
The following are informal lecture notes for COMP 250 Winter 2022 by Prof.
Michael Langer in the School of Computer Science. See this web page for ac-
companying slides and exercises.

last updated: 30th Apr, 2022 at 10:02 1 ©Michael Langer

http://www.cim.mcgill.ca/~langer/250.html

COMP 250 W-2022 1 – grade school arithmetic algorithms Jan. 8, 2022

Addition

Let’s try to remember your first experience with numbers, way back when you were a child in grade
school. In grade 1, you learned how to count and you learned how to add single digit numbers. (4
+ 7 = 11, 3 + 6 = 9, etc). Soon after, you learned a method for adding multiple digit numbers,
which was based on the single digit additions that you had memorized. For example, you learned
to compute things like:

2343
+ 4519

?

The method that you learned was a sequence of computational steps: an algorithm. What was
the algorithm ? Let’s call the two numbers a and b and let’s say they have N digits each. Then
the two numbers can be represented as an array of single digit numbers a[] and b[]. We can define
a variable carry and compute the result in an array r[].

a[N-1] .. a[0]

+ b[N-1] .. b[0]

r[N] r[N-1] .. r[0]

The algorithm goes column by column, adding the pair of single digit numbers in that column
and adding the carry (0 or 1) from the previous column. We can write the algorithm in pseudocode.1

Algorithm 1 Addition (base 10): Add two N digit numbers a and b which are each represented
as arrays of digits
carry = 0
for i = 0 to N − 1 do
sum ← a[i] + b[i] + carry
r[i] ← sum % 10
carry ← sum / 10

end for
r[N]← carry

The operator / is integer division, and ignores the remainder, i.e. it rounds down (often called the
“floor”). The operator % denotes the “remainder” operator.

Note that the above algorithm requires that you can compute (or look up in a table or mem-
orized) the sum of two single digit numbers with ’+’ operator, and also add a carry of 1 to that
result. You learned those single digit sums when you were very little, and you did so by counting
on your fingers.

1By “pseudocode”, I mean something like a computer program, but less formal. Pseudocode is not written in a
real programming language, but good enough for communicating between humans i.e. me and you.

last updated: 30th Apr, 2022 at 10:02 2 ©Michael Langer

COMP 250 W-2022 1 – grade school arithmetic algorithms Jan. 8, 2022

Subtraction

Soon after you learned how to perform addition, you learned how to perform subtraction. Sub-
traction was more difficult to learn than addition since you needed to learn the trick of borrowing,
which is the opposite of carrying. In the example below, you needed to write down the result of
2-5, but this is a negative number and so instead you change the 9 to an 8 and you change the 2 to
a 12, then compute 12− 5 = 7 and write down the 7.

924

- 352

572

The borrowing trick is similar to the carry trick in the addition algorithm. The borrowing trick
allows you to perform subtraction on N digit numbers, regardless on how big N is.

The next example is more subtle. To perform the subtraction, you need to borrow twice.
Effectively, you are writing 900 = 800 + 90 + 12.

900

- 352

548

Multiplication

Later on in grade school, you learned how to multiply two numbers. For two positive integers a
and b,

a× b = a+ a+ a+ · · ·+ a

where there are b copies on the right side. In this case, we say that a is the multiplicand and b is
the multiplier.

ASIDE: The above summation can also be thought of geometrically, namely consider a rectan-
gular grid of tiles with a rows and b columns. You understood that the number of tiles is that same
if you were to write it as b rows of a tiles. This gives you the intuition that a × b = b × a, a fact
which is not at all obvious if you take only the summation above.

The summation definition above suggests an algorithm for computing a×b: I claim this algorithm
is very slow. To see why, think of how long it would take you a and b each had several digits. e.g.
if a = 1234 and b = 6789, you would have to perform 6789 summations!

Algorithm 2 Slow multiplication (by repeated addition).

product = 0
for i = 1 to b do
product← product+ a

end for

To perform multiplication more efficiently, one uses a more sophisticated algorithm, which you
learned in grade school. An example of this sophisticated algorithm is shown here.

last updated: 30th Apr, 2022 at 10:02 3 ©Michael Langer

COMP 250 W-2022 1 – grade school arithmetic algorithms Jan. 8, 2022

352

* 964

1408

21120

316800

339328

Notice that there are two stages to the algorithm. The first is to compute a 2D array whose
rows contain the first number a multiplied by the single digits of the second number b (times the
corresponding power of 10). This requires that you can compute single digit multiplication, e.g. 6
× 7 = 42. As a child, you learned a ”lookup table” for this, usually called a ”multiplication table”.
The second stage of the algorithm required adding up the rows of this 2D array.

Algorithm 3 Grade school multiplication (using powers of 10)

for j = 0 to N − 1 do
carry ← 0
for i = 0 to N − 1 do
prod← (a[i] ∗ b[j] + carry)
table[j][i+ j]← prod%10 // assume table[N][2N] was array initialized to 0.
carry ← prod/10

end for
table[j][N + j]← carry

end for
carry ← 0
for i = 0 to 2 ∗N − 1 do
sum← carry
for j = 0 to N − 1 do
sum← sum+ table[j][i] // could be more efficient since many table[N][2N] are 0.

end for
r[i]← sum%10
carry ← sum/10

end for

Of course, when you were a child, your teacher did not write out this algorithm for you. Rather,
you saw examples, and you learned the pattern of what to do. Your teacher explained why this
algorithm did what it was supposed to, by telling you about sums of powers of 10. You didn’t need
to think about why it worked while you mechanically solved problems. You just needed to know
the algorithm.

Division

The fourth basic arithmetic operation you learned in grade school was division. Given two positive
integers a, b where a > b, the integer division a/b can be thought of as the number of times (call it

last updated: 30th Apr, 2022 at 10:02 4 ©Michael Langer

COMP 250 W-2022 1 – grade school arithmetic algorithms Jan. 8, 2022

q) that b can be subtracted from a until the remainder is a positive number less than b. This gives

a = q b+ r

where 0 ≤ r < b, where q is called the quotient and r is called the remainder. Note that if a < b
then quotient is 0 and the remainder is a. Also recall that b is called the divisor and a is called the
dividend so

dividend = quotient ∗ divisor + remainder.

The definition of a/b as a repeated subtraction suggests the following algorithm:

Algorithm 4 Slow division (by repeated subtraction):

q = 0
r = a
while r ≥ b do
r ← r − b
q ← q + 1

end while

This repeated subtraction method is very slow if the quotient is large. There is a faster algorithm
which uses powers of 10, similar in flavour to what you learned for multiplication. This faster
algorithm is of course called ”long division”.

Long Division (fast division): an example

The long division method that you learned in grade school is more challenging to formulate as an
algorithm. Let’s review an example of how it is performed.

Suppose a = 41672542996 and b = 723. The goal is now to efficiently compute a quotient q
and remainder r such that a = qb+ r.

The methods starts off like this: (please excuse the dashes used to approximate horizontal lines).
You first write down:

723 | 41672542996

You then asks yourself, does 723 divide into 416? The answer is No, since 723 is greater than
416. Then you ask if 723 divides into 4167, and the answer is yes since 723 is less than 4167. Then
you need to figure out how many times 723 divides into 4167. You figure out somehow that the
answer is 5. So you write down:

5

723 | 41672542996

You then multiply 5 by 723 which is 3615 and subtract this from 4167 to get 552, which you write
as follows:

last updated: 30th Apr, 2022 at 10:02 5 ©Michael Langer

COMP 250 W-2022 1 – grade school arithmetic algorithms Jan. 8, 2022

5

723 | 41672542996

3615

552

To continue, you “bring down the 2” (that is, the underlined 2 in the dividend 41672542996)
and then you figure out how many times 723 goes into 5522, where the second 2 in 5522 is the one
you brought down.

What’s going on here? As a hint, let’s write the above example a bit differently.

50000000

723 | 41672542996

36150000000

5522542996

What I’ve done here is add in some zeros to indicate that the lonely 5 at the top of the previ-
ous example was in a particular place where it represented the number 50000000. We were then
multiplying 723 by this number, which gave 36150000000, i.e.

41672542996 = 50000000 ∗ 723 + 5522542996.

Note that the remainder is what we get on the bottom row when we copy down, not just the 2, but
all the numbers of the original quotient.

Long division would then continue by dividing the remainder (5522542996) again by the divisor
(723), and so on. Eventually, we would end up with

41672542996 = quotient ∗ 723 + remainder

where 0 ≤ remainder < 723.

Computational Complexity of Grade School Algorithms

For the multiplication and division operations, I presented two versions each and I argued that one
was fast and one was slow. We would like to be more specific about this, specifically, how do we
quantify how long it takes an algorithm to run. You might think that we want an answer to be in
seconds. However, for such a real measure we would need to specify details about the programming
language and the computer that we are using. We would like to avoid these real details, because
languages and computers change over the years, and we would like our theory not to change with
it.

The notion of speed of an algorithm in computer science is not measured in real time units
such as seconds. Rather, it is measured as a mathematical function that depends on the size of the
problem. We talk about the computational complexity of an algorithm as a function t(N) of the size

last updated: 30th Apr, 2022 at 10:02 6 ©Michael Langer

COMP 250 W-2022 1 – grade school arithmetic algorithms Jan. 8, 2022

N of the problem we are solving. In the case of arithmetic operations on two integers a, b which
have N digits each, we say that the size of the problem is N .

Let’s briefly compare the addition and multiplication algorithms in terms of the number of oper-
ations required, in terms of the number of digits N . The addition algorithm has some instructions
which are only executed once, and it has a for loop which is run N times. For each pass through
the loop, there is a fixed number of simple operations which include %, /,+ and assignments ← of
values to variables. Let’s say that the instructions that are executed just once take some constant
time c1 and let’s say that the instructions that are executed within each pass of the for loop take
some other constant c2. We could try to convert these constants c1 and c2 to units of seconds (or
nanoseconds!) if had a particular implemenetation of the algorithm in some programming language
and we were running it on some particular computer. But we won’t do that because this conversion
is beside the main point. The main point rather is that these constants have some value which is
independent of the variable N . To summarize, we would say that the addition algorithm requires
c1+c2N operations, i.e. a constant c1 plus a term that is proportional (with factor c2) to the number
N of digits. A key concept which we will elaborate in a few weeks is that, for large values of N ,
the dominating term will be the last term. We will say that the algorithm runs in time “order” of
N , or O(N).

What about the multiplication algorithm? We saw that the multiplication algorithm involves
two main steps, each having a pair of for loops, one nested inside the other. This “nesting” leads
to N2 passes through the inner loop. There are some instructions that executed in the outer for

loops but not in the inner for loops, and these instructions are executed N times. There are also
some instructions that are executed outside of all the for loops and these are executed a constant
number of times. Let c3 be the constant amount of time (say in nanoseconds) that it takes to
execute all the instructions that are executed just once, and let c4 be the constant amount of time
that it takes to execute all the instructions that are executed N times, and let c5 be the constant
amount of time that it takes to execute all the instructions that are executed N2 times, we have
that the total amount of time taken by the multiplication algorithm is

c3 + c4N + c5N
2.

Unlike with the addition algorithm, for large values of N , now the dominating term will be the N2

term. We will say that the algorithm runs in time O(N2). We will see a formal definition at the
end of the course, once we have seen many more examples of different algorithms and spent more
time discussing their complexity.

last updated: 30th Apr, 2022 at 10:02 7 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

Integer division and the modulo operator in mathematics

As discussed last lecture, given two positive integers a, b where a > b, we can understand a/b by
thinking of the slow division algorithm: repeatedly subtract b from a until the result is greater than
or equal to 0 and strictly less than b. The number of subtractions is the quotient q. We can write

a = q b+ r

where 0 ≤ r < b, where r is the remainder.
What if we allow a to be either positive or negative? In the case that a is negative, the slow

division algorithm doesn’t work. So what do we mean by a/b in that case ? The “quotient remainder
theorem” from mathematics says that, given integers a (either positive or negative) and b > 0, the
q are r in the above equation are uniquely defined.

In the case (b > 0), the operator that maps a and b to the remainder r is called modulus:

a mod b = r.

Here are some examples:
11 mod 3 = 2

10 mod 5 = 0

−3 mod 5 = 2

The last one is especially interesting since is a case of a < 0. The quotient remainder theorem still
holds when a < 0, as it only requires that b > 0. For this example,

−3 = −1 ∗ (5) + 2

so q = −1 and r = 2. See other examples on the slides.

Integer divison (/) and remainder (%) in Java

In Java, the division operator a / b and remainder operator a % b are defined for negative and
positive values of either a or b. Here we briefly summarize. For details, see here.

The integer division operator a/b yields an integer. The sign of a/b is defined as the sign of a*b,
namely positive if and only if a and b have the same sign. The magnitude of a/b is rounddown(|a

b
|)

where a
b

is a fraction which may be a non-integer.
Java does not have a modulo operator. Instead it has a remainder operator %. The integer

division and remainder operators in Java are related by:

(a/b) ∗ b + (a % b) = a

and this definition holds for both positive and negative a and b. For example, in Java,

− 3 % 5 = −3

whereas in mathematics, -3 = 1(-5) + 2, and so

−3 mod 5 = 2.

last updated: 30th Apr, 2022 at 10:02 8 ©Michael Langer

https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

I do not expect you to learn what the remainder operator does when b < 0. But the case of b
> 0 does come up, namely when indexing array. If you are thinking that a % b means “a mod b”
and then you will be assuming that it returns a value from 0 to b− 1 when b > 0. However, this is
not so. You will get an out-of-bounds error in your code when you write a[i % a.length] in the
case that the index i is not be in the range 0 to a.length-1.

Base expansion

In our everyday lives, we typically represent numbers using decimal (the ten digits from 0,1, ... 9)
or “base 10”. The reason we do so is that we have ten fingers. There is nothing special otherwise
about the number ten.

Computers typically do not represent numbers using decimal. Instead, internally at least, com-
puters represent numbers using binary or “base 2”. What does it mean to represent a number in
some “base” ? (ASIDE: in computer science, the term radix is sometimes used instead of base.)

In decimal, we write numbers using digits {0, 1, . . . , 9}, in particular, as sums of powers of ten,
for example,

(238)10 = 2 ∗ 102 + 3 ∗ 101 + 8 ∗ 100

In base 2, in binary, we represent numbers using bits {0, 1}, as a sum of powers of 2

(11010)2 = 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20.

In base 3, we represent a number as a sum of powers of 3

(22102)3 = 2 ∗ 34 + 2 ∗ 33 + 1 ∗ 32 + 0 ∗ 31 + 2 ∗ 30

Note on the left side that I have put brackets and little subscripts 10, 2, 3 to indicate that we are
using a particular representation (decimal or binary or base 3). We don’t need to always put the
brackets and subscripts in, of course, but sometimes it helps to put them in to be clear what the
base is. For example (22102)3 represents a different number than (22102)10.

In general, let the base be an integer greater than 1. Then we can express any positive integer
m uniquely as a sum of powers of base, as follows:

m = dk base
k + · · ·+ d2 base

2 + d1 base
1 + +d0 base =

k∑
i=0

di base
i

where 0 ≤ dk < base and dk 6= 0. This representation is called the base expansion of m, and it can
be written

(dk, dk−1, . . . , d1)(base) .

For example, we could talk abou the base 10 expansion, or base 3 or base 2 expansion. Note that,
when representing a number in some base, we can only use the digits from 0 up to base− 1.

Converting from binary to decimal

It is trivial to convert a number from a binary representation to a decimal representation. You just
need to know the decimal representation of the various powers of 2.

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, 28 = 256, 29 = 512, 210 = 1024, . . .

last updated: 30th Apr, 2022 at 10:02 9 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

Then, for any binary number, you write each of its ’1’ bits as a power of 2 using the decimal
representation you are familiar with. Then you add up these decimal numbers, e.g.

110102 = 16 + 8 + 2 = 26.

You know how to count in decimal, so let’s consider how to count in binary. You should verify
below that the binary representation is a sum of powers of 2 that indeed corresponds to the decimal
representation in the leftmost column. In the left two columns below, I only used as as many digits
or bits as I needed to represent the number. In the right column, I used a fixed number of bits,
namely 8. 8 bits is called a byte.

decimal binary binary (8 bits)

------- ------ --------------

0 0 00000000

1 1 00000001

2 10 00000010

3 11 00000011

4 100 00000100

5 101 00000101

6 110 00000110

7 111 00000111

8 1000 00001000

9 1001 00001001

10 1010 00001010

11 1011 00001011

...

Hexadecimal

What if we want to use a base that is greater than 10? To do so, we need to have more symbols than
the familiar ten digits 0, 1, . . . , 9. One commonly used base is 16, which is known as hexadecimal.
To represent numbers in base 16, one needs six more symbols, namely “digits” that represent the
numbers 10, 11, 12, 13, 14, 15. One typically uses a,b,c,d,e,f or A,B,C,D,E,F. For example,

(5AF8)16 = 5 ∗ 163 + 10 ∗ 162 + 15 ∗ 16 + 8 = (23288)10

which we usually write as 23,288. In general, we write m in hexadecimal like this:

m =
k∑

i=0

hi 16i.

where hi are hexadecimal digits. We’ll have more to say about this below.

Converting from base 2 to hexadecimal

The main reason for using hexadecimal is that it provides an easier way for us (as humans) to work
with binary numbers. When we write down binary numbers with lots of bits, we can quickly get

last updated: 30th Apr, 2022 at 10:02 10 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

lost. No one wants to look at a string of say 32 or 64 bits. A common and easy solution is to use
hexadecimal instead. We group bits of the binary number into 4-tuples (24 = 16).

To understand why it makes sense to group into 4-tuples, think of

m = bk2k + · · ·+ b82
8 + b72

7 + b62
6 + b52

5 + b42
4 + b32

3 + b22
2 + b12

1 + b02
0

We can rewrite the right side (assuming k > 11) by forming 4-tuples:

bk2k + · · ·+ (b112
3 + b102

2 + b92
1 + b8)2

8 + (b72
3 + b62

2 + b52
1 + b4)2

4 + (b32
3 + b22

2 + b12
1 + b0)

where we now are expressing the number as sums of powers of 24 = 16, and each of the terms in
brackets is a number from 0 to 15, depending on the bi binary coefficients (bits). We can write this
sum again as:

bk2k + · · ·+ (b112
3 + b102

2 + b92
1 + b8) 162 + (b72

3 + b62
2 + b52

1 + b4) 161 + (b32
3 + b22

2 + b12
1 + b0) 160

which is just ∑
i=0

hi16i

as desired.
Put another way, each 4-bit group can encode 16 combinations of bit values. We encode these

16 digits with symbols 0,1,...,9,a,b,c,d,e,f. In particular, the symbol a represents the binary
number 1010 which is 10 in decimal, b represents the binary number 1011 which is 11 in decimal, c
represents 1100 which is 12 in decimal, ..., f represents 1111 which is 15 in decimal. Note in writing
“binary number” here I have left out the ()2 notation.

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 a (or A)

1011 11 b (or B)

1100 12 c (or C)

1101 13 d (or D)

1110 14 e (or E)

1111 15 f (or F)

We commonly (but not always) write hexadecimal numbers as 0x where the underline is
filled with characters from 0,...,9,a,b,c,d,e,f. For example,

0x2fa3 = 0010 1111 1010 0011.

last updated: 30th Apr, 2022 at 10:02 11 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

When we write hexadecimal numbers with capital letters, we use a large X, for example 0X2FA3.
What if the number of bits is not a multiple of 4? Should you group the bits starting at the left

or right? You group starting at the rightmost bit (the least significant bit). For example, if we have
six bits string 101011 , then we represent it as 0x2b. The reason for doing so is that we can pad 0’s
to the left of a number without changing its value, i.e. 00101011 is the same as 101011. (But if we
were to pad with zeros to the right, we would change the value!)

Converting from decimal to binary (or to any other base)

How do you convert a decimal number to binary or to any other base b ? I will give a simple
algorithm for doing so soon which is based on the quotient remainder theorem from last lecture.

I first explain the idea in base 10 where we have a better intuition. Let m be a positive integer
which is written in decimal. Then,

m = 10 ∗ (m/10) + (m%10).

Note that m/10 chops off the rightmost digit and multiplying by 10 appends a 0. So dividing by
10 and then multiplying by 10 might not get us back to the original number. What is missing is
the remainder part, which we dropped in the divison.

In binary, the same idea holds. If we represent a number m in binary, then to divide by 2,
we chop off the rightmost bit (which becomes the remainder) and we shift right each bit by one
position. To multiply by 2, we shift the bits to the left by one position and put a 0 in the rightmost
position. So, for example, if m = 27,

m = (11011)2 = 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 21 + 1 ∗ 20

then dividing by 2 gives 13, or in binary

(11011)2/2 = (1101)2

Multiplying (1101)2 by 2 gives

(11010)2 = 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 21

that is, 13*2 =26. More generally, for any m,

m = 2 ∗ (m/2) + (m % 2).

So, let’s assume you are given a number m in base 10. How do we write m in binary. The
method below is so simple you could have learned it in grade school. The algorithm repeatedly
divides by 2 and the “remainder” bits b[i] are the bits of the binary representation. After I present
the algorithm, I will explain why it works.
Note this algorithm doesn’t say anything about the base in which how m is represented. If you are
the one executing the algorithm, then you would represent m in base 10. But the algorithm itself
does not require this. It only requires that you can carry out division by 2 and mod 2.

Here is an example of how you would execute the algorithm (by hand). Note that the bits are
computed from the lowest to highest powers of 2. Also note that the value of m shown in the table
in row i is the value of m at the start of the while loop for that value of i, rather than the value of
m at the end of the while loop.

last updated: 30th Apr, 2022 at 10:02 12 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

Algorithm 5 Convert decimal to binary

INPUT: a number m
OUTPUT: m expressed in base 2 using a bit array b[]

i← 0
while m > 0 do
b[i]← m % 2
m← m / 2
i← i+ 1

end while
return b[]

Example: Convert 241 from decimal to binary

i m b[i]

0 241 1
1 120 0
2 60 0
3 30 0
4 15 1
5 7 1
6 3 1
7 1 1
8 0

Thus, (241)10 = (11110001)2. Note that I have put the case i = 8 in the table, but the algorithm
fails the test condition of the while loop when i = 8 since m = 0 and so it doesn’t execute the loop
in that case. This is why there is no value b[8].

Converting from base 10 to any base

Recalling the quotient remainder theorem, we can write any m in terms of any base as:

m = (m/base) ∗ base+ (m % base).

which is of the form,
dividend = quotient ∗ divisor + remainder.

or
a = q ∗ base+ r

where q = m/base and r = m%base. If you understand this, and if you understand the algorithm
that converts from decimal to binary, then you should be able to understanding that algorithm can
be used to convert from base 10 to any base. You just need to divide by base and use the quotient
and remainder, instead of dividing by 2 to using the quotient and remainder.

last updated: 30th Apr, 2022 at 10:02 13 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

Algorithm 6 Convert from base 10 to some other base

INPUT: a number m
OUTPUT: m expressed in some base using an array d[] (digits)

i← 0
while m > 0 do
d[i]← m % base
m← m / base
i← i+ 1

end while
return d[]

Exponential and logarithms (should be review)

When you signed up for COMP 250, you might have been expecting to learn a lot about algorithms.
You were probably not expecting to learn a lot about logarithms. The words algorithm and logarithm
have the same letters, but they mean quite different things!

You learned about logarithms in your Calculus class, in particular, you learned about the number
e ≈ 2.718 and the properties of the function y = ex and its inverse function x = lne y, which is
called the “natural logarithm” of y or the logarithm base e of y.

In computer science, we usually use logarithms base 2. Logarithms are very important in this
course. Since you may be rusty on them and maybe you didn’t fully understand in your Calculus
class, here we will review some basic and important properties that you will need to be familiar
with in COMP 250.

Let’s begin with the definition. The logarithm is the inverse function of the exponential, for
some given base. If we consider take the exponential function for some base b > 0, namely

y = bx, (∗)

then the inverse function is called the logarithm of x (base b). The inverse function as a mapping
from x to y is written

y = logb x.

Note that, by saying it is the inverse function, we mean that it “undoes” the mapping y = bx from
x to y, that is,

logb y ≡ x. (∗∗)
Note that if we substitute (*) into (**) or vice-versa, we get:

logb(b
x) = x

and
blogb y = y.

