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Abstract— In this paper we address the rendezvous problem
between an autonomous underwater vehicle (AUV) and a pas-
sively floating drifter on the sea surface. The AUV’s mission is to
keep an estimate of the floating drifter’s position while exploring
the underwater environment and periodically attempting to
rendezvous with it. We are interested in the case where the
AUV loses track of the drifter, predicts its location and searches
for it in the vicinity of the predicted location. We parameterize
this search problem with respect to both the uncertainty in
the drifter’s position estimate and the ratio between the drifter
and the AUV speeds. We examine two search strategies for
the AUV, an inward spiral and an outward spiral. We derive
conditions under which these patterns are guaranteed to find
a drifter, and we empirically analyze them with respect to
different parameters in simulation. In addition, we present
results from field trials in which an AUV successfully found
a drifter after periods of communication loss during which the
robot was exploring.

I. INTRODUCTION

This paper analyzes different search strategies for an

asymmetric rendezvous at sea. Specifically, we consider

an autonomous underwater vehicle (AUV) which explores

the underwater environment in coordination with a free-

floating drifter sensor at sea. Our work focuses on the search

patterns that can be executed by an AUV to perform either

a guaranteed search or a fast search to find the lost target.

A commonly known search strategy for lost targets is a

spiral pattern, as discussed in [1], [2] and [3]. Spiral patterns

can either be executed as inward spiral or outward spiral

depending on if the search is initialized at the outer edge

or at the center of the region of interest. We hypothesize

that the inward spiral strategy performs a guaranteed search

given an appropriate set of parameter values for the speed of

the AUV and the drifter while, the outward spiral strategy

will perform as a greedy search, optimizing the mean time

to find the target.

We test the two search patterns to validate our hypotheses

in simulation and in field experiments. We focus on the

AUV’s estimate of the drifter’s position and on the search

patterns that will find the drifter in the least amount of time.

Specifically, we:

• identify conditions under which the patterns mentioned

above have a guaranteed outcome

• empirically compare inward and outward spiral strate-

gies in simulation, where the center is the estimated

drifter position
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Fig. 1: The Aqua AUV performing a round of exploration

• present results from field trials in which the AUV

performed several rounds of rendezvous with a floating

drifter

In our simulation, we represent the AUV and the drifter

as point objects and reproduce all the sequence of steps exe-

cuted at the sea. Our aim is to iteratively test the two search

patterns given a set of input parameters and conclusively

select one search strategy over the other.

In our field trials we exploit the motion and computation

capabilities of a highly agile six-legged AUV (Fig. 1),

whose objectives are: to perform underwater exploration, and

occasionally to communicate with a single drifter. Given the

relatively high cost and power requirements of long-range or

satellite communications, we examine the scenario in which

communication between the AUV and the drifter happens

via low-cost XBee or WiFi, and thus has very limited range

in the presence of waves. The latter goal requires the AUV

to go within a certain distance of the drifter, known as the

communication radius, so as to update the AUV’s estimate

of the drifter’s position. We tested only the outward spiral

pattern in our field experiment, as it is suggested by our

simulations results to be the strategy which would take least

amount of time to find the drifter.

We structure this paper beginning with our problem for-

mulation in the Section III where we discuss the conditions

for guaranteed search using spiral strategies. This is followed

by an explanation of our evaluations, first in simulation in

Section IV and then in the field in Section V.
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II. RELATED WORK

Cooperative rendezvous during multi-robot exploration is

an evolving research problem. Dudek et al. [4] formalize

this problem as two mobile robots attempting to rendezvous

while exploring a non-uniform environment. The robots

collect and analyze sensor data to find landmarks in the

environment which can be used for localization and as po-

tential rendezvous locations [5]. The combined approach of

exploration and rendezvous is extended for multiple robots in

[6] and [7]. With the rise in popularity of Bayesian statistics,

probabilistic rendezvous algorithms have appeared as well

[8], which account for position uncertainty of the meeting

agents. It is important to note that while a large amount of

work on multi-robot exploration exists [9] [10] [11] [12] [13],

the majority of it assumes constant communication between

explorers, either directly or through a central command. In

this paper, we do not make any such assumptions since,

the radio signals get attenuated underwater, allowing only

intermittent surface communication.

