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Abstract— In this paper, we examine multi-target search,
where one or more targets must be found by a moving robot.
Given the target’s initial probability distribution or the expected
search region, we present an analysis of three search strategies -
Global maxima search, Local maxima search, and Spiral search.
We aim at minimizing the mean-time-to-find and maximizing
the total probability of finding the target. This leads to two types
of illustrative performance metrics: minimum time capture and
guaranteed capture. We validate the search strategies with
respect to these two performance metrics. In addition, we study
the effect of different target distributions on the performance of
the search strategies. We also consider the practical realization
of the proposed algorithms for multi-target search. The search
strategies are analytically evaluated, through simulations and
illustrative deployments, in open-water with an Autonomous
Surface Vehicle (ASV) and drifting sensor targets.

I. INTRODUCTION

This paper addresses the problem of searching for one or
more targets for which we either have an initial probability
distribution describing their suspected initial location or
sparser information such as their initial expected bounding
region. We want a searching robot to find lost targets as
effectively as possible, but we observe that in this context,
being effective can have two distinct meanings: minimizing
the time to detect some subset of the targets, and maximizing
the likelihood of detecting all the targets. Our analysis shows
that the strategies that minimize overall capture time may
not be the same as those that guarantee the eventual capture
of the targets. To put this in grotesquely concrete terms,
if a set of people are adrift in the ocean, it may be more
important to find at least one person rapidly than to find all
of them too late to assure their survival. On the contrary, if
the mission is to look for an important piece of evidence for
an investigation, such as a black box from a plane crash, then
guaranteed capture of the target becomes more important
than the time taken to capture it.

More generally, search problems encompass a large en-
semble of application domains and problem formulations,
and have many connections to coverage. While search and
rescue is the most familiar problem, many other problems
such as environmental assessment and threat detection can
also be characterized this way. When the search environment
is open water, this task becomes even more challenging
because of constant drift of the targets, and constraints on the
communication range. Since our application focus is marine
environments, we ignore the potential impact of obstacles in
the environment. Some of the example scenarios for open
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Fig. 1: Simulated search pattern on Microsoft Bing Maps
c©. The spiral (in green) indicates the path followed by an

ASV terminating at the target waypoints (in pink).

water search problems are search for lost divers, floating
debris from a plane crash, and passively floating scientific
data collectors. Our proposed strategies can also be applied
in aerial and open terrestrial domains, given the same initial
conditions.

A search problem requires an expected area where the
probability of finding the target is high. We refer to this
region as the expected search region. Given the probability
distribution of the target in a search region or the boundaries
of the expected search region, we propose and analyze three
search strategies: Global-maxima search, Heuristic local-
maxima search and Spiral search. The global and heuristic
local-maxima search strategies are dictated by the global
and local peaks of the underlying target belief distributions,
respectively. The spiral strategy is deterministic, which is
useful in finding the targets when there is only a given
expected search region with no prior distribution. As dis-
cussed below, spiral search has also received substantial
prior consideration in the context of the abstract theory of
searching. An instance of the spiral search pattern is shown
in Fig. 1.

In the spiral search strategy, we consider two search
patterns: outward spiral and inward spiral. The outward
spiral pattern is a greedy strategy which initializes from the
center of the search region and expands outwards to cover
the entire region. In contrast, the inward spiral pattern first
encapsulates the search area and then moves inwards towards
the center. We hypothesize that the inward spiral pattern
gives guaranteed search outcomes with a longer search time,
whereas the outward spiral pattern, minimizes the search
time but compromises on the success-rate.



We analyze the performance of the search strategies by
comparing their mean-time-to-find the target in simulation
and real field trials. In addition, we report the number of
missed targets and propose a cost metric to penalize the
search strategies for the missed targets. For field trials, we
used an Autonomous Surface Vehicle (ASV, seen in Fig. 8) as
the searcher and passively floating data collectors (Drifters,
seen in Fig. 9) as the targets.

Contributions of this paper are: parametrization of single
target and multi-target search problems; analysis of specific
classes of search strategies in terms of performance parame-
ters such as time to find the target, target search failure rate,
and cost of the search; theoretical reasoning behind the trade-
off between guaranteed capture speed and minimum time
capture; and finally, partial validation of the search strategies
in open water with a real robot combined with an analysis
using our robot simulator.