This property should be obviously true if you understand the definition.
Note that the above definition assumes that bx is meaningful. I think you all agree that bx is

meaningful when x is an integer, namely you are multiplying x copies of b. But it is not so clear
what it means when x is not an integer. To define bx properly when x is not an integer, you would
need to learn some more sophisticated math.2

2See MATH 242 Real Analysis. For those not taking that course, no worries. We won’t need it.

last updated: 30th Apr, 2022 at 10:02 14 ©Michael Langer

COMP 250 W-2022 2 – division (/,%), base conversions, hex, log Jan. 10, 2022

Here are a few quick examples to warm up:

log2 8 = 3, i .e. 23 = 8

log2 16 = 4 i .e. 24 = 16

log2 1 = 0 i .e. 20 = 1

log8 2 =
1

3
i .e. 8

1
3 = 2

log2

1

8
= −3 i .e. 2−3 =

1

8

log8

1

2
= −1

3
i .e. 8−

1
3 =

1

8
1
3

=
1

2

We next review a few basic properties of logs which hold for any b, c > 0. You should know these
properties and be comfortable with them. (The properties don’t require that n,m are integers.
They can be real. But the properties are easier to visualize if they are integers.)

� bn+m = bnbm

� (bn)m = bnm

� logb(xy) = logb x+ logb y

To see why, let u = logb x, so x = bu and let v = logb y and so y = bv. Then,

logb(xy) = logb(b
ubv) = logb b

u+v = u+ v = logb x+ logb y

� logb(x
n) = n logb x

To see why, let u = logb x, so that x = bu. Then,

logb(x
n) = logb((b

u)n) = logb(b
un) = un = n logb x.

� logb x = (logb c)(logc x)

To see why:
logb x = logb(c

logc x) = (logc x)(logb c)

from the previous property.

There are other properties we could review, but those are the main ones we’ll use in the course.

last updated: 30th Apr, 2022 at 10:02 15 ©Michael Langer

COMP 250 W-2022 3 – Java primitive types Jan. 12, 2022

Grade school arithmetic revisited

Recall from a few lectures ago when we discussed grade school arithmetic. We presented algorithms
for addition and multiplication in base 10. But these algorithms in fact work for any base. For
example, here is the addition algorithm:

Algorithm 7 Addition

INPUT: Two N digit numbers a and b which are each represented in the same base
OUTPUT: their sum r represented in that base

carry ← 0
for i = 0 to N − 1 do
sum ← a[i] + b[i] + carry
r[i] ← sum % base
carry ← sum / base

end for
r[N]← carry
return r[]

For example, let’s add two numbers which are written in binary. I’ve written the binary repre-
sentation on the left and the decimal representation on the right.

11010 <-carries

11010 26

+ 1011 +11

------ ----

100101 37

Make sure you see how this is done, namely how the “carries” work. For example, in column 0,
there is no carry and we just have 0 + 1. The result is 1 and the carry is 0. In column 1, we have
1 + 1 plus no carry from column 0 (in fact, column 1 represents 1 ∗ 21 + 1 ∗ 21). Note that the sum
here is 2 ∗ 21 = 22 and so we carry a 1 over column 2 which represents the 22 terms. Etc.

Here is another example.

11111110 <-carries

1111111 127

+ 0000001 + 1

------ ----

10000000 128

This example is reminiscent of a car odometer rolling over (see video). It is also a useful example
for the following math problem.

last updated: 30th Apr, 2022 at 10:02 16 ©Michael Langer

https://www.youtube.com/watch?v=DKavhec9fGE

COMP 250 W-2022 3 – Java primitive types Jan. 12, 2022

How many bits N do we need to represent m ?

Before we discuss how numbers are represented in Java, it is helpful to know a bit more about
binary representations of numbers. We ask a fundamental question: how many bits N do we need
to represent a positive integer m? To answer this question, we can write

m = bN−12
N−1 + bN−22

N−2 + . . . b12 + b0 (1)

where bN−1 = 1, that is, we only use as many bits as we need. Enforcing bN−1 = 1 is similar to
the idea that in decimal we don’t usually write, for example, 0000364 but rather we write 364. We
don’t write 0000364 because the 0’s on the left don’t contribute anything. Similarly we typically
wouldn’t write 5 in binary as 00000000101 or 000101, etc, but instead we would write it as 101.

Recall the last example on the previous page. From this example and from the arguments of last
lecture, the following claims should be clear. The smallest number m with N bits is (10000...000)2
which is 2N−1. The largest number m with N bits is (11111...111)2 which is 2N − 1. Therefore, any
number m with N bits must satisfy:

2N−1 ≤ m ≤ 2N − 1

We can replace the second inequality as follows:

2N−1 ≤ m < 2N .

Taking the log (base 2) of all terms gives that

N − 1 ≤ log2m < N.

since log is monotonically increasing (so taking log doesn’t change the inequalities). Thus, log2m
belongs to the interval [N − 1, N) which is closed on the left and open on the right. Therefore
floor(log2m) = N − 1 and so

N = floor(log2m) + 1.

This formula will come up several times throughout the course.

Java Primitive Types

All programming languages allow you to represent numbers using a standard number of bits. Typ-
ically the number of bits is a multiple of 8: a group of eight bits called a byte. In Java, there are
several primitive types which use the following number of bytes: boolean (1), byte (1), char (2),
short (2), int (4), long (8), float (4), and double (8).

A boolean variable uses a byte (8 bits), even though it needs just 1 of these 8 bits. The reason
it uses 8 bits is that memory locations in the computer are indexed by bytes, not bits. So there is
some waste of bits when representing a boolean variable. Oh well...

integers

Variables of type byte, short, int, long can be used to represent integers. They allow both
negative and positive integers to be represented. They use N = 8, 16, 32, 64 bits, respectively, that
is, 1,2,4, 8 bytes. Specifically, these N bits codes represent the integers in the range

{− 2N−1, . . . , 0, 1, 2, . . . , 2N−1 − 1 }.

last updated: 30th Apr, 2022 at 10:02 17 ©Michael Langer

COMP 250 W-2022 3 – Java primitive types Jan. 12, 2022

Think of arithmetic as if we are walking around a circle. When you declare a variable be of type
int in Java, you are declaring it to be a number in the range {− 231, . . . , 0, 1, 2, . . . , 231 − 1 },
where 231 = 2, 147, 483, 648.

This leads to some peculiar behaviors known as overflow and underflow. If you write

int x = 2147483647; // maximum positive int 2^31 - 1

System.out.println(x+1);

then it prints out -2147483648, which is the case of overflow. If you write

int y = -2147483648; // minimum negative int -2^32

System.out.println(y-1);

then it prints out 2147483647, which is the case of underflow.
This ’wraparound’ behavior is conceptually similar to what happens with the modulus operator

which we discussed last lecture. When we apply i mod m, the result is a numbers from 0 to m− 1.
When we do arithmetic with the integer primitive types, we just use a different range of the 2N

numbers which includes both positive and negative numbers. (See slides for figures.)
If you want to learn more about integer representations, in particular how negative numbers are
represented in binary, then see my COMP 273 lecture notes.

non-integer (fractional) numbers

The binary representation of fractional numbers (float and double) is more complicated and so
I’ll only sketch out the basics. If you are keen to learn more, see my COMP 273 lecture notes.

[ASIDE: Fractional numbers are represented using scientific notation, but in binary. You are
probably familiar with scientific notation in base 10, e.g.

6.352122 ∗ 10−87.

You can do something similar but in binary. Again, you will learn how this works in COMP 273 or
ECSE 222.]

Let’s consider a few interesting examples of what you might experience (to your horror) as a
programmer. First, consider these instructions:

int x = 3.0; // gives a compiler error

int x = 3;

float y = 3.0; // gives a compiler error

float y = 3.0f; // note the ’f’

double z = 3.0;

Java does not consider the “literals” 3.0 and 3 to be the same thing. The literal 3.0 is encoded by
default as a double and the literal 3 is encoded by default as an int. If you want to encode 3.0 as
a float rather than double, you need to write it as 3.0f as above.
Here are a few more examples:

last updated: 30th Apr, 2022 at 10:02 18 ©Michael Langer

http://www.cim.mcgill.ca/~langer/273/1-notes.pdf
http://www.cim.mcgill.ca/~langer/273/2-notes.pdf

COMP 250 W-2022 3 – Java primitive types Jan. 12, 2022

double x = 1; // legal, but bad style!

int x = 1.0/2; // compiler error!

double y = 1/4; // no compiler error, but it stores 0 (not .25)

double y = 1.0/4; // gives the correct answer

We will see why some of these are allowed when we discuss casting a bit later.
Another interesting case to consider is:

double y = 1.0/3;

You know the answer: 0.33333 and on to infinity. But the computer cannot represent this number
exactly and so it has to approximate somehow using the 8 byte code that double offers.
What about this one?

double y = 0.9;

Ha! In fact, the same problem comes up. With the double representation, you cannot represent this
number exactly, even though in decimal you only need two digits. Is this a problem? Sometimes
yes!

System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1);

The output is 0.9999999999999999 rather than 1.0. I remember the first time something like this
happened to me when I was first learning to program, and I thought my computer was broken.
That was until I asked someone who knew more than me for help.

Java char primitive type: ASCII and unicode

Variables of type char are used to represent single characters. You assign values to these variables
as follows:

char c = ’a’ ;

where we can put letters and numbers and other keyboard symbols in single quotes. These are
called character literals. We also have special characters that we can indicate with a combination
of two keyboard characters, typically a backslash followed by another character. For example,

c = ’\n’ ; \n represents the {\it new line} character

c = ’\t’ ; \t represents the {\it tab} character

c = ’\’’ ; \’ represents a single quotation mark character

c = ’\"’ ; \" represents a double quotation mark character

c = ’\\’ ; \\ represents a backslash character

These pairs of characters are called escape sequences.
A char variable is represented by two bytes or 216 values. The first 128 unicode characters are

encoded as 000000000******* where seven * places hold either 0 or 1, i.e. 128 combinations. These
128 characters are the ASCII characters. See http://www.asciitable.com/. It is more common
to write out ASCII codes using hexadecimal which we discussed back in lecture 2. ASCII only has
128 characters, so we usually think of them as a one byte only; the leftmost bit of this byte is 0.

last updated: 30th Apr, 2022 at 10:02 19 ©Michael Langer

http://www.asciitable.com/

COMP 250 W-2022 3 – Java primitive types Jan. 12, 2022

With two bytes, Unicode allows us to represent 216 symbols. This covers the characters of
many foreign languages, as well as various emoji’s that people like to communicate. [ASIDE: The
unicode standard (UTF-16, specifically) even allows one to go beyond the 16 bit representation, in
an analogous manner to escape sequences that were mentioned above. There are certain unicode
symbols that mean the symbol doesn’t stand on its own, but rather it is followed by another unicode
symbol.]

We can compare char values using operators ==, <,>,>=, <= which essentially compares their
code values. Here are some examples:

char letter0 = ’g’;

char letter1 = ‘k’;

System.out.println(letter0 < letter1); // prints true

System.out.println(‘g’ < ‘G’); // prints false

System.out.println(‘%’ >= ‘&’); // prints false

Casting primitive types

In the above examples, we saw many cases where we “cast” from one type to another. What are
the rules for casting? When converting between primitive types, sometimes we need to cast and
sometimes we don’t. In Java, one speaks about wider and narrower types, and you can think of
this for now as a rule for defining when one needs to cast or not. Here are the Java primitive types
again, but now in order from wider to narrower. The number of bytes is shown in brackets. Note
that the ordering does not correspond exactly to the ordering on byte size.

double (8) widest

float (4)

long (8)

int (4)

short (2)

char (2)

byte (1) narrowest

Widening conversions occur automatically. Narrowing conversions require an explicit cast in the
code; otherwise you will get a compiler error. Here are some examples.

int i = 3;

double d = 4.2;

d = i; // widening (in assignment)

d = 5.3 * i; // widening in a binary expression (by "promotion")

i = (int) d; // narrowing (by casting)

float f = (float) d; // "

char c = ’g’;

int index = c; // widening

c = (char) index; // narrowing

last updated: 30th Apr, 2022 at 10:02 20 ©Michael Langer

COMP 250 W-2022 3 – Java primitive types Jan. 12, 2022

Here is another example. The letter a has ASCII code 97, and so to list the letters from a to z

we can just count from 97 to 97+25.

char c = ’a’;

for (int i=0; i < 26; i++)

System.out.print((char) (c + i));

The expression c + i combines a character and an int, and it casts the char c to its corresponding
int value to perform the sum operation. If we don’t cast the result back to char before printing,
then we will print out the ASCII codes as numbers 97 to 122 (97 + 25), rather than the characters
a to z.

And here is one last example. Recall overflow and underflow for integers. Let’s take the case of
the byte type (N = 8 bits). The largest value that is represented is 127. So if we do the following:

byte k = 127;

System.out.println(k+1); // prints 128 (promotion to int)

System.out.println((byte) (k+1)); // prints -128

By the way, the reason for writing (byte) before printing is that the operation k+1 “upcasts” the
value to an int by promotion. To print out the value as a (byte), then we need to “downcast”
this int back to a byte. Similarly if we do the following:

byte j = -128;

System.out.println((byte) (k-1));

then we don’t get an error. Instead, it prints out 127.
Here are some examples with char and short. This pair of types both have 16 bits, and Java

requires an explicit cast in either direction.

char c = ’q’;

short s = 2; // allowed (special case of a literal)

s = i; // compile time error

s = (short) i;

s = c; // compile time error

s = (short) c;

c = s; // compile time error

c = (char) s;

And that’s all for today, folks!

last updated: 30th Apr, 2022 at 10:02 21 ©Michael Langer

COMP 250 W-2022 4 – Java programming overview Jan. 12, 2022

(JVM, JRE, JDE, IDE,...)
No lecture notes for today – please see slides

last updated: 30th Apr, 2022 at 10:02 22 ©Michael Langer

COMP 250 W-2022 5 – Java arrays Jan. 17, 2022

Arrays

Often we have many data items that are all of some given type. These could be numbers, strings,
etc. We don’t want to define a separate variable for each data item.

int int1, int2, int3,, int500;

Rather we want a single data structure where we can access these data items using a number index.
An array is a data structure that holds a set of elements that are of the same type. Each element

in the array can be accessed or indexed by a unique number which is its position in the array. An
array has a capacity or length, which is the maximum number of elements can be stored in the
array.

In Java, we can have arrays of primitive types or reference type. For today, we’ll only discuss
primitive types. For example,

double[] arr = new double[15];

creates an array of type double which has 15 slots, and a variable arr that references this array.
Note that we use the keyword new here.

The variable arr is different from the underlying array: the variable arr references the array. It
says where to find the array in memory. Think of the value of this variable as the address of the
array in memory.

For number arrays, each slot is initialized to value 0. We can then assign a value to any slot of
an array e.g.

arr[12] = -3.2;

We can also declare an array variable without initializing it. In this case we do not specify the size
of the array that it will reference. There are two ways to do it:

double[] arr1 ;

double arr2[];

We might do this if we know that we will need an array of doubles, but not know in advance how
big the array should be.

We can create an array as follows.

double[] arr = new double[9];

The new keyword is required. The values are initialized to 0.0. Similarly,

long[] longArr = new long[12];

char[] charArr = new char[15];

boolean[] boolArr = new boolean[6];

These arrays are given initial values in each slot of 0, \u0000, and false, respectively. We can then
assign values to particular slots as follows:

longArr[7] = 4000000000000000000l;

charArr[3] = ’%’;

last updated: 30th Apr, 2022 at 10:02 23 ©Michael Langer

COMP 250 W-2022 5 – Java arrays Jan. 17, 2022

Note, for the case of long, note that we append a an l to the end of the literal on the right side.
This is similar to how you need to append a f to indicate that a number is to be stored as a float.
If you don’t append an l and the number is larger than can fit into an int then you get a compiler
error.

We can initialize arrays by hardcoding them as the following examples show:

int[] arr = {3, 7, -5, 2, 19};

char[] ch = { ‘L’, ‘U’, ‘N’, ‘C’, ‘H’};

Arrays and for loops

It is quite common to iterate through the elements of an array. For example,

for (int i=0; i < arr.length; i++){

arr[i] = 2.0*i;

}

This dot notation (arr.length) will come up often. Another way to iterate through an array is to
use a Java enhanced for loop.

for (double d : arr){

System.out.println(d);

}

Note that this implicitly uses an index to step through the array, but we do not have access to the
index.

Shifting elements in an array

It is quite common to shift elements in an array, so its worth looking at several ways in which to
do this. For example:

for (int j=1; j < arr.length; j++){

kArr[j-1] = arr[j];

}

This shifts the elements backwards. Note that the value in slot 0 is erased. To shift the elements
forward, we need to do it slightly differently. If we try:

for (int j=1; j < arr.length; j++){

arr[j] = arr[j-1];

}

then we will have a problem. The element in slot 0 will be copied to all the other slots. Not good!
Instead, we can do this:

for (int j = arr.length-1; j > 0; j--){

arr[j] = arr[j-1];

}

last updated: 30th Apr, 2022 at 10:02 24 ©Michael Langer

COMP 250 W-2022 5 – Java arrays Jan. 17, 2022

That’s better, but it still doesn’t quite solve our problem. We still erase an element, namely the
last element in the array. If we want to avoid erasing any elements, then we can do a circular shift:

int tmp = arr[arr.length-1];

for (int j = arr.length-1; j > 0; j--){

arr[j] = arr[j-1];

}

arr[0] = tmp;

This moves the last element to the first slot, and shifts forward all the other elements. Note that
we need to use a temporary variable to do so.

Duplicating an array

What if we want to duplicate an array? One naive way you might try is:

int[] jArray = {3, 5, 2, -7, 6};

int[] kArray = new int[jArray.length];

kArray = jArray;

Unfortunately this does not work. Rather, kArray will just reference (point to) the same array as
jArray references. (See the slides for illustration.) Instead, if you want to duplicate an array, then
you need to copy the values from jArray to kArray.

int[] jArray = {3, 5, 2, -7, 6};

int[] kArray = new int[5];

for (int m=0; m < jArray.length; m++){

kArray[m] = jArray[m];

}

Java methods: pass-by-value

In Java, when a method has a parameter, it is the value of the parameter that is passed to the
method. In the case of a variable that is of type array (of int/char/double/etc), the value of that
variable is a reference to an array that is stored in memory, namely the value is the location of the
starting point of that array in memory.

For example, take this demo method. (I will explain static a few lectures from now.)

static double demoPassArray (double[] doubleArray){

doubleArray[0] = 23.45;

}

We are passing the value of the variable doubleArray and that value is a reference to an array i.e.
the location of the array. Suppose you call this method in the code below:

double[] arr = {3.0, 5.0, 2.2, -7.1, 6.35};

demoPassArray(arr)

System.out.print(arr[0]);

last updated: 30th Apr, 2022 at 10:02 25 ©Michael Langer

COMP 250 W-2022 5 – Java arrays Jan. 17, 2022

The method will assign the value 23.45 to the slot 0 in the actual array. Notice that even though
the method doesn’t return anything, the array has been modified. The value 23.45 will be printed
out, not the original value 3.0 that was in that slot.

In the case of a primitive type variable, the value of the variable is the number/character/boolean
that is stored in memory rather than the location in memory of that number/character/boolean.

This is different behavior from the following, where we pass in a primitive type as an argument
to the method:

static void demoPassDouble (double x){

x = 175.0;

}

When we call this method as follows, now we are passing in the value 2.0.

double y = 2.0;

demoPassDouble(y)

System.out.print(y);

The method parameter x is initialized to this value, but then gets reassigned the value 175.0.
However, x behaves as a local variable in the method demoPassDouble, with a memory location
that is distinct from the variable y. So when the method exits, y still has its original value and
that’s what gets printed out.

Finally, we can also return an array from a method. In this example, the method makes a copy
of an array and returns the copy. Specifically, it returns a reference to the new array.

int[] copyArray(int[] oldArray){

int[] newArray = new int[oldArray.length];

for (int i=0; i < oldArray.length; i++){

newArray[i] = oldArray[i];

}

return newArray;

}

Multidimensional arrays

The arrays we have considered up to now are one dimensional. It is also possible to have multidi-
mensional arrays. You can think of these as arrays of arrays (2D) or arrays of arrays of arrays (3),
etc.

For example, here is two dimensional array of int’s:

int[][] matrix1 = new int[4][5];

matrix1[2][4] = 345;

and here we have assigned a value to a particular slot in this 2D array. We can think of this array
as a one dimensional array of length 4, such that each slot in this array is a one dimensional array
of length 5. It is easier to imagine this interpretation with an example:

last updated: 30th Apr, 2022 at 10:02 26 ©Michael Langer

COMP 250 W-2022 5 – Java arrays Jan. 17, 2022

int[][] matrix2 = { {5, 7, 23, 3, 65},

{23, -45, 56, 0, 16},

{234, 3, -564, 3, 345},

{6, 30, 46, 23, 23} };

One can also define a 2D array such that the second dimension has a different length in each slot.
Such arrays are called ragged or jagged arrays.

int[][] ragged = { {5, 7, 23},

{23, -45, 56, 0, 16},

{234},

{6, 30} };

In this example, the lengths are 3, 5, 1, 2 and ragged[1][4] would have the value 16. See the
slides for an illustration.

Arrays are used for images and video. For example, a video is a sequence of image frames. The
following would be a four dimensional array: two dimensions for the pixel row and column, one
dimension of length 3 for color (RGB), and one dimension of length Nframes for time.

int[Nrows][Ncols][3][Nframes] video;

Arrays have constant time access

A fundamental property of arrays is that the time it takes to access an element does not depend
on the number of slots (length) in the array. This constant access time property holds, whether
we are writing to a slot in an array,

a[i] = x;

or reading from a slot in an array

x = a[i];

You will understand this property better once you have taken COMP 206 and especially COMP
273, but the basic idea can be explained now. We consider just 1D arrays for simplicity.

The array is located somewhere in the computer memory and the starting location can specified
by a number called an address. Think of this as like an apartment number in a building, or a
number address of a house on a street. Each array slot then sits at some location relative to that
starting address and this slot location can be easily computed. To find out where a[k] is, you just
add the address of a[0] to k times some constant which is the amount of memory used by each
slot. The number of bytes of each memory slot will be different for arrays of int versus arrays of
double versus arrays of Shape, but the same principle holds: namely that one can access any slot in
constant time since each slot takes the same amount of memory and so we just need to calcululate
where to jump to.

last updated: 30th Apr, 2022 at 10:02 27 ©Michael Langer

COMP 250 W-2022 6 – Java objects & classes 1 Jan. 19, 2021

Last lecture we discussed arrays. The array type is our first example of a reference type. We
saw that if a variable is of type array then the value of that variable is a reference to an array. So,
think of the variable as storing a number which is an address in memory, namely the address of the
array. We next consider two more reference types: String and various “wrapper classes” namely
Integer, Double, etc. We will then discuss how to define our own classes.

String class

Strings are conceptually similar to arrays. A string is a sequence of characters. The sequence has
a length, and we can talk about the character in any particular position.

String s = ‘‘Hello’’;

int m = s.length();

Then m would have the value 5.

char c = s.charAt(1);

Then c would have the value ‘e’;

c = s.charAt(8);

The following would produce a runtime error (StringIndexOutOfBoundsException)

int m = s.indexOf(‘o’);

The m would have the value 4, whereas

m = s.indexOf(‘p’);

would return value -1 since that character is not in the string “Hello”.
We can use the + operator to concatenate strings: Suppose we have

String s0 = ‘‘Hello’’ ;

String s1 = ‘‘ there’’ ;

The following expressions (and more) each produce the string Hello there.

‘‘Hello’’ + ‘‘ there’’

s0 + s1

s0.concat(s1)

‘‘Hello’’.concat(‘‘ there’’)

We often wish to ask whether two strings are equal.

String s0 = ‘‘Hello’’ ;

String s1 = ‘‘Hello’’;

boolean b = s.equals(s1); // true

The String equals() method goes through each character of the two strings and verifies that they
are the same.

It is tempting to use the “==” operator to check if two strings are equal. However, the “==”
sometimes produces surprising results.

last updated: 30th Apr, 2022 at 10:02 28 ©Michael Langer

COMP 250 W-2022 6 – Java objects & classes 1 Jan. 19, 2021

ASIDE: why to use equals() to compare strings

The reason for the surprising results are over our heads at this point, but I can still tell you
something about it. It has to do with how Java implements strings. At runtime the JVM only
maintains one copy of each literal string. So if you write

String s1 = "surprise";

String s2 = "surprise";

then there will be just one string object created there, and s1 and s2 will reference that one object.
This implies – as we will see a few lectures from now – that s1 == s2 will have the value true.