Our problem differs from the traditional rendezvous prob-

lem in two major respects. First, only one of the agents

has control over its position and velocity (the AUV), while

the other agent’s movement is determined by currents and

winds (the drifter). Second, the aquatic environment makes

the use of landmarks infeasible. Therefore it may be more

appropriate to think of the drifter as a target which the AUV

must find. When formalized thus, this work has a lot in

common with an autonomous search and tracking problem.

Search and tracking problem has been primarily focused

on optimal search patterns for the searching robot, and on

accurate position estimation of the target. Search patterns

have been based on natural processes [3], geometric patterns

[2] and boustrophedon coverage [12]. An example of the

geometric search pattern is presented in [1] where the authors

bound the estimate for the target’s initial location within a

circle. The probability distribution of the target’s position

was considered uniform inside the shape, and zero outside

of it.

Bourgault et al. [14] and Furukawa et al. [15] represent

the target’s possible location using Bayesian statistics. Given

that the state of a lost target is by definition unknown, it is

unsurprising that a Bayesian approach is a suitable choice.

Furukawa et al. [16] also summarize the mathematical ba-

sis of multi-robot, single-target search within a recursive

Bayesian framework. Their goal is to unify search and

tracking under a single objective function. This allowed them

to retain the state estimation of the target when transitioning

from tracking to search and vice-versa. Our work uses a

recursive Bayesian framework as well, and we are able to

retain our state estimation of the drifter through both of our

states, search and exploration.

Recent work by Das et al. [17] has a very similar exper-

imental, setup to that used in our field trials, however their

goals are quite distinct from ours. Das et al. attempted to

use a floating drifter to coordinate exploration of a moving

ocean patch by an AUV. The drifter demarcates the center

of the ocean patch, while the AUV moves in a box pattern

around the perimeter, changing depth in a saw-tooth motion.

Their work substantially differs from ours in that the drifter

and AUV maintain near constant contact through the use of

satellite communication.

III. PROBLEM FORMULATION

Our aim in this paper is to find a drifter at the sea with

a mobile robot. Let the position of the robot be xr, and

the position of the drifter, which is unknown, be xd with

an initial distance D0 between them. Since, in our case, the

robot operates in open water we assume that there are no

obstacles in our world. If the robot is given no information

about the state of the drifter, the best it can do is to search

by performing a systematic coverage of the environment.

We consider that the robot has found the drifter if it falls

within the communication radius of the robot Rcomm. For our

problem, we specify that the robot and drifter are initially

outside of communication range (D0 > Rcomm).

Our objective is to analyze the success of two search

strategies for finding the drifter in the form of precomputed

trajectories. These two trajectories are an inward spiral and

an outward spiral to the estimated drifter location. The

motivation for following a spiral trajectory is that it have

been shown to be the optimal strategy for search in the

plane with no information [18]. In [14], both types of spirals

have been obtained by solving an optimal control problem,

when the hypothesis of the drifter’s location is unimodal and

concentrated around the mode. In our case, we avoid solving

the optimal control problem, and instead opt to precompute

the trajectories and evaluate their success under variations of

the position uncertainties, the communication range and the

speed of the drifter.

A. Guaranteed search with spiral trajectories

In this section we derive conditions under which the spiral

strategies have a guaranteed outcome i.e. either a guaranteed

success or a time at which a decision can be made for a

guaranteed failure. Consider first an outward spiral pattern.

