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Abstract

Layered motion fields arise in natural vision in many situations,
including self-motion in a cluttered scene, motion of a fluid, and
transparency. Layered motion fields have the property that there
are multiple velocities present near each 2D spatial location. As
such, standard 2D motion visualization methods do not apply, since
they allow for only a single velocity vector at each image position.
This paper examines perceptual issues that arise in visualizing lay-
ered motion fields. A key issue is that the human visual system is
severely limited in how well it can process such fields. We give a
thorough review of the relevant psychophysical literature, and focus
on experiments that test how well the human visual system can de-
tect spatial discontinuities and discrete layers in motion fields. We
then present a specific layered motion visualization method. We
demonstrate the limitations of the human visual system in perceiv-
ing the layered motions produced by this method.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1 Introduction

Although the human visual system (HVS) is capable of process-
ing an enormous amount of information, it does have its limits.
Of all possible image sequences with P pixels and T frames that
can be defined on a pixel grid, the vast majority are interpreted by
the HVS as meaningless patterns of flickering light (white noise).
Rather than being able to understand any arbitrary time-varying im-
age, the HVS is specialized for a very restricted subset, those that
correspond to motions of objects.

There are many types of motions. These include optical flow that
is generated when an observer moves through a 3D scene, motion
texture such as fluid flow and smoke, motion of animals walking
or running, layered motions that are produced by transparency and
specularities off smooth surfaces.

In certain cases, motion can be described as pure 2D deforma-
tions, namely, 2D intensity patterns that are morphed over time
along a smooth 2D vector field. In other cases, however, this 2D
model is insufficient to capture the richness of the motion. The mo-
tion field can possess many discontinuities in space-time, and it can
also have multiple layers. In this paper, we discuss the problem of
how to visualize such multi-layered motion fields.

It is clear from everyday experience that the HVS can process
layered motions fo some extent. The question that motivates this re-
search is, to what extent? First, the HVS can process only a limited
range of speeds, sizes, and spatial contrasts of in a moving image.
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Second, it can process only a limited set of spatial and temporal gra-
dients in the 2D motion field. For example, although the HVS can
represent two moving layers quite well, and three layers to some
extent, distinguishing more than three layers is near impossible. In
this paper, we review some of what is known about these basic con-
straints. We then apply these constraints to an earlier method we
proposed for visualizing layered motions.

2 Background

2.1 Psychophysics

We begin by briefly reviewing some of the findings obtained from
human psychophysics in the processing of motion layers.

2.1.1 Sensitivity to spatial gradients

Various experiments have been conducted to estimate the sensitiv-
ity of the HVS to spatial gradients in the motion field. Image se-
quences were composed either of moving dots or moving 2D si-
nusoids. The sequences were synthesized such that a single frame
of the sequence contains no information about where the motion
boundary is. This was done to study how the motion information
is processed, independently of pure spatial intensity cues such as
edges.

In [van Doorn and Koenderink 1982c] the view field was divided
into two halves, each half having a random dot pattern moving at a
different velocity. Experiments were conducted with different pa-
rameters (magnitude and direction) for the average velocity and the
difference velocity between the two half-fields. A Weber type law
was found such that the ability to perceive a gradient depends on the
ratio of the the difference velocity to the average velocity. The ex-
perimental results showed that this ratio (also known as the Weber
fraction) had to be nearly 100% for the observer to notice the gradi-
ent. This indicates that humans have a limited ability in perceiving
such 2D motion gradients.

A similar experiment was conducted in [van Doorn and Koen-
derink 1982b]. The view field was divided into horizontal stripes
containing white noise with alternating stripes having velocities in
opposite directions. For broader stripes, the observer was able to
perceive the alternating stripes moving in opposite directions. As
the stripes became narrower, the observer wasn’t able to distinguish
the different stripes and the entire image field appeared incoherent.
Interestingly for very narrow stripes, the image field gave the ap-
pearance of two transparent layers moving in opposite directions.

Returning to the case of spatial gradients, [Watson and Eck-
ert 1994] estimated the sensitivities using bandpass filtered noise
rather than random dots. The motion directions alternated be-
tween stripes, where the stripes were now blended together to avoid
within-frame spatial cues. The task was to identify when the stripes
were present. Detection performance was studied as a function of
the ratio of spatial frequency of stripes (envelope) to the peak spatial
frequency of the translating intensities (carrier). It was found that
perception of the stripes was poor if this ratio was either too high or
low, indicating the HVS is limited in detecting spatial frequencies
in the 2D motion field that are either too low or too high.