II. RELATED WORK

Search strategies for robotics applications have often been
based on models inspired by natural processes [1], geometric
patterns [2] and complete coverage methods [3]. The most
common class of search algorithms across these domains
are those that generate a spiral pattern, used by animals
for foraging food [1], and by rescue robots searching for
lost targets [4] [5]. The most fundamental and abstract root
problem is that of searching for a point on a line (going back
and forth with a specific metric), whereas spiral search pro-
vides optimal worst-case performance whenever the target’s
probability distribution is Gaussian (or comes from a broader
class or “realistic” distribution) [6]. In addition, using spiral
patterns for global coverage task is also shown to be useful
for multi-target search application [7].

The search strategies proposed by Bourgault et al. [8],
Stone [9], and Furukawa et al. [10] represent the target’s
possible location using Bayesian statistics. Furukawa et al.
[11] also summarize the mathematical basis of multi-robot,
single-target search within a recursive Bayesian framework.
Their goal is to unify search and tracking under a single
objective function. This allowed them to retain the state
estimation of the target when transitioning from tracking
to search and vice-versa. Their optimal control strategy for
a single searcher, single target problem, also resulted in a
spiral search pattern. Since spiral pattern was proven to be
dominant in the aforementioned references, we implemented
it in this paper.

There are other searching strategies which update the
search patterns based on their on-line observations [12]. A
similar search problem is addressed by Saigol et al. [13].
In this work, the authors propose an automated planning
algorithm to deal with uncertainty in searching for hy-
drothermal vents. They suggest an information lookahead
and entropy change planners. The information lookahead
is based on a POMDP formulation which was reported to
be computationally expensive. Whereas, the entropy change
maximization method requires a continuous feedback based
on the probabilities of the observing chemical traces. In our

work, we do not have such observations available to track
and find the target.

Das et al. [14] have considered an application very similar
to ours and achieve some powerful results. They use a float-
ing drifter to coordinate exploration of a moving ocean patch
by an Autonomous Underwater Vehicle (AUV). The floating
target demarcates the center of the ocean patch, while the
AUV moves in a box pattern around the perimeter, changing
depth in a saw-tooth motion. Their work substantially differs
from ours in that the target and AUV maintain near constant
contact through the use of satellite communication.

In our previous work [15], we illustrated the track and
search problem of a floating target using an AUV. The AUV
performed spiral patterns using the sawtooth motion. In this
work, we provide an analysis for guaranteed capture and min-
imum time capture along with a performance comparison of
the deterministic spiral search strategy with two probabilistic
strategies.

III. SEARCH STRATEGIES

We consider the problem of finding a drifting target with
a mobile searcher, for example, a robot boat searching for
a lost target in the sea. We propose three search strategies
given, either an initial target probability distribution or
a bounded search region. These search strategies include:
Global-Maxima, Heuristic Local-Maxima and Spiral search.
The former two strategies are useful when both boundary of
the search region and the initial target probability distribution
are known, whereas, the latter requires only the knowledge
about the boundary of the search region. We summarize each
of these strategies, below.

1) Global Maxima Search: Given an initial target prob-
ability distribution, the global-maxima search strategy aims
at clearing parts of the search region with highest probabil-
ities. The search region is discretized into grids and each
grid-cell is assigned with a value equal to the integral of
the probability under that grid-cell. Global-maxima search
strategy generates a trajectory that visits the grid-cell with
highest value and clears that grid-cell once visited, then
continues to visit the next maxima until the target is found
or the search region is covered. The prior target distribution
is application dependent and can be chosen based on the
expert knowledge. In our analysis, we observed that with
an assumption of Gaussian prior, this strategy provides a
trajectory with multiple overlapping segments as the global-
maxima shifts across the search region. An example path of
the searcher with Gaussian distribution as the prior belief is
shown in Fig. 2(a).