Without loss of generality, let the initial position of the robot

be at the origin of our coordinate system. To guarantee that

every given point in the space will eventually be explored,

the trajectory of the robot is determined by an arithmetic

spiral; i.e. the position of the robot, at time t, will be:

xr
t = bθt

(
cos (θt)
sin (θt)

)
(1)

where b is a parameter that determines the distance between

points in consecutive turns, along a particular direction. Since

the robot needs to explore all of the space, we set the

parameter b to depend on the communication radius. If we

assume that the robot does not know the direction in which

the drifter moves, the separation between turns in the spiral

pattern must be smaller than the communication range; i.e.

b ≤ Rcomm

2π . If the distance between turns is greater then

there is no guarantee that the robot will not miss the drifter,

regardless of the robot’s speed (see Fig. 2).
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(a) Good Spiral (b) Bad Spiral

Fig. 2: When consecutive turns of the spiral are at a distance

greater than the communication radius, the robot might miss

the drifter in the gaps of the spiral on the right.

For the robot to miss the drifter, the drifter should travel a

distance of 2πb along a line passing through the center of the

spiral in less time than the time the robot needs to complete

a full turn. Similarly, let s(θt) be the arc length traveled by

the robot after traversing an angle of θt, i.e.

s(θt) =
b

2

(
θt

√
1 + θ2t + log

(
θt +

√
1 + θ2t

))
(2)

Thus the condition that the speed of the robot is greater than

the radial speed of the drifter can be expressed as

s(θt +Δθ)− s(θt)

‖vrt ‖
≤ (θt +Δθ)b− bθt

‖vdmax‖
(3)

where vrt is the velocity of the robot along the spiral path
and ‖vdmax‖ is the maximum speed at which the drifter can

move. Letting Δθ → 0, the speed of the robot should satisfy

‖vrt ‖ > ‖vdmax‖
√
1 + θ2t (4)

where ds/dθt = b
√

1 + θ2t . As θt grows, the arc length

between consecutive turns in the spiral grows, therefore the

robot must increase its speed over time to keep up with the

drifter. Assuming the robot can keep increasing its speed

until it finds the drifter, the time to find the drifter is given

by the inequality bθt > D0. Since our robot’s maximum

speed is finite, after some time the robot will never find the

drifter, assuming the drifter travels in the same direction. The

time when it happens is given by the value of θt at which

Eq. 4 does not hold anymore, i.e.

θt,failure =

√(‖vrmax‖
‖vdmax‖

)2

− 1 (5)

If the robot always moves at its maximum speed, and D0 >
Rcomm the time when this happens is given by

tfailure =
s(θt,failure)

‖vrmax‖
(6)

This means that the time to miss the drifter increases with

the robot’s speed, while it decreases with the drifter’s speed,

making guaranteed search very hard except for the cases in

which the drifter is close to not moving.

When the robot knows the direction in which the drifter is

moving, but not its initial location, a similar analysis can be

performed. This scenario is akin to the drifter being dragged

by the wind, the speed and direction of which the robot could

measure. The trajectory of the robot would be given by

xr
t = bθt

(
cos (θt)
sin (θt)

)
+ vwindt (7)

which will produce a moving spiral pattern as the one in

Figure 3. In this case the analysis is done in a frame of

reference moving with velocity vwind. If vdmax = vwind then

there is no restriction on the robot’s speed, other than ‖vrt ‖ ≥
‖vwind‖, ∀t. In such case, the robot will find the drifter if it is

given enough time, since the drifter will have zero speed in

the moving frame of reference. The amount of time needed

is given by the inequality bθt > D0 + vwindt.

Fig. 3: A inward spiral pattern with a moving center

When vdmax �= vwind, the same analysis of equations 4 to 6

is applicable by using relative velocities in the new frame

of reference. The difference is that by using the relative

velocities, the time until failure increases as the robot’s

estimate of vwind approaches vdmax.