Next consider what happens when you concatenate two literal strings e.g. "sur" + "prise" .
In this case, the Java compiler translates this immediately into one string "surprise" rather than
letting this concatenation happen at runtime. So if you write

String s1 = "surprise";

String s2 = "sur" + "prise";

then you get the same result as above, namely s1 == s2 will have the value true.
Now consider what happens when we have a String variable and we concatenate:

System.out.println("sur" + "prise" == "surprise"); // true (see above)

String s = "sur";

System.out.println(s1 + "prise" == "surprise"); // false

The reason that the result is false is that the concatenation in the last line occurs at runtime (not
compile time), and the JVM creates a second String object. The == operator checks whether objects
are the same, and so returns false in this case.

It is safer to just always use equals() for string comparison.

System.out.println((s1 + "prise").equals("surprise")); // true

END OF ASIDE: why to use equals() to compare strings

A more details to note about String. First,

String name = ‘‘Suzanne Fortier’’ ;

name = name.toUpperCase();

The second line assigns to name the string ‘‘SUZANNE FORTIER’’. A common mistake is to write
just

name.toUpperCase()

and assume that this changes the string that name references. It doesn’t. Rather, a new (upper
case) string is created and returned. You need to write that returned string somewhere.

Also, String objects cannot be changed. (One says they are “immutable”.)

String s = "cats";

s.charAt(0) = ’r’; // compile-time error!

There is no String method that allows you to set the value of a character. Rather, one would have
to make a completely new string. See the Java API from String for how to do this.

last updated: 30th Apr, 2022 at 10:02 29 ©Michael Langer

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

COMP 250 W-2022 6 – Java objects & classes 1 Jan. 19, 2021

Wrapper classes

We have seen primitive types such as boolean, char, byte, short, int, long, float, double. There
are also classes associated with this type, namely Boolean, Character, Byte, Short, Integer, Long,
Float, Double. These classes associate certain constants and methods with the type.

For example Byte.MAX VALUE has value 27−1. Short.MAX VALUE has value 215−1. Integer.MAX VALUE

has value 231 − 1. Long.MAX VALUE has value 263 − 1. Float.MAX VALUE and Double.MAX VALUE

have the largest (finite) values that you can represent with a float or double, respectively. Use
MIN VALUE instead of MAX VALUE to get the smallest negative values.

Sometimes we have numerical data represented as strings and we wish to convert them to number
types e.g. to convert from a String to an int, use:

int i = Integer.parseInt(‘‘54");

wherease to convert from a String to an Integer, use:

Integer j = Integer.valueOf(‘‘54");

To convert from a String to a double, use:

double z = Double.parseDouble(‘‘2.7");

whereas to convert from a String to a Double, use:

Double y = Double.valueOf(‘‘2.7");

The wrapper classes have many other methods. See the Java API for each wrapper class e.g. Integer
Wrapper classes used to have constructors but they they are “deprecated” as of Java 8. Instead,

of using the new keyword, we use the valueOf method.

Boolean b = Boolean.valueOf(false);

Integer i = Integer.valueOf(-45);

Double x = Double.valueOf(3.75);

Alternatively, one can just write:

Boolean b = false;

Integer i = -45;

Double x = 3.75;

This casting from a primitive to reference type is called auto-boxing.

Math class

Another very useful class is Math. For example, Math.PI is the value π. The Math class has many
useful methods. Suppose we declare a double variable x.

� Math.sqrt(x) returns the value
√
x.

� Math.random() returns a random number in (0,1).

last updated: 30th Apr, 2022 at 10:02 30 ©Michael Langer

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

COMP 250 W-2022 6 – Java objects & classes 1 Jan. 19, 2021

� Math.log(x) returns the value loge x = lnx.

� Math.log10(x) returns the value log10 x (There is no method for taking log to a general base
b.)

� Math.sin(x) returns the value sin(x)

and so forth.

Defining your own classes

We can also define our own classes. A class definition has the form:

class ClassName {

// field declarations

// constructors

ClassName(...){ // no return type

...

}

// other method declarations

}

Note the Java naming convention: class names begin with an upper case letter (String, Integer,
Math,...). Constants should be all upper case, e.g. Math.PI. Variables, methods, package names
(and some other things) should begin with a lower case character.

Here is an example. We will use this example next lecture too.

class Point2D {

int x;

int y;

// constructor

// methods for operating on a point

// e.g moving it

}

Default and no-argument constructors

If we don’t declare a constructor, then the Java compiler automatically creates a default constructor
e.g. Point2D() which has no arguments and no method body. We would call it with:

Point2D p = new Point2D();

last updated: 30th Apr, 2022 at 10:02 31 ©Michael Langer

COMP 250 W-2022 6 – Java objects & classes 1 Jan. 19, 2021

The fields x and y would be given the value initial 0.
If we explicitly define a constructor with no arguments then this is called a no argument con-

structor. e.g.

Point2D(){ }

In that last example, the no argument constructor has no method body. But that is not a require-
ment. A no-argument constructor could also have a method body, for example,

Point2D(){

System.out.println("I am a useless print statement.");

}

The method body could also initialize values in the class to be something other than the standard
Java default values (int are initialized to 0, etc).

It is also common to have constructors with parameters. Typically, the parameters provide
initial values for the fields, e.g. :

Point2D(int x0, int y0){

x = x0;

y = y0;

}

If we define only this constructor, then the default constructor would not exist. So if we want both
this constructor and the no-argument constructor to exist, then we would also need to define the
no-argument constructor explicitly.

Point2D(){ }

Having more than one version of a constructor is called overloading the constructor. We will see
lots of examples of overloading as we go along.

Classes can have many methods. For example, for the Point2D class, we might want to define
two more methods:

void moveTo(int x0, int y0){

x = x0;

y = y0;

}

void moveBy(int deltaX, int deltaY){

x += deltaX;

y += deltaY;

}

Note that the x and y variables were defined in the class.

last updated: 30th Apr, 2022 at 10:02 32 ©Michael Langer

COMP 250 W-2022 6 – Java objects & classes 1 Jan. 19, 2021

Java keyword this

It can be confusing to keep track of which variables and method belong to which class (or object).
The keyword this is helpful here. The following example shows a few ways in which ’this’ is used,
namely this.x and this.y refer to the class fields.

class Point2D {

int x;

int y;

Point2D(int x, int y}{

this.x = x;

this.y = y;

}

void moveTo(int x, int y){

this.x = x;

this.y = y;

}

void moveBy(int deltaX, int deltaY){

this.x += deltaX;

this.y += deltaY;

}

}

Note that we now don’t need variable names x0 and y0 as in the previous example.

As an example of how this class might be used, consider yet another class:

public class AnotherClass {

public static void main (String[] args) {

Point2D p1 = new Point2D(3, 4};

p1.moveTo(7, 7);

Point2D p2 = new Point2D(8, 2};

p2.moveBy(2, 0);

}

}

When running this class (main method), two Point2D objects would be created and then would be
moved to different positions, namely (7,7) and (10,2) respectively.

last updated: 30th Apr, 2022 at 10:02 33 ©Michael Langer

COMP 250 W-2022 7 – null, static, aliasing, scope Jan. 21, 2022

Last lecture we introduced how you can define your own classes in Java. A key idea is that a
class is a template for objects. Objects of that class are created using the constructor methods of
the class. We say that objects of a class are instances of that class. We also discussed variables
that are called reference variables. These variables reference objects of a particular type. The value
of a reference variable is a reference, namely it is some coded information that tells you where to
find that object. We sometimes call this an address, although in Java this is not quite technically
correct so we’ll try to be careful and use the Java term ’reference’ rather than ’address’.)

null keyword and variable initialization

When a reference variable does not reference any object, we say the value of this variable is null.
For example, consider this code as part of some method:

Point2D p; // value not initialized

p = new Point2D();

p = null; // we can assign a reference to null

This example a local variable p of type Point2D is declared in some method.3 The method then
constructs a new object of type Point2D and p references that object. Then, p is assigned null. Now,
nothing is referencing that object anymore. In Java, the object is eventually ’garbage collected’
which means that the space it was using in memory can be used for something else.

Note that in the above, I wrote in the comment that when p is declared, it is not initialized,
whereas in the slide in the lecture recording I had written that the value was initialized to null
which was a mistake. (The slide has been corrected.) The reason that p is not initialized in the
above code is that p is a local variable in a method, and local variables are not given default values.

I have added a slide to elaborate that point – see example below. Note that the Test() constructor
does not need to explicitly initialize the fields. The fields are given default values, depending on their
type. For reference variables, the default value is null. Note that this is different from the case
above, where local variables in a method are not initialized.

class Test {

int i1; // initialized by default to 0

String s1; // initialized by default to null

double[] dArr1; // initialized by default to null

myMethod(){

int i2; // not initialized !

String s2; // not initialized !

double[] dArry2; // not initialized !

// bla bla

};

Test() {}

}

3In the lecture recording slide, I had written that this variable is initialized to null. This was a typo, and I have
replaced this slide.

last updated: 30th Apr, 2022 at 10:02 34 ©Michael Langer

COMP 250 W-2022 7 – null, static, aliasing, scope Jan. 21, 2022

Null Pointer Exception

If we try to use a reference variable that has the value null in a case where the program expects an
object, we will get a runtime error called a NullPointerException. Consider the code below which
is part of some method. Note we need to initialize the variables to null, since otherwise we would
get a compiler error.

int[] intArray = null;

String s = null;

Double x = null;

intArray[0] = 3;

char c = s.charAt(0);

double y = x.doubleValue();

For all three of the latter instructions, we would get a run-time error, namely NullPointerException.

Aliasing

In general, the term “aliasing” means that we have different names for the same object.4

Recall the example from lecture 5:

int[] arr1 = {3, 5, 2, -7, 6};

int[] arr2 = new int[arr1.length];

arr2 = arr1;

In the last line, the variable arr2 will reference the same array as the variable arr1 references. This
is an example of aliasing. Another example is:

Point2D p1 = new Point2D(23, 85);

Point2D p2 = new Point2D(5, 6 ;

p2 = p1;

Similarly, both p1 and p2 would reference the same object, namely the first one (x,y) = (23, 85).
The other Point2D object would be garbage collected since no variable would reference it. In
particular, the expression p1 == p2 would be false after the second instruction but it would true
after the third instruction. A slightly different example is:

p1 = new Point2D(5, 6);

p2 = new Point2D(5, 6);

In this case, we would still have two different objects, and so p1 == p2 would be false, even though
the fields in the objects are identical. This is because p1 == p2 is checking if the variables are
pointing the same object, but not actually looking inside the object(s).

What if we write the following?

4This term is used not just in programming, but also in daily life. People go under different aliases, for example,
The Artist Formerly Known as Prince.

last updated: 30th Apr, 2022 at 10:02 35 ©Michael Langer

COMP 250 W-2022 7 – null, static, aliasing, scope Jan. 21, 2022

p2 = p1;

p2.x = 400;

Since p2 and p1 reference the same object, the value of p1.x will also be changed to 400. This is
not evident when you are just looking at those two lines of code. Similarly, if we next have

p2 = null;

then p1 will still reference that same object, even though p2 will not. For this reason, the object
will not be garbage collected.

There lecture notes are incomplete. Please see slides.

last updated: 30th Apr, 2022 at 10:02 36 ©Michael Langer

COMP 250 W-2022 8 – Java packages, modifiers Jan. 24, 2022

Packages

[Note: I discussed packages in lecture 4 when I gave an overview of Java programming. But I did
not have lecture notes for that lecture. So I’ll include some of that discussion of packages here along
with more material that I cover in today’s actual lecture.]

A package is a set of classes. Please go to the Java 8 API. 5 On the upper left corner of that
web page is a listing of dozens of packages. A few familiar ones are :

� java.lang - String, Math, ... which has many useful methods like sqrt

� java.util - has many of the data structure classes that we will use in this course.

Each class belongs to a package. The full name of any class is the name of the package following
by the name of the class, for example java.lang.Math. You can have packages within packages
e.g. java.lang is a package within the java package. The package and class structures correspond
to how the class files are organized in the file system. The packages are directories (or folders) and
subdirectories (or subfolders) and the classes are the .java files in these directories. A package may
contain multiple classes. These classes are called package members.

When you define a class, you can specify which package it belongs to by starting the class
definition with the package name. The first line of your class file will be

package packageName;

If that package name does not correspond to the directory in which that .java file is found, then
your IDE will complain. For example, in the file Dog.java we define the Dog class and at the top
of the file we specify that it is in an animals directory, i.e. animals/Dog.java .

package animals;

class Dog { }

When the .java file is compiled by the Java compiler, the compiler produces a .class file. The
package definition specifies the directory where this .class file goes. Usually the .java file goes
in a src/ directory and the .class file goes in a bin/ directory.

Suppose a class A needs to use a class B that is a member of some other package. Then class A

needs to tell the compiler where to find class B. There are three ways for class A to do this. The
first way is to prepend the package name e.g.

animals.Dog myDog = new animals.Dog();

This is called fully specifying the class name (relative to the class path). The second way would be
to import the class:

import animals.Dog;

The import statement comes after the package statement. It tells the compiler that the class Dog

is found in the package animals. Then it is enough to just refer to Dog.

5Java 9 introduced modules which group together packages. The API from Java 9 onwards makes it more difficult
to see the set of packages.

last updated: 30th Apr, 2022 at 10:02 37 ©Michael Langer

https://docs.oracle.com/javase/8/docs/api/

COMP 250 W-2022 8 – Java packages, modifiers Jan. 24, 2022

Dog myDog = new Dog();

The advantage of using an import statement is that it avoids typing the full class name. The
disadvantage is that when we (human) read code locally and we see a class name – for example, in
a variable type declaration – then we won’t necessarily know what package that class belongs to.

The third way would be to import all package members in that package

import animals.*;

Earlier I mentioned the Java package Java.lang which contains lots of useful classes, e.g.
String. You do not need to import this package, because the compiler imports it automatically.

Note that if you using imports then you have to be careful not to create class conflicts. You can-
not define your own String class, for example. Or if you are importing Dog.java from your animals
package, then you cannot have a Dog.java file already in the package that you are importing into.

Visibility (access) modifiers

The above discussion suggests that if you create a class A, you can access any other class B just by
specifying its full path or by importing it. But that’s not the whole story. Each class (B) also needs
to define where each of its fields and methods is visible. This is done using a visibility modifiers.

Here are the visibility modifiers in order of decreasing visibility:

� public - visible from every package

� default (package) - visible from any class within the same package. This is the default modifier
– if you don’t write a modifier than the Java compiler assumes you mean this one.

� private - can be seen only from within that class

There is also a modifier called protected but you need to know about class inheritance to under-
stand what it is. (We will cover inheritance later in the course.)

See the slides for some examples of different visibilities.

Encapsulation – getters and setters

If you look at various classes the Java API, you hardly ever see class fields listed – even though you
know from your experience making your own classes that it is almost impossible to do anything
interesting in a class without having fields. The reason that fields are not listed in the Java API
for most classes is that the fields are typically private and so they are not part of the interface.

To access the information in class fields, one generally uses getter and setter methods. The
reason for this is best seen for the setter methods. Often there are restrictions on values that the
fields can take. A field may have type String but perhaps we don’t want to allow any String.
For example, someone’s firstName should not be allowed to be the String “9*@!+”, and for a
McGill Student ID (say it is String), a string such as 150912664 should be allowed, but the string
“1234troll” should not.

Getter methods e.g. getFirstName() are examples of “accessors”, and setter methods like
setFirstName(String s) are examples of “mutators”. Accessors typically retrieve information
and do not change the values of any fields. Mutators change the values of fields, but typically don’t
return anything. It is possible for a method to be both an accessor and mutator, for example, a
method might write a new value into a variable and return the previous value that had been there.

last updated: 30th Apr, 2022 at 10:02 38 ©Michael Langer

COMP 250 W-2022 8 – Java packages, modifiers Jan. 24, 2022

Why don’t method variables have a visibility modifier ?

Methods often have local variables, called method variables. These are not given a visibility modifier.
Why not? Methods themselves have a visibility, and so do the classes in which they are defined.
However, the variables that are defined within a method are (by definition) not defined outside that
method, so other methods (and other classes!) cannot mention them. So it would make no sense
to give local variables a visibility modifier.

UML (Unified Modelling Language) diagrams

When you are working with many classes, you would like to keep track of the names of the fields
and methods and also their properties. The usual way to do this is to draw a (“UML”) diagram
with a bunch of boxes, and within each box you list these various names. (There are relationships
between classes as well, which are indicated by different types of arrows between the boxes, but we
will not deal these arrows in COMP 250. You will learn about these in depth if you take COMP
303.)

Here is an example of UML diagram for a Dog class. My apologies for the two dashed lines lines
and four dashed horizontal lines. They should be solid, defining a box partitioned into three parts.

| Dog |

|---|

| - name : String |

| - owner : Person |

|---|

| + Dog(name: String) |

| + Dog(name: String, owner: Person) |

| + getName () : String |

| + getOwner () : Person |

| + setName (String) |

| + setOwner (Person) |

| + eat() |

| + bark(numOfTimes : int) |

| + hunt(): Rabbit |

The access modifiers private and public are indicated on the left by - and + respectively. Note
that the parameters of methods are written variablename : type whereas in the Java code they are
written in the opposite order. Also, when a methods return a value, the type is written after the
method. Finally, note how : are used a separators.

There is much more to UML diagrams then this. (For example, you can indicate that a method
or field is static by underlining it.) But for now this gives you the basic idea.

last updated: 30th Apr, 2022 at 10:02 39 ©Michael Langer

COMP 250 W-2022 9 – array lists Jan. 26, 2022

Arrays of reference type variables

When we discussed arrays back in lecture 5, all of our examples were primitive types. We also can
have arrays of reference type variables such as strings, for example;

String[] arrString1 = {"several", "different", "strings:}

or

String[] arrString2 = new String[8];

arrString2[0] = "this";

arrString2[3] = "little";

arrString2[5] = "doggie";

We can also define an array of objects of any class. Suppose we have a class Shape. We can define
array of Shape’s and put objects into this array, for example:

Shape[] shapes = new Shape[428];

shape[239] = new Shape("triangle", "blue");

This array can reference up to 428 Shape objects. At the time we construct the array, there will be
no Shape objects, and each slot of the array will hold a reference value of null which simply means
there is nothing at that slot.

So if each of these arrays was empty before the above instructions (i.e. after construction of the
array), then after the instruction each array would have one element in it.

Lists

In the next few lectures, we look at data structures for representing and manipulating lists. We are
all familiar with the concept of a list. You have a TODO list, a grocery list, etc. A list is different
from a ”set”. The term ”list” implies that there is a positional ordering. It is meaningful to talk
about the first element, the second element, the i-th element of the list, for example. For a set, we
don’t necessarily have an order.

What operations are performed on lists? Examples are getting or setting the i-th element of the
list, or adding or removing elements from the list.

get(i) // Returns the i-th element (but doesn’t remove it)

set(i,e) // Replaces the i-th element with e

add(i,e) // Inserts element e into the i-th position

add(e) // Inserts element e (e.g. at the end of the list)

remove(i) // Removes the i-th element from list

remove(e) // Removes element e from the list (if it is there)

clear() // Empties the list.

isEmpty() // Returns true if empty, false if not empty.

size() // Returns number of elements in the list

:

There are many ways to implement lists. Today we’ll look at a way that uses an array. The data
structure we will describe is called an array list.

last updated: 30th Apr, 2022 at 10:02 40 ©Michael Langer

COMP 250 W-2022 9 – array lists Jan. 26, 2022

Using an array to represent a list

Suppose we have an array a[]. For now I won’t specify the type because it is not the main point
here. We want to use this array to represent a list. Suppose the list has size elements. We will
keep the elements at positions 0 to size-1 in the array, so element i in the list is at position i in the
array. This is hugely important so I’ll say it again. With an array list, the elements are squeezed
into the lowest indices possible so that there are no holes. This property requires extra work when
we add an remove elements, but the benefit is that we always know where the ith element of the
list is, namely it is at the ith slot in the array.

Let’s sketch out algorithms for the operations above. Here we will not worry about syntax so
much, and instead just write it the algorithm as pseudocode.

We first look at how to access an element in an array list by a read (get) or write (set).

get(i)

To get the i-th element in a list, we can do the following:

if (i >= 0) & (i < size)

return a[i]

Note that we need to test that the index i makes sense in terms of the list definition. If the condition
fails and we didn’t do the test, we would get in index out of bounds exception.

We set the value at position i in the list to a new value as follows:

set(i,e)

if (i >= 0) & (i < size)

a[i] = e

This code replaces the existing value at that position in the list. If there were a previous value in
that slot, it would be lost. An alternative is to return this previous element, for example,

if (i >= 0) & (i < size){

tmp = a[i]

a[i] = e

return tmp

}

Indeed, the Java ArrayList method set does return the element that was previously at that position
in the list. See the set method in the Java API.

Next we “add” an element e to i-th position in the list. But rather than replacing the element
at that position which we did with a set operation, the add method inserts the element. To make
room for the element, it displaces (shifts) the elements that are currently at index i, i+1, ..., size−1.
Here we can assume that i ≤ size. If we want to add to the end of the list then we would add at
position size. Moreover, we also assume for the moment that the size of the list is strictly less than
the number of slots of the underlying array, which is typically called the length (a.length) of the
array. The length of the array is also called the capacity of the array. The capacity or length of the
array is always greater or equal to the size of the array list that uses this array.

last updated: 30th Apr, 2022 at 10:02 41 ©Michael Langer

https://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html#set(int,%20E)

COMP 250 W-2022 9 – array lists Jan. 26, 2022

add(i,e)

if (i > 0) & (i <= size){

for (k = size; k > i; k--) // (do nothing, if i == size)

a[k] = a[k-1] // shift to bigger index

a[i] = e // insert into now empty slot

size = size + 1

}

The above algorithm doesn’t deal with the case that the the array is full i.e. size == length. We
need to augment the above code to handle that case, namely we need to make a new and bigger
array. The following code would go at the beginning and would ensure that the condition size <

length is met when the above code runs.

// insert this pseudocode at start of above add(i,e) pseudocode

if (size == length){

b = new array with 2 * length slots

for (int k=0; k < length; k++)

b[k] = a[k] // copy elements to bigger array

a = b

}

Note that the above pseudocode allows us to add at the end of the list. That is, calling add(size,

e) does not generate an index out of bounds exception. This is equivalent to calling a method
add(e) which by default adds at the end of the list, without specifying the size of the list as a
parameter. Also, note that add(e) would be different from the set method, which does not allow
us to call set(size,e).

Also note that in the Java ArrayList class, the add is overloaded: there is an add(int i,

E e) and an add(E e) method where e is of type E. Lists in Java also have overloaded remove

methods, where remove(int i) removes the element at index i and an remove(E e) removes the
first occurance of an element e. Let’s turn to remove next.

remove(i)

Removing an element from an arraylist is very similar to adding an element, but the steps go
backwards. We again shift all elements by one position, but now we shift back by 1 rather than
forward by 1. The for loops goes forward from slot i to size− 2, rather than backward from size
to i+ 1

if ((i >= 0) & (i < size)){

tmp = a[i] // save it for later

for (k = i; k < size-1; k++){

a[k] = a[k+1] // copy back by one position

}

size = size - 1

a[size] = null // optional, but perhaps cleaner

last updated: 30th Apr, 2022 at 10:02 42 ©Michael Langer

COMP 250 W-2022 9 – array lists Jan. 26, 2022

return tmp

}

One final, general, and important point which concerns array lists of N elements where N is
large: Adding to or removing from near the back end of the list is fast (ignoring the case where you
want to add to a full array), since few shift operations are necessary. However, adding or removing
from the front of the list will be slow, since most of the N elements need to be shifted. We will
return to this point in the next few lectures when we compare array lists to linked lists.

Java’s ArrayList<E> class and generic types

Java has an ArrayList class that implements the various methods such as we discussed and uses
an array as its underlying data structure. You should check out what these methods are for the
ArrayList class in the Java API

Whenever you construct an ArrayList object, you need to specify the type of the elements that
will be stored in it. You can think of this as a parameter that you pass to the constructor. In
Java, the syntax for specifying the type uses <> brackets. For example, to declare an ArrayList of
objects that are of type Shape, use:

ArrayList<Shape> shapes = new ArrayList<Shape>();

If you look at the Java API, you’ll see that the class is defined ArrayList<E> where E is called a
generic type. We will see many examples of generic types later.

Note that the generic type needs to be a reference type; it cannot be a primitive type. So if you
want an arraylist of integers, then you need to use the wrapper class:

ArrayList<Integer> shapes = new ArrayList<Integer>();

This is another reason why wrapper classes are needed in Java.
Just a few points to mention before we move on... First, although the ArrayList class imple-

ments a list using an underlying array, the user of this class does not index the elements of the
array using the familiar array syntax a[]. Why not? For one thing, the user (the client) doesn’t
know what is the name of the underlying array, since it is private. Instead the user accesses an
array list element using a get or set or other methods.