In [Mestre et al. 2001], a random dot stimulus was used and the
display field was again divided into horizontal stripes. However this
time only the speeds (and not the direction) between the alternating
stripes were varied. In order to segment the alternating stripes, sub-
jects required a higher speed difference between the stripes when
the stripes were narrower. This again shows that the HVS sensi-
tivity to motion gradients falls when the bars become narrower, i.e.
high spatial frequencies in the motion field.

2.1.2 Sensitivity to motion layers

The above studies showed indirectly that the HVS is able to per-
ceive two moving layers. Numerous studies have addressed this
question in a more direct manner. [Adelson and Movshon 1982] in-
vestigated two layers defined by moving parallel lines and the rules
by which the HVS perceives two vs. one moving layer. [Stoner
et al. 1990] extended this method to layered transparency phenom-
ena, using the rules of compositing.

While the HVS can easily perceive up to three superimposed
global motion layers, more than three layers is much more diffi-
cult to perceive. [Andersen 1989] used a random dot pattern and
assigned different speeds to different groups of dots so as to sim-
ulate different moving layers. Experiments were carried out with
one, two, three, four and five layers and subjects were asked to de-
termine the number of layers in each of these different cases. The
subjects were able to determine accurately the number of layers
when the number of layers was less than or equal to three, but were
not able to distinguish between the three, four and five layer case.

Despite this evidence that the HVS can perceive up to three dis-
tinct moving layers, most studies have investigated the question of
two vs. one layer. For example, suppose we had just two overlap-
ping layers moving at different speeds. What should the difference
in speeds be, so that the HVS can segregate the two moving layers?
[Masson et al. 1999] presented subjects with moving random dots
and investigate the minimum speed difference that was required be-
tween the two moving layers so that subjects could perceive two and
only two layers. The speed discrimination threshold, defined as the
ratio of speed difference (at which the subject can accurately segre-
gate two layers) to the average speed, was determined for different
average speeds and stimulus durations. The threshold increased as
the average speed was increased and decreased as the stimulus dura-
tion was increased. This showed a longer stimulus durations helped
the subject in segregating two moving layers more easily. For ex-
ample, for duration of 500 ms, a difference of 20% in speed was
needed.

[Braddick 1997] asked the subjects to judge whether the angle
between the directions of two superimposed groups of moving dots
appeared less than or greater than 90 degrees. The precision with
which the subjects judged the relative angle was compared with
the case where the subjects were presented with just a single group
of moving dots and were asked to judge the angle between a fixed
straight line and the direction of dot motion. The standard deviation
in the case of two layers of dots were found to be nearly three times
higher than for the motion of one layer compared to a static line.

A final example illustrates some of the subtleties of the HVS
in processing motion layers. [Qian et al. 1994a] manipulated two
fields of dots moving with opposite velocities. When the dots in
each field were chosen independently, two superimposed layers
were perceived as expected. However, when the dots in the two
fields were chosen in pairs (one dot per pair from each field) and
each pair of dots consisted of two nearby dots moving in opposite
directions, then the HVS no longer could perceive the two layers.
These findings can be explained in terms of the underlying physi-
ology of HVS [Qian et al. 1994b], and further emphasize that there
are concrete spatial limits in how well the HVS can process motion
fields.

2.2 Graphics methods for 2D motion visualization

In Sec. 3, we will discuss a particular method for visualizing 2D
layered motion fields. Before we do so, we briefly review several
non-layered methods.

Perhaps the most straightforward method is to use particle sys-
tems. Moving particles are excellent for representing very local
aspects of the flow, since the human visual system can track single
particles with great accuracy using smooth pursuit eye movements.

Many other interesting methods have been invented which are
not based on particles, however. One example is spectral synthesis
methods [Mandelbrot 1977; Voss 1988]. These create a motion by
adding up 2D sinusoids and varying the phase of the sinusoids from
frame to frame. The phase change is determined by a dispersion re-
lation. Examples of rendered motions include ocean waves [Mastin
et al. 1987] and dynamic clouds [Sakas 1993]. (See [Ebert et al.
2003] for a review.)

The above spectral methods create global motion patterns. Oth-
ers have created local motion patterns by varying local phase.
[Freeman et al. 1991] created an illusion of motion, using a quadra-
ture pair of oriented filters that are applied to a single image frame.
The percept of motion is produced by phase-shifting these filters
over a sequence of frames.