For an inward spiral trajectory, the robot should start the

trajectory at an initial radius of Rin = bθt,failure to guarantee

that the drifter will be found. This will only work if the drifter

is within the disk of radius Rin −Rcomm, which makes such

strategy less attractive than spiraling out.

IV. CONTROLLED SIMULATION

A. Setup

We analyze the proposed search strategies from Section III

by implementing a simulated robot-drifter pair. Specifically,

we tested our two search patterns while varying the values

of drifter’s position uncertainty and speed. Parameters such

as Rcomm, the noise in drifter’s velocity estimate, and the

drifter’s speed were all set to realistic values for the scenario

of an AUV at sea. A snapshot of the simulation system for the

robot-drifter interaction during the search phase is presented

in Figure 4. We assumed a point robot with uniform speed

which performed a sequence of motions similar to the ones

that our AUV executed. The drifter was also simulated as

a point object with random heading directions to simulate

sea-like conditions. The communication range of the drifter

was considered as the limiting factor for setting the width of

the spiral. We tested two search patterns to empirically test

the effect of randomly changing drifter’s position uncertainty

and systematically varying the drifter’s speed.

During each run of the experiment a sequence of actions

was simulated. First, the drifter received noisy position
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Fig. 4: Simulated paths for Aqua (solid red) and drifter (green

circles). The dashed spirals represent the search pattern to be

executed by Aqua.

measurements which were used to fit a motion model, which

similar to [14], consisted of a Beta distribution for its speed

and a von Mises distribution for its heading. The motivation

for using such motion model was that the Beta distribution

has a bounded support. At the same time, the drifter also

kept a hypothesis on its position by using a Kalman Filter.

Second, the robot would receive the estimated motion model,

and the position estimate from the drifter. After receiving the

model, the robot would go out of the communication range

of the drifter, to simulate the execution of an underwater

task. During this time, the robot would update its hypothesis

using the received motion model. Finally, after a fixed

amount of time, it would use its hypothesis on the drifter’s

location to compute the waypoints of either an inward spiral

or an outward spiral trajectory. The radius of these spiral

trajectories would be computed according to the size of the

99 percent confidence ellipse around the robot’s hypothesis

on the drifter’s location.

B. Results

We tested the two search patterns using realistic values

taken from our field experiment setup. Specifically, we tested

with Rcomm = 5m, with the position uncertainty varying be-

tween 2 meters to 8 meters, and with the drifter’s speed being

0 and 0.2 m/s. Each parameter combination was averaged

over 100 trials. The results with these input parameters are

presented in Figures 5 and 6.

In Figure 5, we plotted the cumulative number of suc-

cessful rendezvous trials between the robot and the drifter

at any given simulated time. It can be observed that the

outward spiral pattern does consistently better than inward

spiral for all the simulation steps and different drifter speeds.

In the case where the drifter is stationary, the outward spiral

pattern clearly outperforms the inward spiral. However, at

drifter speed of 0.2 m/s, the outward spiral pattern does not

outperform the inward spiral pattern by a significant amount.

This implies that when the drifter is in motion both outward

spiral and inward spiral will perform equally well.

In addition, we analyzed the effect of the drifter’s position

uncertainty on the mean time to find, in Figure 6. These

results suggest that the outward spiral found the drifter faster

(a)

(b)

Fig. 5: Cumulative ratio of successful rendezvous attempts

vs. simulation time for the two strategies

than the inward spiral with shorter mean time to find for

both the speed cases. This outcome can be explained due

to the unimodal nature of the gaussian estimate around the

estimated mean of the drifter’s location. The outward spiral

visits the mean first, while the inward spiral starts searching

at the 3-sigma border of the distribution.

We also observed that inward spiral performs better than

outward spiral for certain input set of parameters. This result

is presented in Figure 7 where inward spiral has marginally

higher number of successes than outward spiral with position

uncertainty of 4 meters and 6 meters for static drifter and

drifter with speed 0.2 m/s respectively.