Second, because the ArrayList class uses an array as its underlying data structure, if one uses
add or remove for an element at the front of your list, this operation will take time proportional to
size (the number of elements in the list) since all the other elements needs to be shifted by one
position. This shifting can be slow. Thus, although arrays allow you to get and set values in very
little (and constant) time, they can be slow for adding and removing from near the front of the list.

last updated: 30th Apr, 2022 at 10:02 43 ©Michael Langer

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

COMP 250 W-2022 10 – singly linked lists Jan. 28, 2022

Singly Linked lists

[See the slides for the figures to accompany these lecture notes.]

We next look at another list data structure - called a linked list - that partly avoids the problem
we discussed that array lists have when adding or removing from the front of the list. (Linked lists
are not a panacea. They have their own problems, as we’ll see).

With array lists, each element was referenced by a slot in an array. With linked lists, each
element in the list is referenced by a list node. A linked list node is an object that contains:

� a reference to an element of a list

� a reference to the next node in the linked list.

In Java, we can define a linked list node class as follows:

class SNode<T>{

T element;

SNode<T> next;

}

where T is the generic type of the object in the list, e.g. Shape or Student or some predefined Java
class like Integer or String. We use the SNode class to define a SLinkedList class.

Any non-empty list has a first element and a last element. If the list has just one element, then
the first and last elements are the same. A linked list thus has a first node and a last node. A
linked list has variables head and tail which reference the first and last node, respectively. If there
is only one node in the list, then head and tail point to the same node.

Here is a basic skeleton of an SLinkedList class.

class SLinkedList<T>{

SNode<T> head;

SNode<T> tail;

int size;

private class SNode<T>{

T element;

SNode<T> next;

}

}

We make the SNode class a private inner class6 since the client of the linked list class will not ever
directly manipulate the nodes. Rather the client only accesses the elements that are referenced by
the nodes.

6For info on inner classes (and nested classes in general), see
https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

last updated: 30th Apr, 2022 at 10:02 44 ©Michael Langer

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

COMP 250 W-2022 10 – singly linked lists Jan. 28, 2022

As I discuss in the slides, suppose we have a linked list with size = 4. How many objects do we
have in total? We have the four SNode objects. We have the four elements (objects of type Shape,
say) that are referenced by these nodes. We also have the SLinkedList object which has the head
and tail references. So this is 9 objects in total. (For an array list with four elements, we would
have 6 objects: the four elements in the list, the arraylist object, and the underlying array object.)

One important difference between linked lists and array lists is that linked list nodes can be
anywhere in memory, whereas the underlying array in array list is a block of consecutive locations
in memory. Having linked list nodes anywhere is memory makes them flexible - there is no notion
of running out of room, which is what happens when the underlying array of an arraylist becomes
full. The disadvantage of linked lists, as we’ll see, is that we don’t have constant time access to
elements.

Let’s focus for the moment on one advantages of a linked list. It allows you to add an element
or remove an element at the front of the list in a constant amount of time.

addFirst(e){ // add element e to front of list

construct newNode

newNode.element = e

newNode.next = head (*)

head = newNode (**)

size++

if (size == 1)

tail = head

}

The order of the instructions (*) and (**) matters. If we had used the opposite order, then the head
= newNode instruction would indeed point to the new first node. However, we would not remember
where the old first node was. The newNode.next = head instruction would cause newNode.next

to reference itself.
Also notice that we have considered the case that initial the list was empty. This special case

(”edge case”) will arise sometimes. Whenever you write methods, ask yourself what are the edge
cases and make sure you test for them. I may omit the edges cases, sometimes intentionally (to
keep it simple), sometimes unintentionally. Don’t hesitate to ask if you notice one is missing.

Let’s now look at an algorithm for removing the element at the front of the list. The idea is to
advance the head variable. But there are a few other things to do too:

removeFirst(){

// test for empty list omitted (throw an exception)

tmp = head // remember first element, so we can return it

head = head.next

tmp.next = null // not necessary but conceptually cleaner

size = size - 1

if (size == 0)

tail = null // edge case: one element in list

return tmp.element

}

last updated: 30th Apr, 2022 at 10:02 45 ©Michael Langer

COMP 250 W-2022 10 – singly linked lists Jan. 28, 2022

Notice how we have used tmp here. If we had just started with (head = head.next), then the old
first node in the list would still be pointing to the new first node in the list, even though the old
first node isn’t part of the list. (This is not really a problem since nothing is referencing that node,
so there’s no way to reach it, and hence no way it can cause a problem.) Also, in the code here,
the method returns the element. Note how this is achieved by the tmp variable.

What about adding or removing an element at the back of a linked list? Adding at the back
just requires manipulating the tail reference.

addLast(e){

construct newNode

newNode.element = e

tail.next = newNode

tail = tail.next

size = size + 1

}

Removing an element from the back of a liked list is more complicated, however. The reason is
that you need to modify the next reference of the node that comes before the tail node which you
want to remove. But you have no way to directly access the node that comes before tail, and so
you have to find this node by searching from the front of the list. Yikes!

The algorithm begins by checking if the list has just one element. If it does, then the last node
is the first node and this element is removed. Otherwise, it scans the list for the element that comes
before the last element.

removeLast(){

e = tail.element

if (head == tail){

head = null

tail = null

}

else{

tmp = head

while (tmp.next != tail){

tmp = tmp.next

}

tmp.next = null

tail = tmp

}

size = size-1

return e

}

This method requires about size steps. This is much more expensive than what we had with an
array implementation, where we had a constant cost in removing the last element from a list.

I finished the lecture by discussing computational complexity. I’ll put that discussion in the
next lecture, when we’ll look at doubly linked lists.

last updated: 30th Apr, 2022 at 10:02 46 ©Michael Langer

COMP 250 W-2022 11 – doubly linked lists Jan. 31, 2022

Doubly linked lists

The “S” in the SLinkedList class from last lecture stood for “singly”, namely there was only one
link from a node to another node. Today we look at “doubly linked” lists. Each node of a doubly
linked list has two links rather than one, namely references to the previous node in the list and to
the next node in the list. These reference variables are typically called prev and next. As with the
singly linked list class, the node class is usually declared to be a private inner class. Here we define
it within a DLinkedList class.

class DLinkedList<E>{

DNode<E> head;

DNode<E> tail;

int size;

:

private class DNode<E>{

E element;

DNode<E> next;

DNode<E> prev;

:

}

}

The key advantage of doubly linked lists over a singly linked list is that the doubly linked lists allows
us to quickly access elements near the back of the list. For example, to remove the last element of
a doubly linked list, one simply does the following:

removeLast(){

e = tail.element

tail = tail.prev

tail.next = null

size = size-1

return e

}

Dummy nodes

When writing methods, one often has to consider edge cases. For doubly linked lists, the edge
cases are the first and last elements. These cases require special attention since head.prev and
tail.next will be null which can cause errors in your methods if you are not careful.

[ADDED: Feb. 10] For example, consider the removeLast() method above. What if the list
only had one element? We would be removing that one element and the list would then be empty.
This itself is not a problem. But consider what the above code does. The tail = tail.prev

instruction would assign tail to null, since the list has just one node. But if tail is null then
tail.next would not makes sense, so you would get a null pointer exception. Even if you corrected
the code to avoid this, there would still be another problem: the code does not modify the head

last updated: 30th Apr, 2022 at 10:02 47 ©Michael Langer

COMP 250 W-2022 11 – doubly linked lists Jan. 31, 2022

reference. But if we remove the one node in a list, then the head reference should become null.
Such edge cases arise for several methods, and can lead to errors if one is not careful.

To avoid such errors, it is common to define doubly linked lists by using a “dummy” head
node and a “dummy” tail node, instead of head and tail reference variables.7 The dummy nodes
are objects of type DNode just like the other nodes in the list. However, these nodes have a null

element. Dummy nodes do not contribute to the size count, since the purpose of size is to indicate
the number of elements in the list. See figures in slides.

class DLinkedList<E>{

DNode<E> dummyHead;

DNode<E> dummyTail;

int size;

:

// constructor

DLinkedList<E>(){

dummyHead = new DNode<E>();

dummyTail = new DNode<E>();

dummyHead.next = dummyTail;

dummyTail.prev = dummyHead;

size = 0;

}

// ... List methods and more

}

Let’s now look at some DLinkedList methods. We’ll start with a basic getter which gets the
i-th element in the list:

get(i){

node = getNode(i)

return node.element

}

This method uses a helper method getNode(i) that I’ll discuss below. It is worth having a helper
method because we can re-use it for several other methods. For example, in the Exercises PDF for
this lecture, I ask you for code to remove the i-th node. Here is the pseudocode solution:

remove(i){

node = getNode(i)

node.prev.next = node.next

node.next.prev = node.prev

size--

}

7Dummy nodes can be defined for singly linked lists too.

last updated: 30th Apr, 2022 at 10:02 48 ©Michael Langer

COMP 250 W-2022 11 – doubly linked lists Jan. 31, 2022

This code modifies the next reference of the node that comes before the i-th node, that is node.prev,
and it modifies the prev reference of the node that comes after the i-th node, that is node.next.
Because we are using dummy nodes, this mechanism works even if i = 0 or i = size-1. Without
dummy nodes, node.prev is null when i = 0, and node.next is null when i = size - 1, so the
above code would have an error if we didn’t use dummy nodes. (Note that I am not bothering to
set the next and prev references in the removed node to null. But you could do that if you want.)

Here is an implementation of the getNode(i) method. This method would be private to the
DLinkedList class.

getNode(i){

node = dummyHead.next

for (k = 0; k < i; k++)

node = node.next

return node

}

One can be more efficient than that, however. When index i is greater than size/2, then it would
be faster to start at the tail and work backwards to the front, so one would need to traverse size/2
nodes in the worst case, rather than size nodes as above.

getNode(i){

if (i < size/2){

node = dummyHead.next

for (k = 0; k < i; k++)

node = node.next

}

else {

node = dummyTail.prev

for (k = size-1; k > i; k--)

node = node.prev

}

return node

}

The remove(i) method still takes size/2 operations in the worst case. Although this worst
case is a factor of 2 smaller for doubly linked list than for singly linked lists, it still grows linearly
with the size of the list. Thus we say that the remove(i) method for doubly linked lists still is
O(N) when N is the size of the size. This is the same time complexity for this method as we saw
for array lists and for singly linked lists. Saving a factor of 2 by using the trick of starting from the
tail of the list half the time is useful and does indeed speed things up, but only by a proportionality
factor. It doesn’t change the fact that in the worst case the time is takes grows linearly with the
size of the list.

Java LinkedList

Java has a LinkedList class which is implemented as a doubly linked list. Like the ArrayList

class, it uses a generic type which is write as T below.

last updated: 30th Apr, 2022 at 10:02 49 ©Michael Langer

COMP 250 W-2022 11 – doubly linked lists Jan. 31, 2022

LinkedList<T> list = new LinkedList<T>();

The LinkedList class has more methods than the ArrayList class. In particular, the LinkedList

class has addFirst() and removeFirst() methods. Recall removing elements from near the front
was expensive for an array list. So if you are doing this a lot in your algorithm, then you probably
don’t want to be using an ArrayList for your list. So it makes sense that that the ArrayList class
wouldn’t have such methods. But adding and removing the first elements from a list is cheap for
linked lists, so that’s why it makes sense to have these methods in the Java LinkedList class. Of
course, you could just use remove(0) or add(0,e), but a specialized implementation addFirst()

and removeFirst() might be a bit faster and the code would be easier to read – both of which are
worth it if the commands are used often. In addition, the LinkedList class has an addLast() and
removeLast() method, whereas the ArrayList class does not have these methods.

Time Complexity

The table below compares the time complexity for adding/removing an element from the head/tail
of an array or singly or doubly linked list that has size N . The problem cases are the ones that are
O(N).

array list singly linked list doubly linked list

---------- ------------------ ----------

addFirst(e) O(N) O(1) O(1)

removeFirst() O(N) O(1) O(1)

addLast(e) O(1) O(1) O(1)

removeLast() O(1) O(N) O(1)

get(i) O(1) O(N) <- worst case -> O(N)

O(1) <- best case -> O(1)

A few notes

� The Java ArrayList class doesn’t actually have an addFirst or removeFirst method, so
just consider the equivalent add(0,e) and remove(0) as mentioned above.

� addLast for an array list is O(N) in the special case that the array is full. But this case
doesn’t happen much if our policy is to double the size of the array. (See Exercises for what
the complexity is to add N elements consecutively.)

� get(i) can be very fast for a singly or doubly linked list e.g. if i=0 in which case it is O(1)
i.e. it doesn’t depend on the size of the list. But in the worst case it takes time proportional
to the length of the list, so it would be O(N).

How not to iterate through a linked list

Suppose we add N students to the front (or back) of a linked list.

last updated: 30th Apr, 2022 at 10:02 50 ©Michael Langer

COMP 250 W-2022 11 – doubly linked lists Jan. 31, 2022

for (k = 0; k < list.size(); k ++) // size == N

System.out.println(list.addFirst(new E()));

Adding N students to an empty linked list takes time proportional to N since adding each element
to the front (or back) of a linked list takes a constant amount of time, i.e. independent of the size
of the list

What if we wanted to print out the elements in a list? Without thinking about it much, the
following would seem to work fine.

for (k = 0; k < list.size(); k ++) // size == N

System.out.println(list.get(k));

However, this turns out to be very inefficient, and it matters for large lists. (See Exercises.) For
simplicity, suppose that get were implemented by starting at the head and then stepping through
the list, following the next reference until we get to the i-the element. Then, with a linked list as
the underlying implementation, the above for loop would require

1 + 2 + 3 + ...+N =
N(N + 1)

2

steps. This is O(N2) which gets large when N is large. It is obviously inefficient since we really
only need to walk through the list and visit each element once. The problem here is that each time
through the loop the get(k) call starts again at the beginning of the linked list and walks to the
k-th element.

Java enhanced for loop

What alternatives to we have to using repeated get’s ? In Java, we can use something called an
enhanced for loop. The syntax is:

for (E e : list){

// do something with element e

}

where list is our variable of type LinkedList<E> and e is a variable that will reference the
elements of type E that are in the list, from position, 0, 1, 2, ..., size-1.

Space Complexity ?

We’ve considered how long it takes for certain list operations, using different data structures (array
list, singly linked and doubly linked lists). What about the space required? Array lists use the
least amount of total space since they require just one reference for each element of the list. (These
’slots’ must be adjacent in memory, so that the address of the k-th slot can be computed quickly.)

Singly linked lists take twice as much space as array lists, since for each element in a singly linked
lists, we require a reference to the element and a reference to the next node in the list. Doubly
linked lists require three times as much space as array lists, because they require a reference to each
element and also references to the previous and next node.

All three data structures require space proportional to the number of elements N in the list,
however. So we would say that all require O(N) space.

last updated: 30th Apr, 2022 at 10:02 51 ©Michael Langer

COMP 250 W-2022 11 – doubly linked lists Jan. 31, 2022

Cloning a linked list: shallow versus deep copy

Finally, we discussed what it means to make a copy of a linked list of some type, say Shape. Suppose
we have a linked list that is referenced by a variable list1. What we don’t mean is that we do:

LinkedList<Shape> list2 = list1;

That would just be aliasing. Rather, I am asking about making a copy of the list.
There are two ways to make a copy. One is that we copy the nodes of the original list and link

them together, but we don’t copy the Shape objects of the list. This is called a shallow copy of the
list. The nodes of the new list point to the same sequence of Shape objects, but there is just one
version of each of the Shape objects.

The second way is to copy the nodes of the original list and link them together, and also to
make copies of the objects themselves, and have the new list nodes reference the copiess. This is
called a deep copy of the list. Here we would have two versions of each of the Shape objects.

The Java LinkedList class has a clone method (see API), and this method makes a shallow
copy rather than a deep copy.

We will discuss shallow versus deep copy a few lectures from now, when we revisit what we mean
by the equals() method. The reason this method is relevant is that we will want to decide what
it means to say that two LinkedList objects are equal!

Why would one would want to use a shallow versus deep copy. Here are some intuitive examples.
(Note, there is nothing specific about linked lists in these examples. The same concepts of shallow
versus deep copy applies for array lists.)

For shallow copy, suppose you have a list of student exams and you have several different graders
who are each marking a different question on the exam. Then each grader could have a shallow copy
and would iterate through the list of exams, and each grader would assign a grade to a different
question. A shallow copy would fine here, since in the end we want each question of each exam to
be graded, and we want to end up with one graded copy of each exam.

For the above example, you might ask why we even need to make a copy. Why not just have
two variables that reference the same list (aliasing)? Great question! To fully justify the shallow
copy, I need to add a bit more to the example. Suppose that one of the graders wants to sort the
exams in the list, e.g. according to the student last name. In this case, this grader would need to
rearrange the nodes of their list. This grader should have their own copy of the nodes (the shallow
copy); otherwise, rearranging the links in the original list would mess up the other graders that are
iterating through the list. Note that a shallow copy (not a deep copy) is really what we want here.
There should be just one copy of each exam.

For deep copy, suppose you have a list of applications for jobs, and several different potential
employers would get access to that list. Each potential employer would go through the list, and
perhaps mark up the application. In this case, a shallow copy is not good enough because each
employer is marking up the application, and so each employer should have their own copy of each
application.

last updated: 30th Apr, 2022 at 10:02 52 ©Michael Langer

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html#clone()

COMP 250 W-2022 12 – O(N2) sorting Feb. 2, 2022

Quadratic8 sorting

[See the slides for figures to complement the discussion in these notes.]

One common problem that comes up in computing that you want to sorting a list N elements.
Let’s say you are given a list and you want the modify the order of elements so that they are
increasing. Here we are assuming that elements are comparable, in that for any two elements A
and B that we are considering, either A < B or A > B. (It could also be that A equals B, but we
won’t concern ourselves with this case because either order of two such elements would be fine.) For
example, the elements in the list might be numbers, or they might be strings which can be ordered
alphabetically. Today we will look a few simple algorithms. Later in the course, we’ll look at more
complicated algorithms which are much faster when the list is large.

We will discuss three algorithms today. These will be presented with pseudocode only and with-
out committing to a particular data structure e.g. array list or doubly linked list. The algorithms
could be implemented in principle with either of these data structures, but the going into the data
structure details would be distracting.

Bubblesort

The first algorithm is called Bubblesort, and it is perhaps the simplest to describe. You traverse
through the list repeatedly, and whenever you find two neighboring elements that are out of order,
you swap them. Elements gradually make their way to their correct position in the list. The
algorithm is called bubblesort because it invokes the concept of bubbles rising in a fluid, which
some people apparently find helpful to think about. Here it is:

for i = 0 to list.size - 2 { // pass i through list

for k = 0 to list.size - 2 {

if (list[k] > list[k+1]) {

list.swap(k, k+1)

}

}

}

What can we say after one pass through the list? We can say that the largest element in the list
will be at the end of the list. The reason is that the inner for loop will eventually hit this element
and will then drag it to the end of the list via successive swaps.

What can we say about the position of the smallest element in the list after one pass? Not much,
except that it won’t be at the end of the list (unless all elements are equal). For example, if the
smallest element of the list starts out at the end of the list, i.e. in position N − 1, then in the first
pass through the inner loop, the element will be moved only to position N − 2. More generally, the
smallest element will be moved one position earlier in the list, unless it was already at the beginning
of the list. The reason it will move one earlier is that first time we reach it, it will be some position
k+1 (assuming it is not in the front of the list) and then it will be moved to position k, but then
the inner loop will continue on and it will stay where it is – at least i is incremented.

8Quadratic means that the time complexity grows like N2, i.e. O(N2).

last updated: 30th Apr, 2022 at 10:02 53 ©Michael Langer

COMP 250 W-2022 12 – O(N2) sorting Feb. 2, 2022

How many passes through the list will we need to put all elements in order? We will need at
most N − 1 passes. Take the case that the smallest element starts off at the end of the list at index
position N − 1. In the first pass it moves to position N − 2 = N − 1 − 1. In the second pass, it
moves to position N − 3 = N − 1− 2. etc. After the k′th pass, it has moved to position N − 1− k.
Thus, after k = N − 1 passes, the smallest element will have moved from position N − 1 to position
0.

Do you always need N − 1 passes to put all the elements in order? No. For example, if elements
are already sorted, then the outer loop only needs to run once. Let’s modify the pseudocode so that
we can detect when the elements are in order, and stop.

for i = 0 to list.size - 2 {

swapped = false // will set to true if we swap

for k = 0 to list.size - 2 - i {

if (list[k] > list[k+1]) {

list.swap(k, k+1) // flag that assumption was wrong

swapped = true // i.e. at least one swap

}

}

if !(swapped) // check if we did a swap

break

}

Selection sort

The second algorithm is Selection Sort. The idea here is to partition the list into two parts. The
first part contains the smallest elements, in order. The second part contains the remaining elements.

The algorithm uses an index counter i and starts with i = 0. For each i, the sorted part is the
list up to and not including position i, and the “rest” part is the list from positions i to list.size−1.
For each i, the algorithm finds the minimum element in the rest part. If this minimum element
is at a position (called index in the pseudocode below) that is different than i, then it swaps this
minimum element at index with the element at position i. The element at position i then becomes
the last element in the sorted part.

for i = 0 to list.size - 2 {

index = i

minValue = list[i]

for k = i+1 to list.size - 1 {

if (list[k] < minValue){

index = k

minValue = list[k]

}

}

if (index != i)

list.swap(i, index)

}

last updated: 30th Apr, 2022 at 10:02 54 ©Michael Langer

COMP 250 W-2022 12 – O(N2) sorting Feb. 2, 2022

How many times does the inner loop get executed? Let N = list.size. When i is 0, the inner
loop is executed N-1 times. When i is 1, it is executed N-2 times. When i = N-2, the inner loop
is executed once. Therefore the total is

N − 1 +N − 2 +N − 3 + ...+ 3 + 2 + 1.

which is N(N−1)
2

which is roughly N2/2.
Note a few differences with bubblesort. One difference is that in the best case bubble sort only

takes one pass through the outer loop, whereas with selection sort the outer loop always runs N −1
times. Thus bubble sort is faster in the best case. However, one advantage of selection sort over
bubble sort is that selection sort does fewer swaps in the typical case. This can be a concern in
practice since swaps take a bit more time (since you have to write to a temporary variable, so its
three steps to do one swap). Indeed, selection sort does at most one swap in each pass in the inner
loop, namely it only swaps at the last step of the inner loop. So it does at most N−1 swaps in total.
It still does O(N2) instruction steps though; so in the best case, selection is slower than bubblesort;
but in the worst case, selection sort is faster than bubble sort even though they are both O(N2).

Insertion Sort

Insertion sort, is similar to first two, in that it uses two nested loops. In particular, it is similar
to selection sort in that it maintains a partition into two sublists: a list of sorted elements at the
front, and the rest. The size of the sorted part is increased by one by the end of each pass through
the inner loop. However, whereas selection sort considers all the remaining unsorted elements (in
the “rest” of the list) and find the smallest one, insertion sort considers only the first element in
the rest of the list; insertion sort finds where this element belongs relative to the sorted front part
of the list, and inserts this next element into the proper position.

The algorithm goes through an outer loop N − 1 times. In the ith pass through the loop
(starting at i = 1), the algorithm inserts element at index i into its correct position with respect to
the elements up to and including position i− 1, which are already in their correct order.

How does the algorithm put the element at index i into its correct position with respect to
elements at indices 0 to i− 1? The idea is first get the element at index i and remember it. Then
search backwards from index i− 1 until you find the right place for this element to be inserted (the
correct position). As you search back, shift forward by 1 position any element that is bigger than
the element to be inserted, creating a hole that moves backwards through the list as the elements are
shifted forward. Once a list element is found that less than or equal to the element to be inserted,
insert the save element (formerly at position list[i]) into the hole (at position k).

for i = 1 to list.size - 1 { // index of element to maybe move

e = list[i]

k = i

while (k > 0) and (e < list[k - 1]){ // Check if list[k-1]

list[k] = list[k - 1] // needs to move forward.

k = k -1

}

list[k] = e

}

last updated: 30th Apr, 2022 at 10:02 55 ©Michael Langer

COMP 250 W-2022 12 – O(N2) sorting Feb. 2, 2022

What is the time complexity of insertion sort, specifically how many times is the body of the
inner loop executed ? The outer goes from i = 1 to N-1, and the inner goes from k = i down to 1
(in the worst case). You can verify that again the answer is:

1 + 2 + . . . N − 1 =
N(N − 1)

2

which again is O(N2).
Note that the inner loop only continues as long as the while condition is met. For example, if e

were greater than list[i-1] already at the start of the while loop, then the inner loop would end
immediately because element i would already be in its correct position.