2) Heuristic Local Maxima Search: The local-maxima
strategy, sequentially clears the grid-cells with maximum
values within a local maxima-search radius. The trajectories
generated by local maxima tend to be less overlapping as
seen in Fig. 2(b). This search strategy is dependent on
the initial location of the robot and is prone to getting
stuck in the local maxima. The maximum success rate with
this strategy is observed to be extremely low. Hence, we
introduced a heuristic to overcome this drawback. According



(a) Global Maxima (b) Heuristic Local Maxima (c) Spiral

Fig. 2: Simulated global, heuristic local and spiral search paths of the robot (green) and target waypoints (pink).

to this heuristic, when the searcher is stuck in a local-
maxima, we iteratively increase the maxima-search radius,
until the searcher recovers from the local maxima or the
radius becomes equal to the radius of the entire search region.

3) Spiral Search: The spiral search is a deterministic
strategy which is useful when only the boundaries of the
search region are known. This strategy does not require the
discretization of the search region. The spiral pattern (Fig.
2(c)) dictating the robot’s position (xr(t), yr(t)) at time t is
generated using the arithmetic spiral equation given below:(

xr(t)
yr(t)

)
= bθ

(
cos θ
sin θ

)
(1)

where b is a parameter that determines the distance between
two consecutive spiral rounds. In order to assure that the
targets are not missed in the spiral width region, while the
searcher is following the spiral trajectory, we selected the
spiral width to be proportional to the communication radius
(Rcomm), i.e., b ≤ Rcomm

2π . This implies that if the spiral width
does not satisfy the aforementioned condition then there is
no guarantee that the searcher will find the target.

There are two possible variants of the spiral search strate-
gies: inward, and outward spirals. The inward spiral search
encompasses the search region and moves inwards, towards
the center of the region, thus minimizing the escape of the
targets. Whereas, the outward spiral strategy, starts the search
process from the center of the expected target region and
expands outwards to minimize the search time for a greedy
search.

IV. PERFORMANCE BOUNDS

We formalize our search problem by assuming the target to
be a point object and the searcher to be a disk. Alternatively,
we can consider the searcher to also be a point but to have
a communication radius Rcomm (defining a disc around the
searcher), such that if the target is within the disc then the
search terminates successfully. The target is considered to be
initially confined within a region of radius r and moving with
a constant velocity. Given these conditions, we analyze two
performance bounds for guaranteed capture and minimum
time capture, corresponding to inward and outward spiral,

respectively. For simplicity of the following analysis we con-
sider circular patterns with decreasing and increasing radii
to represent inward and outward spiral patterns respectively.

Consider a two dimensional search region which is defined
by a probability distribution function with value zero beyond
radius r. A robot with maximum speed sr is required to
search for a drifting target with speed sd initially within the
search region. The robot covers the search area uniformly
by clearing a band of width b ≤ Rcomm

2π per circular round.
The total number of circular rounds that the robot needs to
complete for clearing the entire search region of radius r, is
given by

ns =
⌈r
b

⌉
(2)

The time taken to clear one circular round with radius r′, is

τ =
2πr′

sr
(3)

The total time taken by the robot to clear the complete search
area is less than or equal to the product of the total number
of circular rounds and the time taken to clear each round.

τtot ≤ nsτ (4)

If the robot performs a circular search pattern with dimin-
ishing radius b for each circular round. Then, the total time
is calculated as,

τtot =
2πns
sr

(ns−1)∑
i=0

(r − ib) (5)

A. Guaranteed Capture

The worst case scenario for a guaranteed capture of the
target is when the target is floating tangentially to the
communication disc of the robot while the robot is moving
away from the target. In this case, we can still guarantee the
capture of the target, only if, the time taken by the robot to
complete one circular round is equal to the time taken by
the target to cross the width b, that is just before escaping
the search region. We then define the capture speed of the
robot, scap, as follows:

scap =
2πrsd
b

(6)



(a) Triangular Samples (b) Uniform Samples (c) V-shaped Samples

Fig. 3: Samples from three distributions on a unit circle centered at zero. We use these distributions to sample drifter
(target) locations for simulating multiple trials.

If the speed of the robot is sr, then we need sr > scap, for
a guaranteed capture. Specifically,

sr >
2πrsd
b

(7)

such that, if the above condition for robot speed sr is not
satisfied, then the target can escape the search region. In ad-
dition, given the maximum speed of the robot, the estimated
average target speed and the communication radius, we can
calculate the search radius for a guaranteed capture using
Eq. 6. The guaranteed search radius can then be used as the
initial radius for the inward spiral search strategy.