Other methods have relied on spatial orientation cues to motion.
The LIC (Line Integral Convolution) algorithm [Cabral and Lee-
dom 1993] convolves a white noise texture along streamlines of a
2D motion field, using a kernel filter. It produces orientated spatial
structure parallel to the direction of motion. In the basic version,
a static image frame is produced. The orientation of the flow is
given by the local orientation of the (blurred) image. The speed and
direction of the flow can be represented by using a time varying
phase-shifted periodic convolution kernel to generate a sequence of
animation frames. Various improvements have been made to this
basic LIC technique, like extending it to 3D [Interrante and Grosch
1998], and to non-rectilinear grids [Forssell and Cohen 1995].

A related method is spot noise [Wijk 1991]. The basic primitive
is a spot, e.g. an ellipse. These spots have random intensities and
are randomly distributed to generate a texture. The orientation and
size of each spot are related to the flow vector where the spot is
placed. Each spot is like a streak in the direction of this vector, with
longer streaks indicating faster flow. Like LIC, the direction of flow
is ambiguous up to 180 degrees. Only by turning the spots into a
moving particle system can this ambiguity be resolved.

These flow visualization methods yield interesting results, but
they were not intended for visualizing layered motions. In this pa-
per, we discuss a spectral based method that is used for layered mo-
tions. Although the method only motion cues, it can be extended to
spatial cues as well e.g. by adding particles [Langer et al. 2004] or
motion streaks.

3 Method

The examples that we present later in the paper use two types of lay-
ered motion fields. The first type is the motion seen by an observer
moving through a static scene. This is commonly called “egomo-
tion”. The second is the motion generated by a fluid model. We
begin this section by briefly reviewing these motion field models.
We then present the details of our method. In the following section,
we demonstrate the method with a several examples.

3.1 Two types of layered motion fields
3.1.1 Egomotion

[Longuet-Higgins and Prazdny 1980] developed a model of motion
fields seen by an observer moving through a static 3D scene. The



image velocity of a point at a given instance of time is as follows.
Let (Ty,Ty,T;) be the instantaneous translation component of the
camera motion in the x,y and z direction and (L, y,Q;) be the
rotation component of the camera motion in x,y and z direction.
Assume that the image projection plane is located at a depth f from
the camera (centered at the origin) and z(x,y) represents the pro-
jection of a 3D point to co-ordinates (x,y) in the image plane. For
layered motions, multiple z(x,y) values are needed for each x,y,
namely one for each layer.
According to this model, the image velocity at (x,y) is then :
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The image location (x;,y;) = % (Ty, Ty) is called the direction of
heading, also called the focus of expansion (FOE).
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Figure 1: An example of a vector field for a single motion layer
(constant depth). Here the camera is translating forward and ro-
tating about the optical (z) axis. The axis labels indicate viewing
angle, where (0,0) is the direction of the optical axis.

For any single depth layer, the 2D image velocity field thus is
the vector sum of translational component and rotational compo-
nent. The translation components of the vector field always points
away from the direction of heading. The length of the vector
for that depth layer is inversely proportional to z(x,y). Figure 1
is an example of a vector field generated using above equations,
where the translation direction is straight ahead and the rotation is
about the optical axis. The velocity field for just one depth layer,

z = constant, is shown.

3.1.2  Fluid Flow

The second type of motion is that of a 2D fluid. We used the
simple fluid solver of [Stam 2001] to generate a “turbulent” time-
dependent 2D velocity field. The method generates velocity fields

for incompressible fluids and dynamically reacts to the forces sup-
plied by the user. To get a turbulent fluid flow we designed a time-
dependent force field that is a sum of two components. The first
component is a smooth vector field. The second component is a
high frequency vector field with a zero mean. Figure 2 shows an
example of fluid flow field, at one particular instant of time, gener-
ated using this method.

For the demonstrations we show later, we chose the motion in
the different layers to differ in their speed only. In the context of a
fluid, one can think of the speed as a decreasing function of height,
that is, decreasing toward a boundary layer.