Note that insertion sort doesn’t use swaps. As we search back through the list and shift elements
forwards, we are not swapping. Rather we are just shifting. It is like we do a circular shift (recall
lecture 5 slide 21) but only only on part of the list.

Comparison of the algorithms

In the lecture, I discussed the best and worst cases of the three algorithms using the figure below.
Think of the two dimensions of the square as the indices of inner and outer loops, so at any time
within the inner loop of the algorithm(s) you are at one of the positions in the square. The algorithm
goes column by column (each value of the outer loop). The grey regions show the values that the
algorithm actually reaches.

last updated: 30th Apr, 2022 at 10:02 56 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

Inheritance

In our daily lives, we classify the many things around us. The world has objects like “dogs” and
“cars” and “food” and we are familiar with talking about these objects as classes: “Dogs are animals
that have four legs and people have them as pets and they bark, etc”. We also talk about specific
objects (instances): “When I was growing up I had a beagle named Buddy. Like all beagles, he
loved to hunt rabbits.”

We also talk about classes of objects at different levels. For example, take animals, dogs, and
beagles. Beagles are dogs, and dogs are animals, and these “is-a” relationships between classes are
very important in how we talk about them. Buddy the beagle was a dog, and so he was also an
animal. But certain things I might say about Buddy make more sense in thinking of him as an
animal than in thinking about him as a dog or as a beagle. For example, when I say that Buddy
was born in 1966, this statement is tied to him being animal rather than him being a dog or a
beagle. (Being born is something animals do in general, not something specific to dogs or beagles.)
So being born is something that is part of the “definition” of a being an animal. Dogs automatically
“inherit” the being-born property since dogs are animals. Similarly, beagles automatically inherit
it since they are dogs, and dogs are animals.

A similar classification of objects is used in object oriented programming. In Java, for example,
we can define new (sub)classes from existing classes. When we define a class in Java, we specify
certain fields and methods. When we define a subclass, we say that the subclass “extends” the
superclass. The superclass is often called the base class or parent class. The subclass is often called
derived class or extended class.

We say that a subclass inherits the fields and methods of the superclass, namely by default the
subclass automatically has the same field and methods as the superclass. We also may introduce
entirely new fields and methods into the subclass. Alternatively, some of the fields or methods of
the subclass may be given the same names as those of a superclass class. We will examine these
choices over the next few lectures.

Example

Suppose we have a class Dog.

class Dog {

String dogName

String ownerName

int serialNumber

void Dog(){ .. }

:

void bark(){

System.out.println("woof");

}

}

last updated: 30th Apr, 2022 at 10:02 57 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

Below are some examples of subclasses of Dog. When we declare the Beagle, Doberman, Poodle
classes, we don’t need to re-declare all the fields of the Dog class. These fields are automatically
inherited, because of the keyword extends. We also don’t have to re-declare the bark method,
since this method is inherited. We can define other methods that are specialized to specific breeds
of dogs. For example:

class Beagle extends Dog{

Rabbit hunt(){ ...

}

}

class Doberman extends Dog{

void fight(){ ...

}

}

class Poodle extends Dog{

void show(){ ...

}

}

Here I will leave the implementations to your imagination.

Constructor chaining

Constructor methods are not inherited. The reason is that an object belongs to exactly one class,
and the object is constructed by the constructor of that class. So it would make no sense to inherit
the constructor of superclass. That said, since fields and methods of the superclass are inherited,
so a constructor does make use of the superclass’es constructor, namely it uses the superclass’es
constructor to define its instance fields.

When an object of a subclass is instantiated using one of this subclass’s constructors, the fields
of the object are created including the fields of the superclass and the fields of the superclass’es
superclass, etc. This is called constructor chaining. How is it achieved ?

The first line of any constructor is

super(...); // possibly with parameters

If you leave this line out, then the Java compiler puts in the following with no parameters:

super();

This causes the superclass’es no-argument constructor code to be executed, and fields created and
possibly initialized. Note that the superclass may have its own super(..) constructor with or
without parameters, which causes the fields of all the ancestor classes automatically to be inherited
and initialized.

The following example illustrates some of the details of constructor chaining. The superclass
Animal has two constructors. The subclass Dog constructor chooses among them by including
parameters of the Dog constructor’s super() calls to match the signature (number and types of
arguments) of the superclass constructor. Specifically, the class Dog has a String field that specifies

last updated: 30th Apr, 2022 at 10:02 58 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

the owner. The Dog(String birthplace, String owner) constructor could in principle have used
either the Animal() or Animal(String birthplace) constructor. It does the latter by calling
super(birthplace). If we comment out that constructor call then it would instead defaulted to a
super() call whihc would assign the birth date but not the birth place.

import java.util.Date;

class Animal {

Date birthdate;

String birthplace;

Animal() {

this.birthdate = new Date();

}

Animal(String birthplace) {

this();

this.birthplace = birthplace;

}

}

class Dog extends Animal {

String name;

Dog() { } // automatically calls super().

Dog(String birthplace, String name) {

super(birthplace);

this.name = name;

}

public static void main(String[] args) {

Dog d1 = new Dog();

Dog d2 = new Dog("New York City", "Fluffy");

}

}

If the superclass does not have a no-argument constructor, then the subclass’es super() call will not
work, and thus the subclass cannot have a no-argument constructor (and a compiler error would
occur. Similarly if you call super(...) with parameters that don’t match a constructor from
superclass, then the compiler will give an error.

One more detail: Java does not allow you to write super.super. There is no way for a sub-class
to explicitly invoke a method from the superclass’es superclass.

last updated: 30th Apr, 2022 at 10:02 59 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

ASIDE: A subclass can declare a field with the same name as the one in the superclass. This
“hides” the inherited field, and makes makes code difficult to understand, so it is not recommended.

If you want to learn more about how subclasses work, see online tutorials

Overloading versus Overriding, and the method signature

When a subclass method and superclass method have the same method name and the same number,
types, and order of parameters, then we say that the subtype method overrides the supertype
method. When the method name is the same but the type, number, or order of parameters changes,
then we say the method is overloaded.

We have seen examples of overloading in previous lectures (such as the add and remove methods
of the ArrayList and LinkedList classes). We have also seen examples today, with constructor
methods e.g Dog.

Overriding a method is different from overloading it. Overloading a method means having two
versions of the method with different parameters. Overriding can only occur from a child class
(subclass) to parent class (superclass), whereas overloading can occur either within classes (as in
Dog) or between a child and parent class. For an example of the latter, suppose class Dog has a
method:

bark() {

System.out.print(‘‘woof’’);

}

We might define a subclass AnnoyingDog with the following bark method:

bark(int n){

for (int i; i < n; i++) {

System.out.print(‘‘woof’’);

}

This would be overloading between classes. Note that the AnnoyingDog class would have both bark

methods.

[ASIDE (Feb. 8): when can you change modifiers and return type?]

As you know, a method is defined by an visibility (access) modifier, a return type, a method name,
and method parameters (order and type). The term method signature refers just to the method
name and the parameters (types and order). The return type and access modifiers are not part of
the method signature.

When overloading a method, we keep the method name and we change the parameter types
and/or order. (If we had the same parameters, then it would be overriding, not overloading.) With
overloading, we can also change the access modifier and the return type. The reason we can do so
is that we think of overloaded methods as completely different methods, and the differences can be
detected by the compiler (at compile time) and the JVM (at runtime), namely by examining the
parameters of the method.

When one overrides a method, however, one is more constrained. Here, one cannot change the
access modifier and return type willy-nilly. If the superclass’s method returns a primitive type,

last updated: 30th Apr, 2022 at 10:02 60 ©Michael Langer

docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

then the subclass method’s must return exactly the same primitive type. If the superclass’s method
returns a reference type, then the subclass method must either return that same reference type or
a narrower reference type. For example, suppose you have a (trivial and useless) method me() in
the super class A:

A me(){ return this;}

In the subclass B, you might want to override the method as follows:

B me(){ return this;}

This would be fine, and indeed it might make the code more readable. Java allows this change in
return type because it really shouldn’t create a problem. (If you want to read more about this, you
can google “covariant return type Java”.)

As for changing the access modifier when overriding, Java requires that the access be the same
or greater. The spirit here is that an instance of a subclass should be able to do anything (including
being seen by other classes) that an instance of the superclass object can do.

[end of ASIDE]

Finally, here are some examples of subclasses of Dog where we have overrided (or overridden) the
method bark:

class Beagle extends Dog{

void bark(){

System.out.println("aaaaawwwwooooooo");

}

}

class Doberman extends Dog{

void bark(){

System.out.println("GRRRR! WO WO WO!");

}

}

Consider the three examples below.

Dog myDog1 = new Dog();

myDog1.bark(); // prints "woof" -- see previous page

Beagle myDog2 = new Beagle(); // prints "aaaaawwwwooooooo"

myDog2.bark();

Dog myDog3 = new Beagle(); // prints ????

myDog3.bark();

The third example is allowed, even though the variable type is different than the constructor. We
will discuss this important case more in an upcoming lecture.

last updated: 30th Apr, 2022 at 10:02 61 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

Java final modifier

The final modifier provides some flexibility on when we can extend classes or now.

final class Dog {

:

}

class Beagle extends Dog {

:

}

In this case, we would get compiler error in the Beagle definition because Dog cannot be extended.
Java library classes such as the wrapper classes Integer, Double, etc are all final, as are

Math and String.
Methods in a class can also be final. This means that a subclass cannot override them. So for

example if class Dog is not final and it has a method bark(), then if we make this a final method,
then subclasses of Dog will not be able to override it. You would get a compiler error if you tried
to redefine bark() as below. (Beagle would still inherit the Dog.bark() method though!)

class Dog {

final void bark(){ ... }

}

class Beagle extends Dog {

void bark(){ ... } // compiler error

}

[ASIDE: What about final fields in a class? One cannot override fields, but that’s not something
I want you to think about. (Its called hiding a field. I’ve mentioned it previously.)]

A common usage of the final modifier for variables is has nothing to do with inheritance.
Rather, if we declare a variable as final then it means we cannot change the value of the variable
once it has been initialized. This is usually done for constants in your program. For example,

final int x = 3;

x = 10;

would cause a compiler error, since x was assigned a value and then we want to change it. This
hold for reference types too. For example, the second line below would cause a compiler error:

final Dog myDog = new Dog(‘‘Willie’’);

myDog = new Dog(‘‘Max’’);

Although you cannot change the reference, you can change the object that is being referenced. For
example, the following is fine:

final Dog yourDog = new Dog(‘‘Snoopy’’);

yourDog.setName(‘‘Max’’);

last updated: 30th Apr, 2022 at 10:02 62 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

The same would hold with a final variable that is referencing an array. You cannot change

final int[] arr = {1, 2, 3};

arr[0] = 7;

would be fine, but

arr = new int[]{2, 7};

would cause a compiler error.

Java Object class

In Java, every class directly extends exactly one other class,9 with one exception to be discussed
below. The definition of a class is of one of the two forms:

class MyClass

class MySubclass extends MySuperclass

where extends is a Java keyword, as mentioned above. If you don’t use the keyword word extends

in the class definition then Java automatically makes MyClass extend a class called Object. So,
the first definition above is equivalent to

class MyClass extends Object

The Object class contains a set of methods that are useful no matter what class you are working
with. We will discuss some of these methods shortly.

An instantiation of any class is always some object, and so this object either belongs to class
Object or some subclass of Object, or some subclass of subclass of Object, etc. As stated under
the Object entry in the Java API: the class “Object is the root of the class hierarchy. Every class
has Object as a superclass. All objects, including arrays, implement the methods of this class.”

Java equals(Object) method

In natural languages such as English, when we talk about particular instances of classes e.g. par-
ticular dogs, it always makes sense to ask “is this object the same as that object?” We can ask
whether two rooms or dogs or hockey sticks or computers or lightbulbs are the same. Of course,
the definition of “same” needs to be given. When we say that two hockey sticks are the same, do
we just mean that they are the same brand and model, or do we mean that the lengths and blade
curve are equal, or do mean that the instances are identical as in, “is that the same stick you were
using yesterday, because I thought that one had a crack in it?”

In Java, the Object class has an equals(Object) method, which checks if one object is
the same instance as the other, namely if o1 and o2 are declared to be of type Object, then
o1.equals(o2) returns true if and only if o1 and o2 reference the same object. For the Object

9C++ allows for multiple inheritance, that is, a class can extend more than one superclass. This leads to
complications, for example, if two superclasses have a method with a common name, which one gets inherited?

last updated: 30th Apr, 2022 at 10:02 63 ©Michael Langer

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

class, the equals(Object) method does the same thing as the “==” operator, namely it checks if
two referenced objects are the same.

For many other classes, we may want to override the equals(Object) method, namely use a less
restrictive version of the equals method. It is also possible in principle to overload it, for example,
by defining an equals(Dog) method in the Dog class. However, I will not discuss overloading of the
equals() method, and my understanding is that it is generally better not to use it to avoid confusion
and surprises.

We have an intuitive notion of what we mean by ‘equals’. But since the equals() method is so
fundamental in Java, the designers of the Java language specified quite formally how the method
should behave. It is very similar to the mathematic definition of equivalence classes which you learn
about in MATH 240. When writing your own classes and overriding this method, you should be
aware of this. See details of the equals(Object) method here. For example,

� x.equals(x) should always be true

� x.equals(y) should have the same true or false value as y.equals(x)

� if x.equals(y) and y.equals(z) are both true, then x.equals(z) should be true.

The String class overrides the equals(Object) method. (Recall the discussion of String.equals()
in lecture 6.)

What about other classes? Consider the fictitious Shape class which I keep talking about in the
slides. When should we say that two Shape objects are equal? We might use the default definition
of equals inherited from the Object class and say that two Shape objects are equal if they are
literally the same object. Alternatively, we might say that all triangles are equal or all circles are
equal (regardless of their size), whereas a triangle and circle are not equal. Or we might say two
Shape objects are equal if they have the same color. Or we might say that two Shapes are equal if
they are the same type (triangle vs. circle) and same color and size, etc. Its arbitrary. Note here I
am just repeating the ideas discussed above (hockey stick) but now I am more concretely discussing
Java equals.

Another example mentioned is the Java LinkedList class which also overrides the equals(Object)
method. If a LinkedList object invokes this method on some other object, the result will be true
only if that other object is also a LinkedList object and each of the elements in the two lists are
“equal”, in particular, the elements of the two linked list objects are “equal” according to the
equals method of these elements.

Java Object clone() method

Another commonly used method in class Object is clone(). Cloned objects are supposed to obey
the following:

� The expression x == x.clone() should return false.

� The expression x.equals(x.clone()) should returns true (suggested, but not required).

These two conditions make intuitive sense. The point of cloning is to create a different object
instance (first condition), but the clone is suppose to be the same as the original in whatever sense

last updated: 30th Apr, 2022 at 10:02 64 ©Michael Langer

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

COMP 250 W-2022 13 - inheritance 1 Feb. 4, 2022

we define ”same” to mean for that object’s class. Note that the second condition doesn’t hold
for Object objects. But that’s ok: in fact, one is not allowed to clone an Object object. (See
Exercises.)

[ASIDE: I will not discuss cloning much more, since there are some subtleties to how it is allowed
to be used, and I don’t want to spend too much time on these details.]

last updated: 30th Apr, 2022 at 10:02 65 ©Michael Langer

COMP 250 W-2022 14 - inheritance 2 (visibility modifiers, ..., type casting) Feb. 7, 2022

Inheritance and Visibility Modifiers

Last lecture we discussed the basics of inheritance and how we can organize classes into a hierarchy.
This might bring to mind the notion of packages which we discussed in lecture 8, and which specify
how class files are stored in a file system and which also determine which class are visible to which
(via access/visibility modifiers). The inheritance hierarchy is not the same as the package hierarchy.
That said, there are some relationships between the two.

First let’s recall the basics about visibilty. If a class is declared to be public, then this class is
visible from any other class – although it will need to be imported into the other class if it is in a
different package.

Suppose class B extends class A – and thus class A must be visible from class B. Which class
A members are visible from class B? By members of a class A, we mean the fields, methods, inner
classes of A. By visible here, I mean that a class B method can name/refer to the class A member

As a first example, let’s suppose that the following two classes are in the same package.

class Dog{

String name;

:

}

class Beagle extends Dog {

Beagle(String name){

this.name = name;

}

}

In this case, since Beagle extends Dog, Beagle inherits the name field. Since Beagle and Dog classes
are in the same package, no modifier is needed and Beagle methods can use this.name to access
the name field. For example, the above Beagle constructor does this.

If Beagle and Dog were in different packages, then in the above code we would need to add a
public modifier to both the class Dog as well as the field name. We would also need to add an
import statement to Beagle,

import package1.Dog;

so that the compiler knows where to find the Dog class. See the full example in the slides.
What if we were to put a private modifier on the name field of Dog?

class Dog{

private String name;

:

}

In this case, we would get a compiler error in Beagle, since name field would not visible in Beagle.
Heads up, however! A Beagle object would still have the field name. The problem is that the name

is not accessible, i.e. Beagle’s methods cannot state this.name because this gives a compiler error

last updated: 30th Apr, 2022 at 10:02 66 ©Michael Langer

COMP 250 W-2022 14 - inheritance 2 (visibility modifiers, ..., type casting) Feb. 7, 2022

as just mention. Officially, one says that the Beagle subclass does not inherit the private field
name from the superclass. According to Oracle, which maintains Java (!): “The subclass does not
inherit the private members of its parent class.” . (See link.) However, what this actually means
is that the field is not visible/accessible to the subclass, in the sense that methods cannot mention
the field name. But a Beagle object will still have the field. You can verify this yourself in your
IDE. So how can it assign a value to this field?

Rather than accessing the field by its name, a Beagle object has to access it using getters and
setters. For example, suppose Dog class has a setter method setName():

package package1;

class Dog{

private String name;

public void setName(String name){

this.name = name;

} :

}

Rather than accessing the field by its name, a Beagle constructor can use this inherited setter
method to set its name field:

package package2;

import package1.Dog

class Beagle extends Dog {

Beagle(String name){

this.setName(name); <------ see here

}

}

Admittedly, it is a bit confusing to say that the subclass doesn’t inherit the private field, when
plainly the subclass object does have the field. But we have to live with it, since we can’t really
argue with Oracle at this point. :)

ASIDE: the protected modifier

Java provides an access modifier protected that comes between “package-private” and public.
This modifier handles the situation above, in which a subclass is in different package. The protected
modifier allows access to a field or method in the parent class, regardless of whether the subclass
is in the same package or in a different package. We will not be using this modifier and I won’t
examine you on it, but it is worth mentioning – especially if you do any reading on your own, since
you might run into it.

An example of the a protected method is the Object.clone() method. I am not going to
explain why this method is protected. It is well beyond the scope of the course, so let’s just move
on.

last updated: 30th Apr, 2022 at 10:02 67 ©Michael Langer

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

COMP 250 W-2022 14 - inheritance 2 (visibility modifiers, ..., type casting) Feb. 7, 2022

Object.hashCode)()

The Object classes’s hashCode() method returns a positive integer. You can think of it as the
address of the object, although this is not strictly required. Many classes override the hashCode()
method. We will see some examples later in the course.

Object.toString())()

The Object class also has a toString() method. The Object class’es toString() method returns a
string as follows:

className + @ + Integer.toHexString(hashCode())

So you can see it uses the hashCode, written in hexadecimal. For example, if we write

Object obj = new Object();

System.out.println(obj);

then it might return something like java.lang.Object@5305068a.
The String class overrides the toString() method in an obvious way: if a string object invokes

the toString() method, then it just returns itself. Why would it do something that seems neither
interesting nor useful? In fact, it is quite useful. Suppose you have a string variable s and you want
to print its value. Then you would write:

System.out.println(s);

If String didn’t override the Object classes toString() method, then the above print statement
would produce something like java.lang.String@523043 which is obviously not what we want
to print. Rather we want to print out the string itself!

For other classes, a common use of toString() is is in debugging, where you want to print
information about an object to the console. Suppose you had a class Dog. If you override toString()
in this class, then you might write the method so that it returns a string with the dog’s name and
birthdate and owner. As another example, check out the Course.toString() method in Assignment
1.

Type Conversion (or Casting)

We have seen how variables of one type can be cast to another. So far we’ve only considered
primitive types and autoboxing/unboxing. We saw how some primitive types can be narrower or
wider than others. Similar ideas can be used for reference types. With reference types, a subclass is
narrower than its superclass, and a superclass is wider than its subclass. e.g. If class Beagle extends
class Dog, then class Beagle is narrower than Dog, or equivalently, Dog is wider than Beagle.

Heads up! Although a subclass is by definition narrower than the superclass, the subclass will
typically have more fields and methods than the superclass (since the subclass inherits the fields
and methods from superclass). So when we talk about narrowing down, we’re typically talking
about a bigger object, i.e. with more fields.

last updated: 30th Apr, 2022 at 10:02 68 ©Michael Langer

COMP 250 W-2022 14 - inheritance 2 (visibility modifiers, ..., type casting) Feb. 7, 2022

Conversions can also occur between reference types. However, reference type conversions do
not change the referenced object. Rather, the conversion only tells the compiler that you (the
programmer) expect or allow the object to be a certain type at runtime.

Widening conversions from a subclass to superclass occur automatically. Here we say that we
are casting upwards (upcasting). Upcasting is sometimes called implicit casting. We cast downwards
(“downcasting”) when we are casting from a superclass to a subclass. Like with primitive types,
when we downcast reference types we need to be explicit about it.

In fact, we have seen upcasting before, e.g. last lecture we saw:

Dog myDog = new Beagle();

This is analogous to:

double myDouble = 3; // from int to double.

We have not seen downcasting before for reference types, however. So let’s see how this works with
some examples.

Consider the two instructions:

Dog myDog = new Poodle(); // upcast, widening

myDog.show();

The second line gives a compiler error because show() is not a method in the Dog class. Although
the first line says myDog will reference a Poodle when the program actually runs, the compiler
ignores this fact. The compiler only cares that myDog is declared to be of type Dog and the class
Dog doesn’t have a method show().

Let’s now take the same first line as above and try something else.

Dog myDog = new Poodle(); // Upcasting.

Poodle myPoodle = myDog;

The second line also generates a compiler error, since the implicit downcast Dog to Poodle not
allowed. So how about the following?

Dog myDog = new Poodle(); // Upcast

Poodle myPoodle = (Poodle) myDog; // Allowed (explicit downcast)

myPoodle.show()

((Poodle) myDog).show();

The compiler is fine with all four lines above. Moreover, there will not be a runtime error, since
myDog and myPoodle will reference a Poodle at runtime.

instanceof operator

Sometimes we wish to check if an object is an instance of a particular class. We can use the
instanceof operator for this. The instanceof operator takes two arguments: the first is a refer-
encetype variable var; the second is a class C, ie.

var instanceof C

last updated: 30th Apr, 2022 at 10:02 69 ©Michael Langer

COMP 250 W-2022 14 - inheritance 2 (visibility modifiers, ..., type casting) Feb. 7, 2022

The operator returns true if and only if the object referenced by var is an instance of the class C

or any class that extends C. Again, examples are the best way to understand this.
The first example just revisits the same idea that Dog, Beagle, and Poodle objects can all be

considered instances of Dog.10

Dog d = new Dog();

System.out.println(d instanceof Dog); // true

Beagle b = new Beagle();

System.out.println(b instanceof Dog); // true

d = new Poodle();

System.out.println(d instanceof Dog); // true

System.out.println(d instanceof String); // false

Another example is how we can use instanceof to make sure that downcasting will not cause a
run time error:

class Test {

static void dogMethod(Dog dog) {

if (dog instanceof Beagle) {

Beagle b = (Beagle) dog;

b.hunt(); // or just ((Beagle) dog).hunt()

}

}

}

In this case, if the method’s argument is not a Beagle object, then the method won’t do anything,
which may be better than a runtime error!

Another example is how we sometimes use instanceof when overriding equals() :

public class Shape {

public boolean equals(Object obj) {

if(obj instanceof Shape) {

return this.getArea == ((Shape) obj).getArea();

else return false;

}

}

Here we’ll first check that argument obj is indeed of the right type, in this case Shape. Once that’s
been verified, we can make our comparison of this object with the object that we wish to compare
it to. This comparison only makes sense if the object’s are both Shape’s, and in particular, they

10Yes, I realize this is confusing when you first read it. You might think that a Poodle object is an instance of the
Poodle class, and that a Poodle object is not an instance of the Dog class! But in fact, the way we will talk about it
is the former, not the latter. And I promise you: it will make sense as you work with it more an more, just like in
real life you would be very comfortable saying “That poodle over there is a dog!”

last updated: 30th Apr, 2022 at 10:02 70 ©Michael Langer

COMP 250 W-2022 14 - inheritance 2 (visibility modifiers, ..., type casting) Feb. 7, 2022

have the Shape.getArea() method. If the object passed in the argument is the wrong type, then
the method would return false.