B. Minimum Time Capture

The time to capture the target, from Eq. 5, can be
minimized, when, i = (ns − 1), such that,

τmin =
2πns
sr

(r − (ns − 1)b) (8)

From Eq. 2 we know that, r = nsb, which can be substituted
in the above equation to obtain:

τmin =
2πbns
sr

(9)

Hence, to minimize the time to capture, the robot should start
with an initial radius, rmin = b and incrementally expand
outwards by a factor b. This gives us a circular pattern with
an increasing radius similar to outward spiral pattern. In the
following sections we validate the above analytical results
for spiral search strategies and compare its performance with
global and local maxima search strategies.

V. CONTROLLED SIMULATION

A. Setup

We evaluate the search strategies with our analytical
results on a real-time simulator that we developed for our
field trials. An instance of the simulator is shown in Fig. 1.
We pre-selected a search region of 100 meters radius for our
simulations. The maximum speed of the robot is set to 1.2
m/s which is also the maximum speed of the ASV used in
our field trials. The target’s speed is set to 0.2 m/s based
on the drifter data collected in open water during the field
trials. The maximum communication range of the robot is
simulated to be 5 meters in radius to mimic the degraded

WiFi range caused due to poor radio signal transmissions
from the drifting target.

The initial locations of the target (drifter) is simulated
within the search region based on three spatially representa-
tive probability distributions namely, uniform, triangular, and
|x| (v-shaped) distributions as shown in Fig. 3. The uniform
distribution provides target locations that are unbiased in the
search region, whereas the triangular distribution samples the
locations that are biased towards the center of the search
region, and the v-shaped distribution selects biased locations
near the circumference of the search region. We simulate the
initial locations of the drifter (xd, yd) by randomly sampling
the radius r ∈ [0, 1] and θ ∈ [0, 2π) from two independent
uniform distributions. By sampling r and θ in this way,
we obtain a larger concentration of points in the center
of the search region, resulting in a triangular distribution
(Eq. 11 shows the transformation to Cartesian coordinates).
We then transform the sampled points using the following
integration by substitution rule to obtain the uniform and
v-shaped distributions.

g(q) = f(p(q))
∣∣∣dpdq ∣∣∣ (10)

Where, the inverse transformation function p(q) transforms
the distribution f(p) into the distribution g(q). In our case,
g(q) is uniform and v-shaped distributions. The respective
transformations are given in Eq. 12 and 13. The difter’s
motion is simulated using beta distribution based on our
previous work [15].
• Triangular sample

(xd, yd) = (rcosθ, rsinθ) (11)

• Uniform sample

(xd, yd) = (
√
rcosθ,

√
rsinθ) (12)

• v-shaped (|x|) sample

(xd, yd) = (r1/3cosθ, r1/3sinθ) (13)

The initial location of the searcher is set to a fixed point
within the search region for a fair comparison of all the
search strategies. For the global-maxima and heuristic local-
maxima search strategies, an underlying probability distribu-
tion is required to represent the searcher’s belief about the
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Fig. 4: Single target search performance comparison for different target distributions and search strategies.

target. In our experiments, a Gaussian distribution is chosen
to represent this belief. For the spiral search strategy, the
spiral pattern is pre-generated using Eq. 1.

The following sub-sections present experimental results
based on simulations for single-target and multi-target cap-
tures. Given the initial target distribution and the commu-
nication range of the robot, we recorded the mean time to
capture the target and the number of capture failures for
1000 trials for each search strategy. We also propose a cost
function which is a combination of the mean time to find
and the failure rate.

B. Single Target Search

An instance of the single target capture is illustrated in Fig.
2. The results from the simulation experiments are discussed
below.

1) Mean Time to Find (MTTF): The mean-time-to-find the
target for the three search strategies is presented in Fig. 4(a).
The plot includes a two-sided standard deviation computed
over multiple trials of the experiment. The global-maxima
search has the highest MTTF due to its overlapping search
trajectories. Whereas, the heuristic local-maxima strategy has
the least MTTF because of its behavior to clear the local
search region and gradually increase the horizon. The inward
and outward spirals illustrate an intermediate performance.