/o - ’ VY A
NN < oy
L SN VA A
e — s s 4 I ! rs -
P N A
// -~ N N N __/?/// / //
) \ NN N \ ~ - 7 T~
/ LS
N N - ~ N N \ f / - . / / |
A A N T Voo
oo NN Y
\ \ \ ~ T 1 J 1 i
- N - — — o~ W \ \ - J l \ \
- ﬂ%\)\\_,// t \ \ \ N
4 ”%\\%// s \ ON S
- -~ - _——\\\—-,< \ \ \ ~
’ [ - - ~ N N ) / = N = - /
/- vy — N~ - ’
A NN - NN ’
N ) / J/

Figure 2: An example of the vector field generated by the fluid flow
technique.

3.2 Dispersion relation for layered motion

Given a vector field generated by either of the above methods, our
method generates a layered motion field using a phased-based spec-
tral synthesis method [Langer et al. 2004]. For the case of egomo-
tion flows, different depth layers move at different speeds because
of linear perspective, i.e. because of the 1/z(x,y) term in the ego-
motion equation above. For the case of fluids, we can think of dif-
ferent layers as having different speeds because of constraints from
a boundary layer.

To visualize the various layers, we related the size of moving in-
tensities patterns in each layer to the speed of these patterns. For ex-
ample, in the case of egomotion and in the absence of a camera ro-
tation (Q2 = 0), high 2D spatial frequency components (small wave-
lengths) correspond to far depth layers and move with lower image
speed and low spatial frequency components (large wavelengths)
correspond to near depth layers and move with higher speed. As
derived in [Langer et al. 2004], this perspective effect is captured
by the following dispersion relation between the spatial frequen-
cies (fx, fy) and the temporal frequency f;.
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If camera rotation were present, then a constant rotation component
would need to be added. For the sake of simplicity, we ignore the
rotation component for now.

The angle 0 is the image direction of the motion. The spatial
frequencies f, fy are measured in cycles per M pixels and the tem-
poral frequencies are measured in cycles per T frames. For reasons
we will see later, we use M = 64 and T = 128.

What is the constant C ? Consider the case of a velocity vector
with the magnitude (i.e. speed) of V pixels/frame. If this speed V
is associated with the lowest spatial frequency f, . that we render,

then we define:
T

C= =5V fin- )

3.3 Tiles and discrete layers

Because the motions fields are not constant over the image domain,
the variables C and 6 in the dispersion relation must be made to
depend on (x,y). To account for these spatially varying velocities,
we synthesized the motion in small tiles of size M x M where M =
64. We considered two different tile overlaps (16 and 32 pixels). C
and O are constant within each tile, but vary between tiles.
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Figure 3: A tiled field for the case of pure forward motion, and no
overlap between tiles. The arrows represent the direction of mo-
tion, which is constant within each tile. At the focus of expansion
(FOE), the motion direction has a singularity. The magnitudes of
the motion field (not shown) go to zero at the FOE, regardless of
the depth of the various layers.

As explained in Sec. 2.1, the HVS can perceive up to three over-
lapping moving layers. This implies that if we render each tile sepa-
rately, then it is sufficient to render three layers in each tile. Having
more layers than this will be of little use, since the HVS will not
perceive them. Therefore, as in [Langer et al. 2004], we add up a

set of 2D sinusoids over the three octave range 4/ f2 + fy2 € [2,16),

but rather than allowing for a continuum of layers in the range, we
partition this three octave range into n layers of constant octave
width, where n = 1,2,3. For example, with n = 3 layers, each is

one octave wide, namely 1/ f2 + /7 € [2,4),[4,8),[8,16).

Each tile is given a constant velocity in n layers, with a max-
imum of n = 3.. The image velocity for the lowest frequency of
each layer is assigned by the dispersion relation, with the speed for
the lowest frequency layer determined by Eq. (2). For the rest of
the frequencies in each layer, the denominator of Eq. (1) has a con-

stant f; instead of 4/ f2 4 f2. This constant f; is the lowest spatial

frequency of the layer. Thus within layer i all the frequencies have
the same image velocity,

cos O fy+sinf f,
Ji

where i = 1,2, 3 in the case of n = 3. In the higher frequency layers,
the image velocity decreases as per the dispersion relation (Eq. 1).

The motion layers in each tile are rendered using the method
of [Langer et al. 2004], but now with only n layers. A random
amplitude spectrum f( fy, fy) is generated once for each tile, such
that the amplitudes have a 1/ distribution and the phases are ran-
dom. Then, at each time step, each of the frequency components is
phase-shifted. This is done in the frequency domain, by modifying
the phase spectrum at each time step ¢ as follows,

fi=C 3

cos O(t) fr+sinb(r) fy

Ji
“
After each phase change, a 2D Inverse Fourier Transform is com-
puted, which yields the next frame of the sequence for that tile.
When the speed within a tile is too great, motion blur occurs.
Technically speaking, this blurring occurs when the temporal fre-
quency f, exceeds the temporal Nyquist frequency g, ie.