ASIDE: note that the compiler does require that you have the modifier public and return type
boolean when overriding the Object.equals() method. You will get a compiler error if you use
different modifiers.

Finally, a common mistake that programmers make when first using inheritance in Java is they
make excessive use of the instanceof method. They write things like:

Dog dog;

:

if (dog instanceof Doberman)

((Doberman) dog).threaten();

else if (dog instanceof Beagle)

((Beagle) dog).howl ();

where they check what type of object a variable references and then call methods appropriate to
that object, while casting to make sure the compiler doesn’t complain. This is considered bad style,
and it can also lead to code that is difficult to maintain since there are too many cases to test.
Instead, one uses another method (called polymorphism). We’ll return to this next lecture.

last updated: 30th Apr, 2022 at 10:02 71 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

By now you should be familiar with the Java API. The API (application program interface) gives
a user many predefined classes with implemented methods. What makes the API an “interface” is
that the implementation is typically hidden. You are only given the name of a class, the signatures
of the methods (along with their return type and modifiers), comments on what these methods do,
and possibly some public fields of the class.

The word “interface” within “Java API” should not be confused with related but different usage
of the word, namely the Java reserved word interface, which is what we’ll discuss next.

Java interface

In Java, if we specify only the modifiers, return types, and signatures of the methods of a class but
we don’t specify the implementation, then technically we don’t have a class. What we have instead
is an interface. So, an interface is a Java program component that is like a class, but it doesn’t
contain the bodies of the methods.

We say that a class implements an interface if the class implements each method that is defined
in the interface. In particular, the method signatures must be the same as in the interface. So, if
we say a class C implements an interface I, then C must implement all the methods from interface
I, which means that C specifies the body of these methods. In addition, the class C can have other
methods.

e.g. List interface

Consider the two classes ArrayList<T> and LinkedList<T> which are used to implement lists.
These two classes share many method signatures. Of course, the underlying implementations of the
methods are very different, but the result of the methods are the same, in the sense of maintaining
a list. For example, if you have a list and then you remove the 3rd item, you get a well defined
result. This new list should not depend on whether the original list was implemented with a linked
list or with an array.

The List<T> interface includes familiar method signatures such as:

void add(T o)

void add(int index, T element)

boolean isEmpty()

T get(int index)

T remove(int index)

int size()

Both ArrayList<T> and LinkedList<T> implement this interface, namely they implement all the
methods in this interface.

The ArrayList class also has other methods that are not part of the List interface. For example,
the ensureCapacity(int) method will expand the underlying array to the number of slots of the
input argument if the current array has fewer than that many slots. The trimToSize() method
does the opposite. It will shrink the length of the underlying array so that the number of slots is
equal to the current number of elements in the list. Note that these two methods make no sense
for an LinkedList.

last updated: 30th Apr, 2022 at 10:02 72 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

There are also methods for the LinkedList class that would not be suitable for ArrayList

class, namely addFirst and removeFirst. There is nothing special about these operations for
array lists. They would be implemented exactly the same as on any other index and they would
be expensive because of the shifts necessary. If these operations are commonly needed, then one
would tend to use a linked list instead since these operations are inexpensive for linked lists.

Why is the List interface useful? Sometimes you may wish to write a program that uses either
an ArrayList<T> or a LinkedList<T> but you may not care which. You want to be flexible, so
that the code will work regardless of which type is used. In this case, you can use the generic Java
interface List<T>. For example,

void myMethod(List<String> list){

:

list.add("hello");

:

}

Java allows you to do this. The compiler will see the List type in the parameter, and it will
infer that the argument passed to this method will be an object of some class that implements the
List interface. As long as list only invokes methods from the List interface, the compiler will
not complain. You can also do thinks such as the following, namely have the same variable list

reference different types of lists at different times in the program.

List<String> list;

list = new ArrayList<String>();

list.add("hello");

:

list = new LinkedList<String>();

list.add(new String(\hi"));

Or, more usefully, we could have some method that takes in a list and doesn’t care if it is Arraylist
or LinkedList.

void someFlexibleListMethod(List<String> list, String s){

:

list.add(s);

:

list.remove(0);

}

Note that the method would only be able to use methods from the List interface. But this might
be enough.

Interfaces and the Java class hierarchy

Earlier when we discussed Java classes and their inheritance relationships, we considered a hierarchy
where each class (except Object) extends some other unique class. See below left.

last updated: 30th Apr, 2022 at 10:02 73 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

implements

implements

extends

implements

extendsextends

Classes Interfaces

How do Java interfaces fit into the class hierarchy? As shown above right, an interface is another
“node” in the inheritance diagram. We used dashed arrows to indicate inheritance relationships
that involve interfaces.

� If a class C implements an interface I then we put a dashed arrow from C to I. Recall that
a “class implements an interface” means that the class provides the method body for each
method signature defined in the interface.

� One interface (say I2) can extend another interface (say I1). This means that I2 inherits all
the method signatures from I1. We don’t need to write the method signatures out again in
the definition of I2. In the class diagram, we would put a dashed line from I2 to I1.

� Each class (other than Object) directly extends exactly one other class. (Why? Suppose
a class C were allowed to extend multiple classes(say A and B). Then it could happen that
there might be a method conflict – superclasses A and B could contain a method with the
same signature but with different bodies. Which of these methods would an object of class C
inherit?)

� A class C can implement multiple interfaces. The parent interfaces can even contain the same
methods. This is no problem since the interfaces do not contain the method bodies so there
could be no issue with ambiguity in case of conflict. We would say:
class C2 extends C1 implements I1, I2, I3

As another example of how interfaces can be useful, consider the following classes:

class Shape {

double getPerimeter() { ...};

double getArea() { ... } ;

}

last updated: 30th Apr, 2022 at 10:02 74 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

class Rectangle extends Shape{

double getPerimeter() { ...};

double getArea() { ... } ;

}

class Circle extends Shape{

double getPerimeter() { ...};

double getArea() { ... } ;

}

class Triangle extends Shape{

double getPerimeter() { ...};

double getArea() { ... } ;

}

It is not obvious how to implement these methods for a general Shape class, so you probably
wouldn’t invoke these methods unless you had a specific kind of shape such as a Rectangle, Circle,
or Triangle. For this reason we would use an interface instead:

interface Shape {

double getPerimeter();

double getArea();

}

class Rectangle implements Shape{

double height;

double width;

last updated: 30th Apr, 2022 at 10:02 75 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

Rectangle(double h, double w){ height = h; weight = w;}

double getArea(){ return height * width; }

double getPerimeter(){ return 2*(height + width); }

}

class Circle implements Shape{

double radius;

Circle(double r){ radius = r; }

double getArea(){ return MATH.PI * radius * radius; }

double getPerimeter(){ return 2*MATH.PI * radius }

}

etc... Triangle

We these classes, we can then write things like:

Shape s = new Rectangle(30, 40);

s = new Circle(2.5);

s = new Triangle(4.5, 6.3);

A Motivating Example for Java Abstract Classes: Circular

Here is an example to illustrate one of the limitations of interfaces, and motivates the use of abstract
classes which come next.

Many geometrical shapes have a radius, for example, of a circle, sphere, and cylinder. Suppose
we wanted to define classes Circle, Sphere, Cylinder of shapes that have a radius. In each case,
we might have a private field radius and public methods getRadius() and setRadius(). We
might also want a getArea() method.

We could define an interface Circular as follows:

public interface Circular{

public double getRadius();

public void setRadius(double radius);

public double getArea();

}

and define each of these classes to implement this interface. The problem with such a design is
that we would need to define each class to have a local variable radius and (identical) methods
getRadius() and setRadius(). Only the getArea() methods would differ between classes. We
could do this, but there is a better way to deal with these class relationships.

Abstract classes

The better way is to use a hybrid of a class and an interface in which some methods are implemented
but other methods are specified only by their signature. This hybrid is called an abstract class.

last updated: 30th Apr, 2022 at 10:02 76 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

One adds the modifier abstract to the definition of the class and to each method that is missing
its body. For example:

public abstract class Circular{

private double radius;

Circular(){};

Circular(double radius){ this.radius = radius; };

public double getRadius(){ return radius; }

public void setRadius(double radius){ this.radius = radius; }

public abstract double getArea();

}

This abstract class has just one abstract method getArea() that would need to be implemented
by the subclass Circle, Cylinder, or Sphere. For example:

public class Circle extends Circular{

Circle(double radius){ super(radius); }

double getArea(){

double r = this.getRadius();

return Math.PI * r*r;

}

double getPerimeter(){ return 2*MATH.PI * this.getRadius(); }

}

public class Cylinder extends Circular{

double height;

Cylinder(double radius, double h){

super(radius);

this.height = h;

}

double getArea(){ return 2* Math.PI * r * height; }

}

Note that the subclass Circle’s a method getPerimeter() would make no sense for a Sphere

or Cylinder since perimeter is defined for 2D shapes, not 3D shapes. Similarly, a method like
getVolume() would make sense for a Sphere and Cylinder, but not for a Circle.

last updated: 30th Apr, 2022 at 10:02 77 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

Here is a UML diagram for the above classes. (ASIDE: abstract class names and abstract
methods are shown in italics.)

An abstract class cannot be instantiated. However, abstract classes do have constructor methods.
The reason is that abstract classes can have fields and some implemented methods. So when the
abstract class is extended by a concrete subclass, the subclass inherits these fields and methods.
The subclass also provides the missing method bodies. Then, when the subclass is instantiated, the
values of the inherited subclass fields are set by the superclass constructor (either via an explicit
super() call, or by default). Thus, even if the superclass is abstract, it still needs a constructor.

Abstract classes also appear in class hierarchies/diagrams, along with interfaces:

last updated: 30th Apr, 2022 at 10:02 78 ©Michael Langer

COMP 250 W-2022 15 - inheritance 3 (interfaces, abstract classes) Feb. 9, 2022

Note that while a class can implement more than one interface, a class cannot extend two
abstract classes. The reason for this policy is the same for why a class cannot extend two classes
– namely if the two superclasses were to contain two different versions of an implemented method
then it wouldn’t be clear which of these two methods gets inherited by the subclass.

Polymorphism

One can declare variables to have a type that is an abstract class, just as one can declare a variable
to be of type class or of type interface.

C c ; // C is a class

A a ; // A is an abstract class

I i ; // I is an interface

As we have seen, the declared type of a reference variable does not entirely determine the class of
object that the variable can reference at runtime. At runtime, a variable can reference an object of
its declared type, but it can also reference an object that is a “subtype” (subclass) of the variable’s
declared type. In the example above, c can reference any object of class C or subclass of C – for
example, consider a Cat class and subclass SiameseCat. A variable a can reference any object whose
class extends A, or a subclass of a class that extends A, etc. i can reference any object whose class
implements I, or any object that extends a class that implements I, etc.

This property, that the object type can be narrower than the declared type, is called polymor-
phism. The name comes from Greek: poly means “many” and “morph” means forms.

When we discussed type conversion above, we concentrated on the type checking that is done
by the compiler. When we discuss polymorphism, we assume a program has compiled fine, and we
are concerned with which method is invoked at runtime. The method is determined by the class
that the object belongs to. Consider, for example:

boolean b;

Object obj;

: // some code not specified here

if (b)

obj = new float[23]; // an array of floats

else

obj = new Dog();

System.out.print(obj); // invokes the toString() method (*)

The compiler cannot say for sure which toString() method will be invoked since the compiler
doesn’t know for sure what the value of b will be when the if (b) condition is evaluated. Rather,
the toString() method must be determined at runtime, when (*) is executed and the variable obj

references either a float[] or a Dog. In each case, there will be a toString() method used which
is appropriate for the object. (Recall that every class has a toString() method.)

In the slides I went over a few more examples: the example of Dog.bark() which is overridden
by subclasses Beagle and Doberman, and example with the Shape interface, and an example with
the Circular abstract class.

last updated: 30th Apr, 2022 at 10:02 79 ©Michael Langer

COMP 250 W-2022 16 - Comparable-Iterable Feb. 9, 2022

No lecture notes for today – please see slides

last updated: 30th Apr, 2022 at 10:02 80 ©Michael Langer

COMP 250 W-2022 17 – stack Feb. 14, 2022

Abstract Data Types (ADT)

We began our discussion of lists a few lectures ago by defining a list abstractly as a set things of a
certain type and a set of operations that are applied to these things, such as getting, setting, adding
and removing. We can describe the behavior of a list using these operations, without necessarily
giving details on how the behavior is implemented. Indeed, we saw for lists that very different
implementations can be used for achieving the same behavior (ignoring issues of time complexity,
which sometimes do depend on the implementation).

A list is an example of an abstract data type (ADT). An ADT defines a data type by the values
that data can have and operations on the data. An ADT is defined from the point of view of
the user. What values and operations on these values are available to the use? An ADT is more
abstract than a data structure. We will see two more ADT’s in the next two lectures, namely the
stack and the queue. We will see more examples later in the course.

Note that ADT’s are not defined by a particular language. (Don’t confuse the ADT list with the
Java interface List.) They are related conceptually, but technically they are not the same thing.
ADT’s are an old idea in computer science and were around long before Java!

Stack ADT

You are familiar with stacks in your everyday life. You can have a stack of books on a table. You
can have a stack of plates on a shelf. In computer science, a stack is an abstract data type (ADT)
with two operations: push and pop. You either push something onto the top of the stack or you pop
the element that is on the top of the stack. A more elaborate ADT for the stack might allow you
to check if the stack has any items in it (isEmpty) or to examine the top element without popping
it (top, also known as peek).

Note that a stack is a kind of list, in the sense that it is a finite set of ordered elements. However,
it has fewer operations you can apply on it. Unlike a list, a stack generally does not allow you to
directly access the i-th element.

Data structure for a stack

What is a good data structure for a stack? A stack is a list, so its natural to use one of the list
data structures.

If you use an array list, then you should push and pop at the end of the list with addLast()

or removeLast. 11 The reason is that if you add or remove from the front of an array list, you
need to shift all the other elements each time which is inefficient. If you use a singly linked list to
implement a stack, then you should push and pop at the front of the list, not at the back. The
reason (recall) is that removing i.e. popping from the back of a singly linked list would be inefficient
i.e. you need to walk through the entire list to find the node that points to the last element which
you are popping. For a doubly linked list, it doesn’t matter whether you push/pop at the front or
at the back. Either work, but you have to be consistent: either do both at the front, or do both at
the back.

11Here I give the Java-sounding names for these operations, although note that Java ArrayList class actually
doesn’t have these particular methods. But let’s not worry about it, since the method name is not the point here.

last updated: 30th Apr, 2022 at 10:02 81 ©Michael Langer

COMP 250 W-2022 17 – stack Feb. 14, 2022

Example 1

Here we make a stack of numbers. This example is mostly to illustrate the notation we’ll use. The
timeline goes left to right. We assume the stack is empty initially, and then we have a sequence of
pushes and pops.

push(3), push(6), push(4), push(1), pop(), push(5), pop(), pop()

The elements that are popped will be 1, 5, 4 in that order, and afterwards the stack will have two
elements in it, with 6 at the top and 3 below it. Here is how the stack evolves over time:

1 5

4 4 4 4 4

6 6 6 6 6 6 6

3 3 3 3 3 3 3 3

--

Example 2: Balancing parentheses

It often occurs that you have a string of symbols which include left and right parentheses that must
be properly nested or balanced. (In this discussion, I will use the term “nested” and “balanced”
interchangeably.) One checks for proper nesting using a stack.

Suppose there are multiple types of left and right parentheses, for example, (,), {, }, [,].
Consider the string:

(([])) [] { [] }

You can check for balanced parentheses using a stack. You scan the string left to right. When you
read a left parenthesis you push it onto the stack. When you read a right parenthesis, you pop the
stack (which contains only left parentheses) and check if the popped left parenthesis matches the
right parenthesis. For the above example, the sequence of stack states would be as follows.

[

((([

((((([{ { {

--

and the algorithm terminates with an empty stack. So the parentheses are properly balanced.
Here is an example where each type of parenthesis on its own is balanced, but overall the

parentheses are not balanced.

(([)]) [[]] { [}]

[

((

(((

---------------- X since next symbol is ")" which doesn’t match top

last updated: 30th Apr, 2022 at 10:02 82 ©Michael Langer

COMP 250 W-2022 17 – stack Feb. 14, 2022

The basic algorithm for matching parentheses is shown below. We assume the input has been
already partitioned (“parsed”) into disjoint tokens. For this example, a token can be one of the
following:

� a left parenthesis (there may be various kinds)

� a right parenthesis (there may be various kinds)

� a string not containing a left or right parenthesis (operators, variables, numbers, etc)

ALGORITHM: CHECK FOR BALANCED LEFT AND RIGHT PARENTHESES

INPUT: SEQUENCE OF TOKENS

OUTPUT: TRUE OR FALSE (I.E. BALANCED OR NOT)

while (there are more tokens) {

token = get next token

if token is a left parenthesis

push(token)

else { // token is a right parenthesis

if stack is empty

return false

else {

pop left parenthesis from stack

if popped left parenthesis doesn’t match the right parenthesis

return false

}

}

}

Example 3: HTML tags

The above problem of balancing different types of parentheses might seem a bit contrived. But in
fact, this arises in many real situations. An example is HTML tags. If you have never looked at
HTML markup before, then open a web browser right NOW and look at “view→ page source” and
check out the tags. They are the things with the angular brackets.

Tags are of the form <tag> and </tag>. They correspond to left and right parentheses, re-
spectively. For example, and are “begin boldface” and “end boldface”. HTML tags are
supposed to be properly nested. For example, consider

 I am boldface, <i> I am boldface and italic, </i>

<i> I am just italic </i>.

The tag sequence is <i></i><i></i> and the “parenthesis” are indeed balanced, i.e. prop-
erly nested. Compare that too

 I am boldface, <i> I am boldface and italic I am just italic </i>

last updated: 30th Apr, 2022 at 10:02 83 ©Michael Langer

COMP 250 W-2022 17 – stack Feb. 14, 2022

whose tags sequence is <i></i> which is not properly balanced. The latter is the kind of
thing that novice HTML programmers write. It does make some sense, if you think of the tags as
turning on or off some state (bold, italic). But the HTML language is not supposed to allow this.
And writing HTML markup this way can get you into trouble since errors such as a forgotten or
extra parenthesis can be very hard to find.

Many HTML authors write improply nested HTML markup. Because of this, web browsers typically
will allow improper nesting. The reason is that web browser programmers (e.g. google employees
who work on Chrome) want people to use their browser and if the browser displayed junk when
trying to interpret improper HTML markup, then users of the browser would give up and find
another browser.

See http://www.w3schools.com for basic HTML tutorials, if you are interested.

Example 4: stacks in graphics

The next example is a simple version of how stacks are used in computer graphics. Consider a
drawing program which can draw unit line segments (say 1 cm). Suppose the pen tip has a state
(x, y, θ) that specifies its (x, y) position on the page and an angular direction θ. This is the direction
in which it will draw the next line segment (see below). The pen state is initialized to be (0,0,0),
where θ = 0 is in the direction of the x axis.

Let’s say there are five commands:

� D - draws a unit line segment from the current position and in the direction of θ, that it, it draws
it from (x0, y0) to (x0 + cos θ, y0 + sin θ). It moves the state position to the end of the line just
drawn. Recall cos(0) = 1, cos(90) = 0, cos(180) = −1, sin(0) = 0, sin(90) = 1, sin(180) = 0, ...

� L - turns left (counter-clockwise) by 90 degrees

� R - turns right (clockwise) by 90 degrees

� [- pushes the current state onto the stack

�] - pops the stack, and current state ← popped state

See the slides for a few examples.
Note that this simple language doesn’t allow one to move the pen without drawing, except by

returning to a position that the pen had been in previously. This means that the language can
only be used to draw connected figures. To draw disconnected figures, you would need another
instruction e.g. M could move the pen forward by a distance one without drawing.

Example 5: the “call stack”

We have been discussing stacks of things. One can also have a stacks of tasks. Imagine you are
sitting at your desk getting some work done (main task). Someone knocks on your door and you
let them in and chat. While chatting, the phone rings and you answer it. You finish the phone
conversation and go back to the person in your office. Then maybe there is another interruption
which you take care of, return to work, etc. In each case, when you are done with a task, you ask
yourself “what was I doing just before I began this task?”

last updated: 30th Apr, 2022 at 10:02 84 ©Michael Langer

http://www.w3schools.com

COMP 250 W-2022 17 – stack Feb. 14, 2022

A similar stack of tasks occurs when a computer program runs. The program starts with a main

method. The main method typically has instructions that cause other methods to be called. The
program “jumps” to these methods, executes them and returns to the main method. Sometimes
these methods themselves call other methods, and so the program jumps to these other methods,
executes them, returns to the calling method, which finishes, and then returns to main.

A natural way to keep track of methods and to return to the ’caller’ is to use a stack. Suppose
main calls method mA which calls method mB, and then when mB returns, mA calls mC, which eventually
returns to mA, which eventually returns to main which then finishes.

Class Demo {

void mA() {

mB();

mC();

}

void mB() { ... }

void mC() { ... }

void main(){

mA();

}

}

The stack evolves as follows:

B C

A A A A A

main main main main main main main

Also see the slides for an example using the SLinkedList code from the linked list exercises. I
briefly showed how the TestSLinkedList calls the addLast() method of the LinkedList class, and
I show the Eclipse call stack. When you use Eclipse in debugger mode, and you set breakpoints in
the middle of methods, there is a panel that shows you the call stack.

Stack overflow versus underflow

You are probably familiar with the term “stack overflow”. What does this mean? Sometimes a
stack is limited to a certain size. When that size has been reached and one tries to push another
item onto the stack, we say that a stack overflow has occurred.

The term “stack underflow” is the opposite problem. Here we have a stack that is empty and
we try to pop from it.

last updated: 30th Apr, 2022 at 10:02 85 ©Michael Langer

COMP 250 W-2022 18 – queue

Queue

Last lecture we looked at an abstract data type (ADT) called a “stack.” I introduced the idea of
a stack by saying that it was a kind of list, but with a restricted set of operations, push and pop.
Today we will consider another kind of ADT called a “queue”. A queue can also be thought of a
list. However, a queue is again a restricted type of list since it has a limited set of operations.

You are familiar with queues in daily life. You know that when you have a single resource such
as a cashier in the cafeteria, you need to “join the end of the line” and the person at the front
of the line is the one that gets served next. There are many examples of queues in a computer
system. When you type on your keyboard, the key values enter a queue (or ’buffer’). Normally you
don’t notice the queue because each keystroke value gets read and removed from the queue before
the next one is entered. But sometimes the computer is busy doing something else, and you do
notice the queue. There is a pause where nothing you type gets echoed to your screen (e.g. to your
text editor), and then suddenly some sequence of characters you typed gets processed very quickly.
Other examples of queues are printer jobs, CPU processes, client requests to a web server, etc.

The fundamental property of a queue is that, among those things currently in the queue, the
one that is removed next is the one that first entered the queue, i.e. the one that was least recently
added. This is different from a stack, where the one that is removed next is the newest one, or the
most recently added. We say that queues implement “first come, first served” policy (also called
FIFO, first in, first out), whereas stacks implement a LIFO policy, namely last in, first out.

The queue abstract data type (ADT) has two basic operations associated with it: enqueue(e)

which adds an element to the queue, and dequeue() which removes an element from the queue. We
could also have operations isEmpty() which checks if there is an element in the queue, and peek()

which returns the first element in the queue (but does not remove it), and size() which returns
the number of items in the queue. But these are not necessary for a core queue.

Example

Suppose we add (and remove) items a,b,c,d,e,f,g in the following order, shown on left. On the
right is show the corresponding state of the queue after the operation.

OPERATION STATE AFTER OPERATION

(initially empty)

enqueue(a) a

enqueue(b) ab

dequeue() b

enqueue(c) bc

enqueue(d) bcd

enqueue(e) bcde

dequeue() cde

enqueue(f) cdef

enqueue(g) cdefg

last updated: 30th Apr, 2022 at 10:02 86 ©Michael Langer

COMP 250 W-2022 18 – queue

Data structures for implementing a queue

Singly linked list

One way to implement a queue is with a singly linked list. Just as you join a line at the back, when
you add an element to a singly linked list queue, you manipulate the tail reference. Similarly,
just as you serve the person at the front the queue, when you remove an item from a singly linked
list queue, you manipulate the head reference. The enqueue(E) and dequeue() operations are
implemented with addLast(E) and removeFirst() operations, respectively, when a singly linked
list is used. Of course, if a singly linked list works, then a doubly linked list would work too, since
it is a generalization of a singly linked list.