V. SEA TRIALS

A. Setup

In addition to our controlled simulation, we implemented

our system and tested it on a real robot-drifter pair in the

sea. We performed trials that involved the Aqua underwater

robot and a passive drifter. Our drifter was a free-floating,

compact sensor box containing a GPS receiver, XBee and

WiFi communications, and a Raspberry Pi for on-board

recording and processing of the data. The average floating

speed that we observed was 0.4m/s, however this speed was

dependent on the many factors related to currents, waves,

and weather conditions. The drifter filtered the incoming

GPS data, and continuously updated and transmitted its own

location and velocity estimate at a rate of 1Hz. This is a

notable difference between existing drifters that are designed
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(a)

(b)

Fig. 6: Mean time to find vs. the increasing uncertainty in

the drifter’s position. The error bars correspond to standard

deviation.

to float for months or years in the ocean (e.g. [19]), and thus

need to conserve power and minimize communication costs.

In most cases these design constraints allow them to only

emit their GPS position every hour. In our case the drifter

needs to emit its location frequently enough to allow the

AUV searcher to acknowledge and find it whenever they are

within communication range.

The Aqua AUV is equipped with its own GPS receiver,

XBee and WiFi antennas. It is capable of forward swimming

speeds of 1m/s. It navigates to the given target GPS waypoint

by means of a porpoising motion, by which the robot

periodically surfaces to get a GPS fix, heaves down to a

certain depth, and then travels on a straight line towards

the target. These three components are better illustrated in

Fig. 8 and were implemented in our previous work [20]. This

navigation method is used to avoid the need for acoustic

localization with fixed beacons.

B. Results

We performed five trials1 of a field experiment in which

the AUV and the drifter initially start near each other,

within WiFi communication range, so that the AUV can

form an estimate of the drifter’s position and velocity. Once

this happens the AUV starts the process of underwater

exploration. The time spent exploring is initially set to two

1By “trial” we mean a part of the experiment from the time the AUV
explores to the time it finds the drifter

(a)

(b)

Fig. 7: Number of successful rendezvous attempts vs. the

increasing uncertainty in the drifter’s position

minutes and is doubled at the beginning of each new round,

every time the AUV finds the drifter. Immediately after

each exploration phase the AUV surfaces to communicate

with the drifter. If the two are within communication radius

then the AUV incorporates this new measurement into its

estimate, navigates towards the drifter, and starts exploring

anew. If not, then it predicts the drifter’s location, navigates

towards it, and once there, it begins the search process. In

our experiment we only used outward square spirals as our

search strategy since they performed best in our simulation

results.

Fig. 9 shows the search path of the AUV, which consists

of full-speed navigation through a series of GPS target

waypoints that form a square outward spiral shape. In this

particular round, the drifter was found at the end of the eighth

target waypoint, after approximately 30 minutes of searching.

Performing the search via surface swimming was an option

that we did not opt for due to the difficulties presented by

the wave action, as well as by the non-holonomicity of the

vehicle. Another potential option for the spiral trajectory

execution would be to base it solely on IMU corrections,

however, the drift in the IMU yaw would be prohibitve for

any long-term execution of such trajectories.

VI. DISCUSSION AND CONCLUSION

We presented an analysis of search strategies for ren-

dezvous between an active underwater robot and a pas-

sively floating drifter on the ocean surface. Specifically,
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(a) (b) (c)

Fig. 8: (a) Heave up motion at 45 degree pitch to raise the GPS box (blue) over the surface. (b) Heave down motion to

reach an operating depth. (c) Straight line in the direction of the target waypoint. Yaw corrections are IMU-based.

Fig. 9: Aqua’s path for searching the drifter (in red). The

square outward spirals are also shown (purple).

we examined inward and outward spiral strategies and the

conditions under which their search outcome is guaranteed.

We also presented results from a field trial in which an AUV

searched for a drifter after it had lost communication during

its exploration phase.
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