¢(fX7f,V1t+1) = ¢(fX7fyv t) +C(t)

cos O fy+sinO fy
Ji

This causes high speeds in direction 6 to appear as high speeds in
direction 6 4 180°. To avoid temporal aliasing, we zero the am-
plitudes of any spatial frequency components that satisfy the above
relation. This blurs the spatial structure of the image in the direc-
tion of the motion. The result is an effect similar to animated LIC.
Locally in the image, oriented spatial structure occurs in the direc-
tion of motion, acting as a spatial cue [Geisler 1999], and there are
high speed (but low spatial frequency) phase changes in the direc-
tion of the oriented structure. This motion blurring is the only case
in which we use a spatial cue in our motion visualization method.
Here we have no choice, since otherwise the motion would suffer
from temporal aliasing.
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3.4 Blending across tiles and layers

In order to reduce the visibility of the tile boundaries, neighboring
tiles are overlapped and linear blending is performed in the over-
lapped region. If I} and I, are the intensities in the neighboring
tiles and / is the corresponds to the intensity of their overlap region,
then / =w I, +w,I, where w, and w, are weights for the neighbor-
ing tiles. These weights depend on (zx, y) and are chosen as shown
in Fig. 4.

It turns out that we cannot choose weights in the naive way,
namely wyt+w, = 1, since the variance (or contrast) would be in-
correct. The reason is as follows. Since two tiles /; and I, are ran-
dom 1/f noise images, the means are zero, the variances var(/, ) and
var(l,) are the same, and /; and I, are uncorrelated. The variance
of the blended image is:

var(I) =
= var(wI)) + var(w,l,)

var(w I} + w,l,)
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Figure 4: The weights w1 and w2 used for blending are chosen as
shown above. The spatial dimension signifies either the X or the
Y image axis. In fact, a non-linear weighting scheme is used (see
text).

= W var(l}) + wa var(l,)

= (W] + w3) var(l))

If we choose w, and w, to add to 1,i.e. w, +w, = 1, then var(I) =
(w? + (1—=w,)?) var(I;) which would vary with w,. This is not
what we want. To keep the variance constant, we instead weight the
image tiles /; and I, by vzl > and VZZ s, respectively, where
VWi Vwiwl
w; +w, = 1. In doing so, the blended image now has the same
variance as the images /| and I, themselves. A similar method was
used by [Watson and Eckert 1994].

We next discuss how layers are blended. According to the above
description, the different layers are linearly summed. We will com-
pare the effect of using this method with classical compositing,
which is implemented as follows. For the case of n = 3 layers, a
frame is generated for each layer by n = 3 separate inverse Fourier
transforms. The layers are composited to form the image frame
I(x,y,t) using the relation:

F
Reet) = Flet) + (- 2020y gy os)

where R represents the result image after compositing, F represents
the foreground image and B the background image. Both have in-
tensities in the range 0 to 255. For n = 3, the frame generated
from the lowest spatial frequencies is taken as the foreground and
the frame generated from the next highest spatial frequencies is the
background. The result image is then taken as the new foreground
image and the third layer is taken as the background to generate the
final image 1.

One of the prime advantages of the linear summing was that, for
each tile, we could perform the inverse fast Fourier transform (ifft)
operation just once per frame, irrespective of the number of lay-
ers. However in the compositing case, we would need to perform
as many ifft operations as the number of layers and in addition per-
form the compositing operations. The compositing method is thus
a factor of n slower than the linear summing method.

4 Demonstrations

The videos discussed below are found in APGVO5-Langer.tar
which is available from the first author’s website.

Figure 5: An example of a single image frame from one of our
sequences. When the tiles are blended appropriately at their bound-
aries, the boundaries are invisible insofar as no purely spatial cues
to the motion are present.

Each of the videos was N x N = 512 x 512 pixels, and 24 frames
per second. The fluid flow videos were about 5 seconds each (128
frames) and the egomotion videos were about 2.5 seconds each (64
frames). For our videos, the tile sizes were always M = 64 pixels
wide, and the tile overlap was either 16 or 32 pixels.