Array list

What if we implement a queue using an array list? In this case, enqueue(element) would be
addLast(element) and dequeue() would be removeFirst(). The enqueue() with array list is
fine; the only issue that comes up is that we would need to copy to a larger underlying array in the
case that the array is full. The main problem is the dequeue() method: removeFirst() would be
inefficient for array lists since we would have to shift all the remaining elements.

Circular array

An alternative to an array list – but which still uses an array – is treat the array as circular. The
relationship between indices becomes

tail = (head + size− 1) mod length.

In the initial state, we have size == 0 and head == 0. The formula gives tail the value length

- 1. See example below, and suppose that the array has length = 4.

0123 head tail size

---- 0 3 0

enqueue(a) a--- 0 0 1

enqueue(b) ab-- 0 1 2

remove() -b-- 1 1 1

enqueue(c) -bc- 1 2 2

enqueue(d) -bcd 1 3 3

enqueue(e) ebcd 1 0 4

dequeue() e-cd 2 0 3

enqueue(f) efcd 2 1 4

The next instruction is enqueue(g). If we were simply to make a new larger array and copy the
four elements to the front of this new array,

efcd----

then this would not work. We wouldn’t be able to add the g since it is supposed to go after f.

last updated: 30th Apr, 2022 at 10:02 87 ©Michael Langer

COMP 250 W-2022 18 – queue

Instead, we copy the elements to the larger array in such a way that the head is at position 0 in
the array.

cdef----

that is, head == 0, tail == 3.

The algorithm for enqueueing would go like this:

enqueue(element){ // using a circular array

if (size == length) { // increase length of array

create a bigger array tmp[] // e.g. 2*length

for i = 0 to length - 1

tmp[i] = queue[(head + i) mod length]

head = 0

tail = length - 1

queue = tmp

}

tail = (tail + 1) mod length

queue[tail] = element

size = size + 1

}

Note that the length variable appears a few times in the above pseudocode, and that its value
changes. Within the for loop of the if block, its value is the original length. But if the queue
array is enlarged, then the length value is doubled and so its value would be different when it is
used again outside the if block.

We see that we are copying the head to position 0 in the new array. That is, when i==0, we
are copying queue[head] to tmp[0]. As I noted in the slides, this is not the only way to copy the
elements to the bigger array. One could copy the head to the same position in the new array, and
then copy all remaining elements after it, wrapping around if necessary.

Finally, note that we don’t need to keep track of a tail variable here. Recalling the formula
from earlier, tail = (head + size - 1) mod length. If we know the three variables on the right
side, then we know tail. But the pseudocode is a bit easier to read if we represent tail explicitly.

Next consider dequeueing, which is simpler.

dequeue(){ // check that size > 0 (omitted)

element = queue[head]

head = (head + 1) mod length

size = size - 1

return element

}

Note that it “advances” the head but does not change tail.
One subtlety here is that if there is just one element in the queue, then head == tail before

we remove that element. So if remove this single element, then we advance the head index which
will leave head with a bigger value than tail (unless head and tail were length-1 in which case
head becomes 0).

At the end of the lecture, I went over one of the exercises in the stack and queue exercises PDF.

last updated: 30th Apr, 2022 at 10:02 88 ©Michael Langer

COMP 250 W-2022 19 - Mathematical induction

The next core topic in the course is recursion. We will look at a number of recursive algorithms
and we will analyze how long they take to run. Recursion can be a bit confusing when one first
learns about it. One way to understand recursion is to relate it to a proof technique in mathematics
called mathematical induction, which is what I’ll cover today.

Before I introduce induction, let me give an example of a statement that you have seen before,
along with a proof. The statement is:

For all n ≥ 1, 1 + 2 + 3 + · · ·+ (n− 1) + n =
n(n+ 1)

2
.

The following proof is slightly different from the one I gave in the slides. Here add up two copies of
the left hand side, one forward and one backward:

1 + 2 + 3 + · · ·+ (n− 1) + n

n+ (n− 1) ++ 3 + 2 + 1.

Then pair up terms and sum:

1 + n+ 2 + (n− 1) + 3 + (n− 2) + ...(n− 1) + 2 + n+ 1

Note that each pair sums to n + 1 and there are n pairs, which gives (n + 1) ∗ n. We then divide
by 2 because we added up two copies. This proves the statement above.

Mathematical induction

The above proof requires a trick, and many proofs in mathematics are like that – they use a specific
trick that seems to work only in a few cases. Mathematical induction is different in that it is a
general type of proof technique. To understand a proof by mathematic induction, you need to
understand the logic of the proof technique in general.

Mathematical induction allows one to prove statements about positive integers. We have some
proposition P (n) which is either true or false and the truth value may depend on n. We want
to prove the statement: “for all n ≥ n0, P (n) is true”, where n0 is some constant that we state
explicitly. In the above example, this constant is 1, but sometimes we have some other constant
that is greater than 1.

A proof by mathematical induction has two parts, and one needs to prove both parts.

1. a base case: the statement P (n) is true for n = n0.

2. induction step: for any k ≥ n0, if P (k) is true, then P (k + 1) must also be true.

When we talk about P (k) in step 2, we refer to it as the “induction hypothesis”. Note that
P (k) is just P (n) with n = k. We are using parameter k instead of n to emphasize that we’re
in the context of proving the induction step.

The logic of a proof by mathematical induction goes like this. Let’s say we can prove both the base
case and induction step. Then, P (n) is true for the base case n = n0, and the induction step implies
that P (n) is true for n = n0 + 1, and applying the induction step again implies that the statement
is true for n = n0 + 2, and so on forever for all n ≥ n0.

last updated: 30th Apr, 2022 at 10:02 89 ©Michael Langer

COMP 250 W-2022 19 - Mathematical induction

Example 1

Statement: for all n ≥ 1,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

Proof: The base case, n0 = 1, is true, since

1 =
1 · (1 + 1)

2
.

We next prove the induction step. For any k ≥ 1, we hypothesize that P (k) is true and then show
it follows from the hypothesis that P (k + 1) would be true (if P (k) were true).

k+1∑
i=1

i = (
k∑

i=1

i) + (k + 1)

=
k(k + 1)

2
+ (k + 1), by induction hypothesis that P(k) is true

= (k + 1)(
k

2
+ 1)

=
1

2
(k + 1)(k + 2)

and so P (k + 1) is also true. This proves the induction step. The proof is complete, since we have
proven the base case and the induction step.

Example 2

Statement: for all n ≥ 3,
2n+ 1 < 2n.

Proof: The base case n0 = 3 is easy to prove, i.e. 7 < 8. (Note that setting the base case to be
n0 = 2 would not work, nor would n0 = 1, since if we plug in then we get an expression P (n) that
is false.) That’s why we chose n0 = 3.)
To prove the induction step, let k be any integer such that k ≥ 3. We hypothesize that P (k) is true
and show that it would follow that P (k + 1) is also true. Note that P (k) is the inequality

2k + 1 < 2k

and P (k + 1) is the inequality
2(k + 1) + 1 < 2k+1.

To prove P (k + 1) we work with the expression on the left side of the latter inequality.

2(k + 1) + 1 = 2k + 3

= (2k + 1) + 2

< 2k + 2, by induction hypothesis that P (k) is true

< 2k + 2k, since 2 < 2k,when k ≥ 3

= 2k+1 .

last updated: 30th Apr, 2022 at 10:02 90 ©Michael Langer

COMP 250 W-2022 19 - Mathematical induction

Thus, if P (k) is true (k ≥ 3), then P (k + 1) would be true.

[ASIDE: You might be asking yourself, how did I know to use the inequality 2 < 2k ? The answer
is that I knew what inequality I eventually wanted to have, namely P (k + 1). Experience told me
how to get there.]

Example 3

Statement: For all n ≥ 5, n2 < 2n.

Proof: The base case n0 = 5 is easy to prove, i.e. 25 < 32.
Next we prove the induction step. The induction hypothesis P (k) is that inequality k2 < 2k holds,
where k ≥ 5. We show that if P (k) is true, then P (k+1) must also be true, namely (k+1)2 < 2k+1.
We start with the left side of P (k + 1).

(k + 1)2 = k2 + 2k + 1

< 2k + 2k + 1, by induction hypothesis, for k ≥ 5

< 2k + 2k, from Example 2

= 2k+1

which proves the induction step.
Note that the base case choice is crucial here. The statement P (n) is not true for n = 0, 1, 2, 3, 4.

Also, note that the induction step happens to be valid for a larger range of k, namely k ≥ 3 rather
than k ≥ 5. But we only needed it for k ≥ 5.

Example 4: upper bound on Fibonacci numbers

Consider the Fibonnacci12 sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ... where

F (0) = 0, F (1) = 1,

and, for all n > 2, we define F (n) by

F (n) ≡ F (n− 1) + F (n− 2).

Statement:
for all n > 0, F (n) < 2n.

Proof:
The statement P (k) is “F (k) < 2k”. We take the base case(s) to be two values n0 = 0, 1. By

definition, F (0) = 0, F (1) = 1. Since F (0) = 0 < 20 and F (1) = 1 < 21, P (n) is true for both base
cases.

The induction hypothesis P (k) is that F (k) < 2k where k ≥ 2. For the induction step, we
hypothesize that P (k) and P (k − 1) are true for some k and k − 1 and we show this would imply

12http://en.wikipedia.org/wiki/Fibonacci_number

last updated: 30th Apr, 2022 at 10:02 91 ©Michael Langer

http://en.wikipedia.org/wiki/Fibonacci_number

COMP 250 W-2022 19 - Mathematical induction

P (k + 1) must also be true, that is, F (k + 1) < 2k+1. Again, we start with the left side of this
inequality:

F (k + 1) ≡ F (k) + F (k − 1)

< 2k + 2k−1 by induction hypothesis

< 2k + 2k

= 2k+1

and so P (k) is true indeed implies that P (k+ 1) is true, and so we have proven the induction step.
So we are done.

Next lecture, we will look at the technique of recursion and show how it is related to the idea
of mathematical induction.

last updated: 30th Apr, 2022 at 10:02 92 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

Recursion

Recursion is a technique for solving problems in which the solution to the problem of size n is based
on solutions to versions of the problem of size smaller than n. Many problems can be solved either
by a recursive technique or non-recursive (e.g. iterative) technique, and often these techniques are
closely related. In the next few lectures, we’ll look at several examples. We’ll also see how recursion
is closely related to mathematical induction, which I covered in the previous lecture.

Example 1: Factorial

The factorial function is defined as follows:

n! = 1 · 2 · 3 . . . (n− 1) · n

where 0! is defined to be 1 by convention. Unlike the sum of numbers to n which we discussed last
class, there is no formula that gives us the answer of taking the product of numbers from 1 to n,
and we need to compute it. Here is an algorithm (written in Java) for computing it. Ignore the
fact that int only can represent a finite range of values since that’s not the point here.

int factorial(int n){ // assume n >= 1

int result = 1;

for (int i = 1; i <= n; i++)

result *= i;

return result;

}

Here is another way to define and compute n! which is more subtle, namely if n > 1, then

n! = n · (n− 1)!

Here is the corresponding algorithm coded in Java which is recursive. Note that the method
factorial calls itself.

static int factorial(int n){ // algorithm assumes argument: n >= 1

if (n == 0)

return 1; // base condition

else

return n * factorial(n - 1);

}

Recursive algorithms can’t keep called themselves ad infinitum. Rather, they need to have a
condition which says when to stop. This is called a base condition. For the factorial function,
the base condition is that the argument is 0. Anytime you write a recursive algorithm, make sure
you have a base condition and make sure you reach it. Typically this is ensured by having the
parameter of the recursive call be smaller, e.g. n-1 rather than n in the case of factorial.

last updated: 30th Apr, 2022 at 10:02 93 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

Let’s use mathematical induction to convince ourselves that the factorial algorithm is correct.

Claim: The recursive factorial algorithm indeed computes n! for any input value n ≥ 0.

Proof: First, the base case: If the parameter n is 1, then the algorithm returns 1. (Easy to verify.)
Second, the induction step: The induction hypothesis is that factorial(k) indeed returns k!.

We want to show it follows that factorial(k+1) returns (k + 1) !. But this is easy to see by
inspection, since the induction hypothesis implies that the algorithm returns (k + 1) ∗ k!, which is
just (k + 1)!.

Example 2: Fibonacci numbers

Consider the Fibonnacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

F (n) = F (n− 1) + F (n− 2),

where F (0) = 0, F (1) = 1. The function F (n) is defined in terms of itself, and so it is recursive.
Here is an iterative algorithm for computing the n-th Fibonacci number. We start at n = 0, 1

and move forward (assuming n > 0).

fibonacci(n){

if ((n == 0) | (n == 1))

return n

else{

f0 = 0

f1 = 1

for i = 2 to n{

f2 = f1 + f0

f0 = f1 // set F(n) for next round

f1 = f2 // set F(n+1) for next round

}

return f2

}

}

The method requires n passes through the “for loop”. Each pass takes a small (fixed) number of
operations. So we would expect the number of steps to be about cn for some constant c.

A recursive algorithm for computing the nth Fibonacci number is simpler to express:

fibonacci(n){ // assume n > 0

if ((n == 0) || (n == 1))

return n

else

return fibonacci(n-1) + fibonacci(n-2)

}

Here is a proof that this recursive algorithm for computing the nth Fibonaccie number is correct.
First, the base case: If the parameter n is 0 or 1, then the algorithm returns 0 or 1, respectively,
which is correct.

last updated: 30th Apr, 2022 at 10:02 94 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

Second, the induction step: the induction hypothesis is that fibonacci(k) and fibonacci(k-1)

returns the kth and (k − 1)-th Fibonacci number, for any k ≥ 1. We want to show that this
implies fibonacci(k+1) returns the (k + 1)th Fibonacci number. But again this is easy to see by
inspection, since the algorithm returns the sum of k-1th and kth Fibonacci numbers which is the
k+1th Fibonacci number.

The recursive version turns out to be very slow, however, since it ends up calling fibonacci

on the same parameter n many times, which is unnecessary. For example, suppose you are
asked to compute the 247-th Fibonacci number. fibonacci(247) calls fibonacci(246) and
fibonacci(245), and fibonacci(246) calls fibonacci(245) and fibonacci(244). But now no-
tice that fibonacci(245) is called twice. The problem here is that every time you want to compute
fibonacci(k) where k > 1, you need to do two recursive calls. This leads to a combinatorial ex-
plosion in the number of calls. (I haven’t provided a formal calculation here in exactly how many
calls would be made, but hopefully you get the idea that many repetitions of the same calls occur.
If not, see the picture in the slides.) In COMP 251, you’ll see many problems of this nature and
you’ll learn a nice and simple technique for dealing with it - called dynamic programming. The
idea for the fibonacci case is easy to explain. Just keep track of which fibonacci numbers you have
already computed and only call recursively fibonacci(k) when you haven’t computed it yet.

Example 3: reversing a list

Let’s next revisit a few algorithms for lists, and examine recursive versions. The first example is to
reverse a list (see linked list exercises for an iterative version). The idea can be conveyed with the
following picture. To reverse the list,

(a b c d e f g)

we can remove the first element a and reverse the remaining elements,

a (b c d e f g) ----> a (g f e d c b)

and then add the removed element at the end of the (reversed) list.

(g f e d c b a)

Here is the pseudocode. I have written it so that list is an argument to the various methods that
are called, which is different notation from what we used in the list lectures.

reverse(list){ // assume n > 0

if list.size == 1 // base case

return list

else{

firstElement = removeFirst(list)

list = reverse(list) // list has only n-1 elements

return addLast(list, firstElement)

}

}

And here is some Java code for a class that implements the List methods:

last updated: 30th Apr, 2022 at 10:02 95 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

static void reverse(List list) {

if(list.size()==1) {

return;

}

firstElement = list.remove(0);

reverse(list); // this list has n-1 elements

list.add(firstElement); // appends at the end of the list

}

Example 4: sorting a list

Recall the selection sort algorithm. The basic idea was to maintain two lists: a sorted list, and
a ’rest’ list which is unsorted. The algorithm loops repeatedly through the rest list, removes the
minimum element each time, and adds it to the end of the sorted list. (Since the sorted list consists
of elements that are all smaller than or equal to elements in the rest list, all the elements of the
rest list will eventually be added after elements in the sorted list.)

The recursive algorithm below is a similar idea. Remove the minimum element, sort the rest
list (recursively), and add the minimum element to the front of the sorted rest list (that is, the
sorted rest list will be after any minimum elements that have been removed). That may sound
complicated, but look how simple the pseudocode is:

sort(list){ // assumes list.size >= 1

if list.size == 1

return list // base case

else{

minElement = removeMin(list)

list = sort(list)

return addFirst(list, minElement)

}

}

Example 5: Tower of Hanoi

Let’s now turn to an example of a problem in which a recursive solution is very easy to express,
and a non-recursive solution is very difficult to express (and I won’t even both with the latter).
The problem is called Tower of Hanoi. There are three stacks (towers) and a number n of disks of
different radii. (See http://en.wikipedia.org/wiki/Tower_of_Hanoi). We start with the disks
all on one stack, say stack 1, such that the size of disks on each stack increases from top to bottom.
The objective is to move the disks from the starting stack (1) to one of the other two stacks, say 2,
while obeying the following rules:

1. A larger disk cannot be on top of a smaller disk.

2. Each move consists of popping a disk from one stack and pushing it onto another stack, or
more intuitively, taking the disk at the top of one stack and putting it on another stack.

last updated: 30th Apr, 2022 at 10:02 96 ©Michael Langer

http://en.wikipedia.org/wiki/Tower_of_Hanoi

COMP 250 W-2022 20 - Recursion (intro)

The recursive algorithm for solving the problem goes as follows. The three stacks are labelled
s1, s2, s3. One of the stacks is where the disks “start”. Another stack is where the disks should all
be at the “finish”. The third stack is the only remaining one.
[ASIDE: In the lecture and slides, I did not use the term “stack” to define the towers and moves,
since I didn’t want to distract you by thinking about the stack ADT. For this problem, I think it
is conceptually simpler just to think of “moving” a disk and obeying rules 1 and 2, rather than to
re-express the problem and rules in terms of stacks and push and pop operations.]

tower(n, start, finish, other) // only call with n¿0

if n==1 then

move from start to finish // i.e. finish.push(start.pop())

else

tower(n-1, start, other, finish)

move from start to finish // i.e. finish.push(start.pop())

tower(n-1, other, finish, start)

end if

Here I will label the stacks A, B, C. For example, tower(1,A,B,C) would result in:

move from A to B

What about tower(2,A,B,C) ? This would produce the following sequence of instructions:

tower(1,A,C,B)

move from A to B

tower(1,C,B,A)

and the two calls tower(1,*,*,*) would each move one disk, similar to the previous example (but
with different parameters). So, in total there would be 3 moves:

move from A to C

move from A to B

move from C to B

Here are the states of the tower for tower(3,A,B,C) and the corresponding print instructions.
Notice that we need to do the following:

tower(2,A,C,B)

move from A to B

tower(2,C,B,A)

The initial state is:

*

**

--- --- --- (initial)

last updated: 30th Apr, 2022 at 10:02 97 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

So first we do tower(2,A,C,B), which takes 3 moves:

**

*** *

--- --- --- (after moving disk from A to B)

*** * ** (after moving disk from A to C)

--- --- ---

*

*** ** (after moving from B to C)

--- --- ---

Next we do "move from A to B":

*

*** **

--- --- --- (after moving from A to B)

Then we call tower(2, C, B, A) which does the following 3 moves:

* *** **

--- --- --- (after moving from C to A)

**

* ***

--- --- --- (after moving from C to B)

*

**

--- --- --- (after moving from A to B)

and we are done!

Claim: For any n ≥ 1 , towers of Hanoi algorithm is correct for n disks

For the algorithm to be “correct”, we need to ensure that a larger disk is never place on top of a
smaller disk, and that we move one disk at a time, and that the n disks are eventually moved from
the start to finish. The proof is by mathematical induction.

last updated: 30th Apr, 2022 at 10:02 98 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

Base case: The rule is obviously obeyed if n = 1 and the algorithm simply moves the one disk from
start to finish.
Induction step: Suppose the algorithm is correct if there are n = k disks on some initial tower and
the other towers contain only larger disks. This is the induction hypothesis. We need to show that
the algorithm is therefore correct if there are n = k + 1 disks on some initial tower and the other
towers contain only larger disks. For n = k + 1, the algorithm has three steps, namely,

� tower(k,start,other,finish))

� move from start to finish

� tower(k,other,finish,start)

The first recursive call to tower moves k disks from start to other, while obeying the rules for these
k disks. (This is the induction hypothesis). The second step moves the biggest disk (k + 1) from
start to finish. This also obeys the rule, since finish does not contain any of the k smaller
disks (because these smaller disks were all moved to the other tower). Finally, the second recursive
call to tower move k disks from other to finish, while obeying the rules (again, by the induction
hypothesis). This completes the proof.

How many moves does tower(n, ...) take? tower(1, ...) takes 1 move. tower(2, ...) takes
3 moves, namely two recursive calls to tower(1, ...) which take 1 move each, plus one move.
tower(3, ...) makes two recursive calls to tower(2, ...) which we just said takes 3 moves
each, plus one move, for a total of 3*2 + 1 = 7. Similarly, tower(4, ...) makes two recursive
calls to tower(3, ...) which we just said takes 7 moves each, plus one move, for a total of 7*2 +
1 = 15. And so on... tower(5, ...) takes 2*15 + 1 = 31 moves, and tower(6, ...) takes 2*31
+ 1 = 63 moves. In general, tower(n, ...) makes two recursive calls to tower(n-1, ...) plus
one move. So one can prove by induction that tower(n, ...) takes 2n − 1 moves.

Recursion and the Call Stack

In the stack lecture (16), I mentioned the ”call stack”. Each time a Java method calls another
method (or a method calls itself, in the case of recursion), the computer needs to do some admin-
istration to keep track of the “state” of method at the time of the call. This information is called
a “stack frame”. You will learn more about this in COMP 273, but it is worth mentioning now to
take some of the mystery out of how recursion is implemented in the computer.

As an example, suppose the program calls factorial(6). This leads to a sequence of recur-
sive calls and subsequent returns from these calls. For example, right before returning from the
factorial(3) call, we have made the following sequence of calls and returns:

factorial(6), factorial(5), factorial(4), factorial(3), factorial(2),

factorial(1), return from factorial(1), return from factorial(2)

the call stack looks like this,

frame for factorial(3): [factn = 6, n=3] <---- top of stack

frame for factorial(4): [factn = 0, n=4]

frame for factorial(5): [factn = 0, n=5]

frame for factorial(6): [factn = 0, n=6] <---- bottom of stack

last updated: 30th Apr, 2022 at 10:02 99 ©Michael Langer

COMP 250 W-2022 20 - Recursion (intro)

Using the Eclipse debugger and setting breakpoint within the factorial() method, you can see
how the stack evolves. I strongly recommend that you do this and verify how this works.

http://www.cim.mcgill.ca/~langer/250/TestFactorial.java

I would do the same for the Tower of Hanoi.

http://www.cim.mcgill.ca/~langer/250/TestTowerOfHanoi.java

See slides for screen shots.
I should emphasize that the call stack is not some abstract idea, but rather it is a real data

structure used by the program that runs your Java program (called the “Java Virtual Machine”).
The stack consists of stack frames, one for each method that is called. In the case of recursion,
there is one stack frame for each time the method is called.

The stack frame contains all the information that is needed for that method. This includes
local variables declared and used by that method, parameters that are passed to the method, and
information about where the method returns when it is done, that is, who called the method.

You will learn about the call stack and stack frames work in much more detail in COMP 273.
I mention it here because I want you to get familiar with the idea, and because I want you to be
aware that the call stack and stack frame really exist. Indeed most decent IDEs will allow you to
examine the call stack (see slides) and at least the current stack frame, i.e. the frame on top of the
call stack. See the examples in the lecture slides.

last updated: 30th Apr, 2022 at 10:02 100 ©Michael Langer

http://www.cim.mcgill.ca/~langer/250/TestFactorial.java
http://www.cim.mcgill.ca/~langer/250/TestTowerOfHanoi.java

COMP 250 W-2022 21 - binary search, mergesort 1

In the next few lectures, we’ll give a few more fundamental examples of recursion. The first is
binary search, but before we go there let’s revisit a problem we discussed at the beginning of the
course.

