(x)u1

where,

f0(x) =





−x2 + x2
3

−x3

0



 f1(x) =





0
2x3

1





System Σo is nilpotent, r=3, with f2
def
= [f0, f1] and

f3
def
= [f0, [f0, f1]]. Following Lafferriere’s approach, [4],

a particular piece-wise constant solution to the TIP on
the interval [0, T ], formulated in [1], is found to be:

w(v(x0), t) =







9x3(0)
2T

+ 27
T 2

(
x2(0) − x3(0)

2
)

t ∈ I1

− 54
T 2

(
x2(0) − x3(0)

2
)

t ∈ I2

− 9x3(0)
2T

+ 27
T 2

(
x2(0) − x3(0)

2
)

t ∈ I3

with the time intervals Ik
def
= {t : nT + (k − 1)ε ≤ t <

nT + kε} for ε = T/3, k = 1, 2, 3 and ∀ n = 0, 1, 2, . . ..

The simulation results obtained by applying the pro-
posed stabilizing feedback control to our example sys-
tem are shown in Figure 1.

The numerical evaluation of the gradient involves re-
trieving the starting point x0 at time t of the cor-
responding orbit generated with the control w which
passes through the current state x(t). The problem of
numerically finding x0 is solved here by seeking:

x0 = arg min
x0∈Rn

‖x(t) − φw(x0, 0)‖
2 (3.11)

The Levenberg-Marquardt modification of the Gauss-
Newton method is employed as minimization proce-
dure. The gradient ∇xV is calculated here by using
finite difference approximations to the partial deriva-
tives needed.
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Figure 1: Closed loop trajectories x(t) of the stabilized
system and the Lyapunov function V (t).
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