4.1 Fluid Flow

Our first example is the video 11layer-16. It shows a single layer
per tile, and a steady flow (constant 2D velocity over time). The
tile overlap of 16 pixels. This is insufficient as tile boundaries are
clearly visible to the HVS.

Our second example is the video 1layer-32. Here we have
increased the tile overlap to 32 pixels. Using a greater tile overlap
better hides the tile boundaries by reducing the spatial gradient, i.e.
the velocity transition between tiles occurs over a distance of 32
rather than 16 pixels.

In terms of performance, however, larger tile overlap implies
both a greater number of tiles and more float ops for the overlapped
regions, hence, leading to poor speed performance.

The video 21ayer-32-Lin uses two layers and a high tile over-
lap (32 rather than 16). If we compare this video with the one gener-
ated for the single layer and 32 pixel overlap, we notice that some of
the tiles in the single layer video exhibit motion blur while the two
layer video doesn’t exhibit this. The reason is that, in the two layer
video, the higher spatial frequencies have lower image velocity than
they do in the single layer video. According to Eq. (3), for a given
spatial frequency, higher image velocities give rise to higher tempo-
ral frequencies, which leads to aliasing. In our method, these high
temporal frequencies are cut-off which yields motion blur. (See
Sec. 3.3).

The greater the number of layers, the more difficult it is to per-
ceive the individual layers. This reduced layer visibility means less
visible tile boundaries. For the example 3layer-16-Lin, the tile
boundaries are just barely visible even though a tile overlap of of



only 16 pixels is used. When an overlap of 32 pixels is used as in
3layer-32-Lin, the tile boundaries disappear completely. How-
ever, the wider overlap tends to be more expensive.

Next we consider videos with layers that are blended using clas-
sical compositing. The compositing method for three layers is
about three times slower than the linear method. An example video
is shown in 31ayer-16-Comp, for which 3 layers are used and the
tile overlap is 16 pixels. The visual effect is slightly different, ow-
ing to the non-linearities of compositing. With 3layer-32-Comp
the overlap is 32 pixels. We again have good motion layer effect,
but the wider tile overlap tends to be more expensive.

We next show an example with unsteady flow, i.e. the 2D vector
field is time-dependent. The results 3layer-32-Lin-U are similar
to the case of steady flow with same parameters, except that the ve-
locity field changes with time according to the fluid flow properties.
In this example, the velocity dampens over time due to viscosity of
the fluid. The force field is supplied only in the first frame.

4.2 Egomotion

The egomotion equation of Sec. 3.1.1 is used to generate the case
of a translating and rotating camera. In lhp-translation, the
viewer is translating along the direction of z-axis. The Focus of
Expansion is at the center of the image. The video 1hp-rotation
shows the field produced by a camera rotating about x-axis. The
field has a parabolic non-linearity, which is due to perspective. For
correct perspective, the viewer should observe this field up close to
the monitor. Finally, 1hp-transrot shows the camera translating
in the direction of the z-axis, while rotating about the z-axis as well.
See figure 1. For each of the videos, the tile size is 64 pixels with
32 pixel overlap and uses 3 layers.

4.3 Performance Statistics

With tile width M = 64 and no tile overlap we are able to render
34.5 frames per second (fps). With a 16 pixel overlap, we get 20.3
fps and with 32 pixel overlap we get 11.6 fps. The performance
statistics quoted here were performed on a Pentium 4 3.0 GHz with
2 GB RAM and ATI Radeon 5900 Pro 256 MB with image size of
512 x 512. Our program occupies only 10 MB of memory. Rather
than writing every frame to disk we are directly displaying it using
OpenGL.

5 Summary

In this paper, we have related what is known about the perception
of layered motion and motion gradients to the applied problem of
motion layer visualization. Our goal was not to map parametric
constraints from the HVS to a specific parameters for visualization,
but rather to present a set of relevant constraints that have appeared
in the psychophysics literature and shown how these play a role in
the motion visualization problem.

Two specific types of layered motion fields were addressed: a
motion field generated by the observer motion in a scene with mul-
tiple depths (e.g. a densely cluttered scene) and motion field corre-
sponding to the layered motion of the fluid.

The specific layered method we presented is an adaptation of the
model presented in [Langer et al. 2004]. In that earlier method,
a continuum of layers was used. We found that because the HVS
is limited in how many layers it can detect, the method could be
simplified by reducing the number of discrete layers. Examples
demonstrate effective layered motion using purely motion cues, and
do so with good performance statistics.
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