It can be observed that the triangular target distribution has
the least MTTF for all the search strategies except inward
spiral strategy. This is due to the fact that the triangular
distribution samples the target locations closer to the center
of the search region which also coincides with the mean
of the target belief distribution and is the starting point
for outward spiral. In contrast, the inward spiral strategy
out-performs the outward spiral search strategy when the
targets are distributed according to the v-shaped distribution.
This is because the target location samples from a v-shaped
distribution are closer to the circumference of the search
region. Since, the inward spiral strategy starts the search from
the circumference of the search region, it follows the reverse
trend when compared to other search strategies.

2) Failure Rate: The failure rate follows the same trend
as MTTF for the different target probability distributions.

However, for the search strategies, it is interesting to note in
Fig. 4(b), that the spiral search strategies have the smallest
number of failures when compared to global-maxima and
heuristic local-maxima strategies. Since the inward spiral
strategy guarantees the target capture under certain condi-
tions, (from Section IV), the number of failures for this
strategy is close to zero.

3) Cost Analysis: The mean-time-to-find and failure rate,
define the performance of search strategies independently.
However, for a comprehensive performance score, we com-
bined these two factors to formulate a cost (C), that is a
function of time to find the target (ti) and time spent on
missed targets.

C =

n∑
i=1

(1Foundi
∗ ti + 1FoundC

i
∗ β) (14)

Where,

1Foundi
=

{
1 if target i is found
0 if target i is not found,

1FoundC
i
= 1− 1Foundi

(15)

In Eq. 14, n is the total number of trials, β is the penalizing
factor for missing the target. β = tmax+ε, where tmax is the
maximum time spent by search strategies on missed targets,
and ε > 0 assures that the failures are more expensive than
the successes. The value of ε is application specific and for
our application we have chosen ε = tmax to penalize capture
failures. In field experiments, tmax could be the battery-time
of the search vehicle.

A comparison between the normalized cost for three
search strategies for the three target distributions is presented
in Fig. 4(c). We observe that the global maxima search
strategy has the highest cost, implying that it has the worst
combination of search time and success rate. The next
strategy is the heuristic local maxima which has the shortest
time to find but with a very high failure rate. The outward
and inward spiral search strategies achieve a better trade-
off between the mean-time-to-find the target and the success
rate.



(a) Global Maxima (b) Heuristic Local Maxima (c) Spiral

Fig. 5: Multi target search path using the proposed search strategies.

(a) Number of Failures for search strategies (b) Cost of search for search strategies

Fig. 6: Multi-target number of failures and cost comparison for different search strategies.

C. Multi-Target Search

The most critical aspect of multi-target search is to decide
when to switch between the search regions for different
targets. This decision process naturally evolves for the
global-maxima and heuristic local-maxima search strategies.
However, for the spiral strategy, the switching time between
the target search regions need to be decided explicitly. In
our experiments for spiral strategy, we use regular interval
switching times. This switching method guarantees that equal
effort is spent in searching all the targets and covering higher
probability regions in the initial search period.

We simulated 4 targets for 100 trials within the search
region of radius 200 meters. The target locations are sampled
from triangular distribution using Eq. 11. The searcher’s
belief distribution is represented by 4 Gaussian distributions
with means at the centers of the target distributions. The
searcher’s initial location was fixed for all trials for consis-
tency. Sample search paths executed by the robot for the three
search strategies are illustrated in Fig. 5. It can be observed
that the global maxima search executes repetitive overlapping
paths while transitioning from one target to another. The
heuristic local maxima strategy covers the target regions
exhaustively, by slowly expanding its horizon, thus taking
more time to find the targets. The outward spiral strategy
performs structured transitions between the search regions
of the targets while initially covering the higher probability

regions.
The number of failures for each of the search strategies is

presented in Fig. 6(a). These results are reported for 100
trials. The heuristic local search strategy has the highest
failure rate (20%). This can be explained by the sequential
nature of the local search strategy which allows the targets
to escape from the initial search region. The global search
strategy is next in order for failure rate (15%) as it generates
longer and repetitive trajectories, thus losing the targets. The
spiral strategy has the best performance with 100% success.
The cost analysis of the search strategies follow the same
trend as the failure rate and is shown in Fig. 6(b).

VI. FIELD TRIALS

A. Setup

We evaluated our proposed search strategies in Lake
Okanagan, Canada over a search radius of 50 meters. The
searcher robot used for field experiments is an Autonomous
Surface Vehicle (ASV), Kingfisher from Clearpath Robotics.
The search targets used are in-house designed floating data
collectors referred to as the drifters. The maximum operating
speed of the ASV is 1.2 m/s. The average drifter speed under
natural wind and current conditions is measured to be 0.2
m/s. The battery life of the ASV is 3 hours. On ASV, we
used a simple PID controller to achieve smooth trajectories
following a set of waypoints. This setup was done 50 meters



Fig. 7: The search region where field experiments were conducted and the paths generated by three search strategies :
Global Maxima, Heuristic Local Maxima, and Spiral Search. Boat’s search path is shown in yellow and drifter’s discrete

locations is shown with red dots.

away from the shore where the wind was calm but the
currents were moderate due to the disturbances from nearby
docking ships. An illustration of our deployment for the
search experiment is presented in Fig. 8, and the deployment
area is shown in Fig. 7. During the field experiments, the
maximum velocity of the boat, measured drifter velocity, and
the size of the search area did not satisfy the conditions for
guaranteed capture of the target (Eq. 6). Hence, we could not
validate the inward spiral search strategy on the real robot.

Fig. 8: Autonomous Surface Vehicle, Kingfisher and search
target, drifter.

1) Autonomous Surface Vehicle: The searcher robot,
Kingfisher, is a catamaran style, differential drive boat. It
has an on-board computer with 2.4 GHz Wireless interface
to communicate with the base station and the drifters.

2) Drifter: The drifters are equipped with a miniPC
(Android MK-802), a GPS receiver (Adafruit) and a 5V/2A
battery pack as shown in the Fig. 9. The miniPC is capable of
storing onboard data and communicating with the searcher
via its in-built WiFi antenna. The drifters are designed to
be neutrally buoyant such that they floated upright while
receiving WiFi and GPS signals without interference.

Fig. 9: Search target: the Drifter.

B. Results

The result of the field trials are presented in Fig. 7 with the
illustration of ASV’s search path and the drifters’ waypoints.
For the global and heuristic local maxima search strategies,
the local and global maxima of the prior belief, Gaussian
distribution, is followed by the ASV and the distribution is
updated in real-time. For the spiral search strategy, the spiral
pattern is pre-generated according to Eq. 1.

In order to get a complete and extensive comparison
of the three search strategies, we used the actual search
path of the ASV as the input to our real-time simulator.
The drifter’s initial location was simulated using the three
probability distributions: uniform, triangular and v-shaped.
The drifter’s trajectory was again generated using the beta
distribution. We executed 500 trials per search strategy and
recorded the mean-time-to-find, success rate and the cost.
These results are presented in Fig. 10. Once again, we
observe that the outward spiral strategy has the least number
of failures, followed by global-maxima, and heuristic local-
maxima. The cost analysis in Fig. 10(b) shows that the
spiral strategy performs very well with the drifters sampled
from a triangular distribution than those sampled from v-



Fig. 10: Comparing the number of failures and cost for lake trials.

shaped distribution. This can be attributed to the fact that
the outward spiral strategy covers the center of the search
region first allowing the drifters sampled from v-distribution
to escape. Nevertheless, the spiral strategy performs better
than any other search strategy with all three target sampling
distributions.

VII. CONCLUSIONS
In this paper, we present an analysis of three search

strategies and compare their performance in terms of their
success rate and the cost of search. We found the outward
spiral strategy to consistently outperform the global-maxima
and heuristic local-maxima strategies for both single-target
and multi-target experiments in simulations and open water
experiments. The analytical results for spiral search strategy
is shown to guarantee the target capture and minimize the
capture time. The corresponding simulation results validate
our hypothesis that inward spiral patterns provide guaranteed
capture, whereas outward spirals minimize the capture time.

For future work, we would like to enhance the perfor-
mance of the spiral search strategy for multiple targets. We
plan to do this by designing a decision making process that
can choose the time to transit between the targets instead of
our current fixed time switching strategy.
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