Converting a number to its binary representation

Recall how to convert a decimal number n ≥ 1 to binary. Here I’ll write the algorithm such that
we print out the bits from low to high.

toBinary(n){ // iterative

i = 0

while n > 0 {

print n % 2 // bit i

n = n/2

i = i+1

}

}

Next we write the algorithm recursively.

toBinary(n){ // algorithm assumes input n >= 1

if n >= 1{ // otherwise base case, and do nothing

print n % 2

toBinary(n/2)

}

}

Note that this prints the bits from the lowest order to highest order, i.e. same as the iterative
algorithm. If we were to swap the print and the toBinary calls, then we would print from highest
order to lowest order. If you don’t understand why, then see the “countdown” and ”countup”
examples in the exercises.

Finally, recall from lecture 2 that the iterative version of the algorithm loops about log2 n times,
where n is the original number. For the same reason, the recursive version has about log2 n recursive
calls, one for each bit of the binary representation of the number. We next turn to another important
example of an algorithm that has this O(log2 n) time complexity.

Binary search in a sorted (array) list

Suppose we have an array list of n elements which are already sorted from smallest to largest.
These could be numbers or strings sorted alphabetically. Consider the problem of searching for a
particular element in the list. Say we return the index in 0, , n−1 of that element if it is present
in the list. If the element is not present in the list, then we return -1.

One way to do this would be to scan the values in the array, using say a while loop. In the
worst case that the value that we are searching for is the last one in the array, we would need to

last updated: 30th Apr, 2022 at 10:02 101 ©Michael Langer

COMP 250 W-2022 21 - binary search, mergesort 1

scan the entire array to find it. This would take n steps. Such a linear search is wasteful since it
doesn’t take advantage of the fact that the array is already sorted.

A much faster method, called binary search, takes advantage of the fact that the array is sorted.
You are familiar with this idea. Think of when you look up a word in an index in the back of a book.
Since the index is sorted alphabetically, you don’t start from the beginning and scan. Instead, you
jump to somewhere in the middle.13 If the word you are looking for comes before those on the page,
then you jump to some index roughly in the middle of those elements that come before the one you
jumped to, and otherwise you jump to a position in the middle of those that come after the one you
jumped to. The binary search algorithm does essentially what I just described. Let’s first present
an iterative (non-recursive) version of binary search algorithm.

binarySearch(list, value){ // iterative

low = 0

high = list.size - 1

while low <= high {

mid = (low + high)/ 2 // so mid == low, if high - low == 1

if list[mid] == value

return mid

else{ if value < list[mid]

high = mid - 1 // high can become less than low

else

low = mid + 1 }

}

return -1 // value not found

}

For each pass through the while loop, the number of elements in the array that still need to be
examined is cut by at least half. Specifically, if [low, high] has an odd number of elements (2k+1),
then the new [low, high] will have k elements, or less than half. If [low, high] has an even
number of elements (2k), then the new [low, high] has either k or k-1 elements, whih is at most
half. Note that the new [low, high] does not contain the mid element.

It follows that for an input array with n elements, there are about log2 n passes through the
loop. This is the same idea as converting a number n to binary, which takes about log2 n steps to
do, i.e. the number of times we can divide n by 2 until we get 0.

The details of the above algorithm are a bit tricky and it is common to make errors when coding
it up. There are two inequality tests: one is ≤ and one is <, and the way the low and high variables
are updated is also rather subtle. For example, note that if the item is not found then the while
loop exits when high < low. There is no explicit check for the case that high == low.

13Of course, if you are looking for a word that starts with ”b”, then you don’t just into the middle, but rather you
start near the beginning. But let’s ignore that little detail here.

last updated: 30th Apr, 2022 at 10:02 102 ©Michael Langer

COMP 250 W-2022 21 - binary search, mergesort 1

Here is a recursive version. Notice how the iterative and recursive versions of the algorithm are
nearly identical. One difference is that the recursive version passes in the low and high variables.

binarySearch(list, value, low, high){ // recursive

if low > high {

return -1

else{

mid = (low + high) / 2

if value == list[mid]

return mid

else if value < list[mid]

return binarySearch(list, value, low, mid - 1)

else

return binarySearch(list, value, mid+1, high)

}

}

The lecture slides contain more material, including a discussion of time complexity and
an introduction to mergesort. See the lecture 22 notes for the full mergesort notes.

last updated: 30th Apr, 2022 at 10:02 103 ©Michael Langer

COMP 250 W-2022 22 - Mergesort 2, Quicksort

In the lecture slides, I introduced mergesort in lecture 21. Here I will put all the
mergesort material into these lecture (22) notes.

Mergesort

In lecture 11, we saw three algorithms for sorting a list of n items. We saw that, in the worst case,
all of these algorithm required O(n2) operations. Such algorithms will be unacceptably slow if n is
large.

To make this claim more concrete, consider that if n = 220 ≈ 106 i.e one million, then n2 ≈ 1012.
How long would it take a program to run that many instructions? Typical processors run at about
109 basic operations per second (i.e. GHz). So a problem that takes in the order of 1012 operations
would require thousands of seconds of processing time. (Having a multicore machine with say 4
processors only can speed things up by a factor of 4 which doesn’t change the argument here.)

We next consider an alternative sorting algorithm that is much faster that these earlier O(n2)
algorithms. This algorithm is called mergesort. Here is the idea. If the list has just one element
(n = 1), then do nothing. Otherwise, partition the list of n elements into two lists of size about
n/2 elements each, sort the two individual lists (recursively, using mergesort), and then merge the
two sorted lists.

For example, suppose we have a list

< 8, 10, 3, 11, 6, 1, 9, 7, 13, 2, 5, 4, 12 > .

We partition it into two lists

< 8, 10, 3, 11, 6, 1 > < 9, 7, 13, 2, 5, 4, 12 > .

and sort these (by applying mergesort recursively):

< 1, 3, 6, 8, 10, 11 > < 2, 4, 5, 7, 9, 12, 13 > .

Then, we merge these two lists to get

< 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 > .

Here is pseudocode for the algorithm. Note that it uses a helper method merge which does most
of the work.

mergesort(list){

if list.length == 1

return list

else{

mid = (list.size - 1) / 2

list1 = list.getElements(0,mid)

list2 = list.getElements(mid+1, list.size-1)

list1 = mergesort(list1)

list2 = mergesort(list2)

return merge(list1, list2)

}

}

last updated: 30th Apr, 2022 at 10:02 104 ©Michael Langer

COMP 250 W-2022 22 - Mergesort 2, Quicksort

Below is the merge algorithm. Note that it has two phases. The first phase initializes a new list
(empty), steps through the two lists, (list1) and (list2), compares the front element of each list
and removes the smaller of the two, and this removed element to to the back of the merged list.
See the detailed example in the slides of lecture 21 for an illustration.

The second phase of the algorithm starts after one of list1 or list2 becomes empty. In this
case, the remaining elements from the non-empty list are moved to list. This second phase uses
two while loops in the above pseudocode, and note that only one of these two loops will be used
since we only reach phase two when one of list1 or list2 is already empty.

merge(list1, list2){

new empty list

while (list1 is not empty) & (list2 is not empty){

if (list1.first < list2.first)

list.addlast(list1.removeFirst())

else

list.addlast(list2.removeFirst())

}

while list1 is not empty

list.addlast(list1.removeFirst())

while list2 is not empty

list.addlast(list2.removeFirst())

return list

}

I have written the mergesort and merge algorithms using abstract list operations only, rather
than specifying how exactly it is implemented (array list versus linked list). Staying at an abstract
level has the advantage of getting us quickly to the main ideas of the algorithm: what is being
computed and in which sequence? Heads up though: there are disadvantages of hiding the imple-
mentation details, i.e. the data structures. Sometimes the choice of data structure can be important
for performance (as we saw when we compared arraylists and linked lists).

mergesort is O(n log n)

There are log n levels of the recursion, namely the number of levels is the number of times that
you can divide the list size n by 2 until you reach 1 element per list. The number of instructions
that must be executed at each level of the recursion is proportional to the number n of items in
the list. This is most easily visualized using the example given in the slides, when I went through
how all of the partitions and merges worked. There were 2 log2 n columns, half corresponding to
the partitioning in to smaller lists and half corresponding to merges. The total number of elements
in each columns is n. Making the columns in the merge steps require time roughly proportional to
n log2 n since there are log2 n columns to be built. Admittedly, the above argument is hand waving!
I will discuss the time complexity of mergesort more formally at the end of the course using a
technique called recurrences.

last updated: 30th Apr, 2022 at 10:02 105 ©Michael Langer

COMP 250 W-2022 22 - Mergesort 2, Quicksort

To appreciate the difference between the number of operations for the earlier O(n2) sorting
algorithms versus O(n log n) for mergesort, consider the following table.

n log n n log n n2

103 ≈ 210 10 104 106

106 ≈ 220 20 20× 106 1012

109 ≈ 230 30 30× 109 1018

...

When n becomes large, the time it takes to run mergesort is significantly less than the time it takes
to run bubble/selection/insertion sort. Roughly speaking, on a computer that runs 109 operations
per second running mergesort on a list of size n = 109 would take in the order of minutes, whereas
running insertion sort would take centuries.

Quicksort

Another well-known recursive algorithm for sorting a list is quicksort. This algorithm is similar to
mergesort, in the sense that it partitions the list. But there are important differences.

At each call of quicksort, one sorts a list as follows. An element known as pivot chosen. For
example, the pivot might be the first element or the last element, of some element chosen by a
preliminary examination of the list. Let pivot be the value of the pivot. The remaining elements
in the list are then partitioned into two lists: list1 which contains those smaller than the pivot,
and list2 which contains those elements that are greater than or equal to the pivot. The two lists
list1 and list2 are recursively sorted. Then the two sorted lists and the pivot are concatenated
into a sorted list which contains all the original elements (specifically, list1 followed by pivot

followed by list2). Here is high level idea of how it works.

quicksort(list){

if list.length <= 1

return list

else{

pivot = list.removeFirst() // or some other element

list1 = list.getElementsLessThan(pivot)

list2 = list.getElementsNotLessThan(pivot) // i.e. the rest

list1 = quicksort(list1)

list2 = quicksort(list2)

return concatenate(list1, pivot, list2)

}

}

Unlike mergesort, most of the work in quicksort is done prior to the recursive calls. Given a
pivot element, the algorithm goes through the rest of the list and compares each element to e. This
takes time proportional to the size of list in that recursive call, since one needs to examine each of
the elements in the list and decide whether to put it into either list1 or list2. The concatenation
that is done after sorting list1 or list2 might also involve some work, depending on the data
structure used.

last updated: 30th Apr, 2022 at 10:02 106 ©Michael Langer

COMP 250 W-2022 22 - Mergesort 2, Quicksort

Quicksort in-place implementation

One common implementation of quicksort uses a single array. No extra space required for copying
the elements (unlike in mergesort, where it is very natural to use an extra array for the merge step).
Sorting without using any extra space is called in place sorting.14

Here is the quicksort algorithm. The partition method is given below.

quicksort(list, low, high){ // \void"

if low < high {

wall = partition(list, low, high)

quicksort(list, low, wall - 1)

quicksort(list, wall + 1, high)

}

}

Most of the work is done by the partition algorithm which works with an interval [low,high]
within the list. See the slides for a detailed example of how partition works.

partition(list, low , high)

pivot = list[high]

wall = low - 1

for (i = low ; i <= high; i++)

if (list[i] <= pivot){

wall++

if (wall != i)

list.swap(wall, i)

}

return wall

}

The partition method begins by choosing the last element of the [low,high] interval, namely
list[high], as the pivot. The partition method contains a for loop that iterates a variable i

through the list from position low to position high. It also updates the wall position. The idea
is that whenever you find a list[i] that is less than or equal to the pivot, you increment wall in
order to make room for the element list[i] you have just found. At the end of the for loop, the
element will be the pivot itself.

When the partition algorithm terminates, all elements that have value less than pivot are
positioned to the left of the pivot and all elements with value greater than pivot are positioned to
the right of the pivot.

See the slides for an example. You should practice this algorithm to make sure you indeed
understand it. Don’t just practice the partition step; also practice the recursion.

We will discuss the time complexity of quicksort later in the course. I will try to add some
questions to the exercises for now so you get an intuition of best case and worst case.

14Bubble sort, selection sort, and insertion sort were also “in place” sorting algorithms.

last updated: 30th Apr, 2022 at 10:02 107 ©Michael Langer

COMP 250 W-2022 23 – (rooted) trees March 7, 2022

(Rooted) Trees

Thus far we have been working mostly with “linear” collections, namely lists. For each element in
a list, it makes sense to talk about the previous element (if it exists) and the next element (if it
exists). It is often useful to organizes a collection of elements in a “non-linear” way. In the next
several lectures, we will look at some examples. Today we begin with (rooted) trees.

Like a list, a rooted tree is composed of nodes that reference one another. With a tree, each
node can have one “parent” and multiple “children”. You can think of the parent as the “prev”
node and the children as “next” nodes. The key difference here is that a node can have multiple
children, whereas in a linked list a node has (at most) one “next” node.

You are familiar with the concept of rooted trees already. Here are a few examples.

� Many organizations have a hierarchical structures that are trees. For example, see the McGill
organizational chart. http://www.mcgill.ca/orgchart/ which is (almost) a tree. Note
that the ”lowest” level in this chart contains the Deans but of course there are thousands
of employees at McGill ”below” the Deans, which are not shown. For example, as a McGill
professor in the School of Computer Science, I report to my department Chair, who reports
to the Dean of Science, who reports to the McGill Provost, who reports to the Principal. A
professor in the Department of Electrical and Computer Engineering reports to the Chair of
ECE, who reports to the Dean of Engineering, who like the Dean of Science reports to the
Provost, who reports to the Principal. (The “B reports to A” relationship in an organization
hierarchy defines a “B is a child of A” relation in a tree – see below).

� Family trees. There are two kinds of family trees you might consider. The first defines the
parent/child relation literally, so that the tree children of a node correspond to the actual
children (sons and daughters) of the person represented by the node. The second tree is less
conventional. It defines each person’s mother and father as its “children”. In such a tree,
each person has two children (the person’s real parents), and they each of two children (the
person’s four grandparents), etc.

� A file directory on a MS Windows or UNIX/LINUX operating system. For example, this
lecture notes file is stored at

C:\Users\Michael\Dropbox\TEACHING\250\LECTURENOTES\22-trees.pdf

[ASIDE: The lecture slides used many figures to illustrate the ideas that I will be
presenting in today’s notes. I am not including the figures in these notes. You should
consult those slides when reading these notes!]

Terminology for rooted trees

A (rooted) tree consists of a set of nodes or vertices, and edges which are ordered pairs of nodes
or vertices. When we write an edge (v1, v2), we mean that the edge goes from node v1 to v2. The
“node” vs. “vertex” terminology is perhaps a bit confusing at first. When one is discussing data
structures, it is more common to use the term “node” and when one is talking about trees as
abstract data types one typically uses the term “vertex.”

last updated: 30th Apr, 2022 at 10:02 108 ©Michael Langer

http://www.mcgill.ca/orgchart/

COMP 250 W-2022 23 – (rooted) trees March 7, 2022

In COMP 250 we will only deal with a special type of tree called a rooted tree. A rooted tree
has special node called the root node. Rooted trees have the following properties:

� For any node v in the tree (except the root node), there is a unique node p such that (p, v) is
an edge in the tree. The node p is called the parent of v, . Naturally, v is called a child of p.
A parent can have multiple children.

Notice that a tree with n nodes has n − 1 edges. Why? Because for each node v except the
root node (n− 1 of these), there is a unique edge (p, v) and these n− 1 edges are exactly the
set of edges in the tree.

� sibling relation: Two nodes are siblings if they have the same parent.

� leaf: A node with no children is called a leaf node. A more complicated way of saying a “node
with no children” is “a node v such that there does not exist an edge (v, w) where w is a node
in the tree”. Leaves are also called external nodes.

� internal node: a node that has a child (i.e. a node that is not a leaf node).

For example, in the linux or windows file system, files and empty directories are leaf nodes,
and non-empty directories are internal nodes. A directory is a file that contains a list of
references to its children nodes, which may be files (leaves) or subdirectories (internal nodes).

� path: a sequence of nodes v1, v2, . . . , vk where vi is the parent of vi+1 for all i.

� length of a path: the number of edges in the path. If a path has k nodes, then it has length
k − 1.

You can define a path of length 0, namely a path that consists of just one node v. (This is
useful sometimes, if you want to make certain mathematical statements bulletproof.)

� depth of a node in a tree (also called level of the node): the length of the (unique) path from
the root to the node. Note that the root node is at depth 0.

� height of a node v in a tree: the maximum length of a path from v to a leaf. Note: a leaf has
height 0.

� height of a tree: the height of the root node

� ancestor: v is an ancestor of w if there is a path from v to w

� descendent: w is a descendent of v if there is a path from v to w. Note that “v is an ancestor
of w” is equivalent to “w is a descendent of v”.

� A subtree is a subset of nodes and edges in a tree which itself is a tree. In particular, a subtree
has its own root which may or may not be the same as the root of the original tree. Every
node in a tree defines a subtree, namely the tree defined by this node and all its children. In
particular, any tree is a subtree of itself. Every node in a tree also defines a subtree in which
that node is the only node!

last updated: 30th Apr, 2022 at 10:02 109 ©Michael Langer

COMP 250 W-2022 23 – (rooted) trees March 7, 2022

� recursive definition of a rooted tree: A rooted tree T either has no nodes (empty tree), or it
consists of a root node r together with a set of zero or more non-root nodes, and these non-root
nodes are partitioned into non-empty subtrees T1, . . . , Tk whose roots are the children of r.
Note the word ’partition’ here, which means that the subtrees are disjoint (they don’t share
any nodes).

We can also define operations on trees recursively. Here are a few common examples. The first is
to compute the depth of a node.

depth(v){

if (v is a root node) // that is, v.parent == null

return 0

else

return 1 + depth(v.parent)

}

Notice that this method requires that we can access the parent of a node. We have defined edges to
be of the form (parent, child). If one implements an edge by putting a child reference in a parent
node then, given a node v, we can only reference the child of this node, not the parent, and so we
would not be able to compute the depth. Therefore, to use the above method for computing depth,
we would need a node to have a reference to its parent. (Whether we need references to children
also depends on what we will use the tree for.)

Another example operation is to compute the height of a node. Just like the depth, the height
can be computed recursively.

height(v){

if (v is a leaf) // that is, v.child == null for any child

return 0

else{

h = 0

for each child w of v

h = max(h, height(w))

return 1 + h

}

}

Tree implementation in Java

The main decision one needs to make in implementing trees is how to represent the set of children
of a node. If node can have at most two children (as is the case of a binary tree, which we will
describe in lecture 24) then each node can be given exactly two reference variables for the children.
If a node can have many children, then a more flexible approach is needed.

One common approach is to define the children by an array list or by a linked list.

last updated: 30th Apr, 2022 at 10:02 110 ©Michael Langer

COMP 250 W-2022 23 – (rooted) trees March 7, 2022

class TreeNode<T>{

T element;

ArrayList<TreeNode<T>> children;

TreeNode<T> parent; // optional

:

: // methods

}

This approach is perhaps overkill though, since one typicallly doesn’t need to index the children
by their number. Using a LinkedList (doubly linked list in Java) is also perhaps overkill if one
doesn’t need to be able to go both directions in the list of children. A singly linked list is often
enough, and that is the approach below.

The “first child, next sibling” implementation of a tree uses the following node definition.

class TreeNode<T>{

T element;

TreeNode<T> firstChild;

TreeNode<T> nextSibling;

:

: // methods

}

It defines a singly linked list for the siblings, where the head is the firstChild and the next is the
nextSibling. It is simpler than the arraylist implementation since it uses just two fixed references
at each node (or 3, if one also has a parent link)

Finally, to define the rooted tree, we could use:

class Tree<T>{

TreeNode<T> root;

:

: // methods

}

The root here serves the same role as the head field in our implementation of SLinkedList. It
gives you access to the nodes of the tree. The TreeNode class would then be defined as an inner
class inside this Tree class.

last updated: 30th Apr, 2022 at 10:02 111 ©Michael Langer

COMP 250 W-2022 23 – (rooted) trees March 7, 2022

Exercise: Representing trees using lists

A tree can be represented using lists, as follows:

tree = root | (root listOfSubTrees)

listOfSubTrees = tree | tree listOfSubTrees

For example, let’s draw the tree that corresponds to the following list, where the root elements
are single digits. (Apologies for the ASCII art below. See the slides for prettier pictures.)

(6 (2 1 7) 3 (4 5) (9 8 0))

The first uses a separate edge for each parent/child pair.

6

/ | \ \

2 3 4 9

/ \ | / \

1 7 5 8 0

The second uses the “first child, next sibling” representation.

6

/

2 - 3 - 4 - 9

/ / \

1-7 5 8-0

last updated: 30th Apr, 2022 at 10:02 112 ©Michael Langer

COMP 250 W-2022 24 – tree traversal March. 9, 2022

Tree traversal

Often we wish to iterate through or “traverse” the nodes of the tree. We generally use the term tree
traversal for this. There are two aspects to traversing a tree. One is that we need to follow references
from parent to child, or child to its sibling. The second is that we may need to do something at each
node. I will use the term “visit” for the latter. Visiting a node means doing some computation at
that node. We will see lots of examples in the slides! These notes cover the algorithms
only.

Depth first traversal using recursion: pre- and post-order

The first two traversals that we consider are called “depth first”. There are two ways to do depth-
first-traversal of a tree, depending on whether you visit a node before its descendents or after its
descendents. In a pre-order traversal, you visit a node, and then visit all its children. In a post-order
traversal, you visit the children of the node (and their children, recursively) before visiting the node.

depthfirst_Preorder(root){

visit root

for each child of root

depthfirst_Preorder(child)

}

See the lectures slides for an example of a preorder traversal and a number of the ordering of nodes
visited.

A second example is shown below. a file system. The directories and files define a tree: the
internal nodes are directories and the leaves are either empty directories or files. A common way of
printing out the directories and files is shown below, where the indentation denotes one more level
of the tree. We first print out the root directory, then list the subdirectories and files in the root
directory. For each subdirectory, we also print its subdirectory and files, and so on. This is all done
using a pre-order traversal. The visit would be the print statement. Here is a example of what the
output of the print might look like. (This is similar to what you get on Windows when browsing
files in the Folders panel.)

My Documents (directory)

My Music (directory)

Raffi (directory)

Shake My Sillies Out (file)

Baby Beluga (file)

Eminem (directory)

Lose Yourself (file)

My Videos (directory)

: (file)

Work (directory)

COMP250 (directory)

:

last updated: 30th Apr, 2022 at 10:02 113 ©Michael Langer

COMP 250 W-2022 24 – tree traversal March. 9, 2022

For a postorder traversal, one visits a node after having visited all the children of the node.
Here is the pseudocode.

depthfirst_Postorder(root){

for each child of root

depthfirst_Postorder(child){

visit root

}

Let’s look at an example. Suppose we want to calculate how many bytes are stored in all the files
within some directory including all its sub-directories. This is post-order because in order to know
this total number of bytes we first need to know the total number of bytes in all the subdirectories.
Hence, we need to visit the subdirectories first. Here is an algorithm for computing the number
of bytes. It traverses the tree in postorder in the sense that it computes the sum of bytes in each
subdirectory by summing the bytes at each child node of that directory.

numBytes(root){

if root is a leaf

return number of bytes at root (0 if root is directory)

else{

sum = 0 // local variable

for each child of root{

sum += numBytes(child)}

return sum

}

}

Depth first traversal without recursion

As we have discussed in earlier lectures (on stacks), recursive algorithms are implemented using a
call stack which keep track of information needed in each call. You can sometimes avoid recursion
by using an explicit stack instead. Here is an algorithm for doing a depth first traversal which
uses a stack rather than recursion. As you can see by running an example (see lecture slides), this
algorithm visits the list of children of a node in the opposite order to that defined by the for loop.

treeTraversalUsingStack(root){

initialize empty stack s

s.push(root)

while s is not empty{

cur = s.pop()

visit cur

for each child of cur

s.push(child)

// ’visit cur’ could be put here instead

}

}

last updated: 30th Apr, 2022 at 10:02 114 ©Michael Langer

COMP 250 W-2022 24 – tree traversal March. 9, 2022

Breadth first traversal

What happens if we use a queue instead of a stack in the previous algorithm?

treeTraversalUsingQueue(root){

q = empty queue

q.enqueue(root)

while !q.isEmpty() {

cur = q.dequeue()

visit cur

for each child of cur

q.enqueue(child)

}

As shown in the example in the lecture, this algorithm visits all the nodes at each depth, before
proceeding to the next depth. This is called breadth first traversal. The queue-based algorithm
effectively does the following:

for i = 0 to height

visit all nodes at level i

You should work through the example in the slides to make sure you understand why using queue
here is diffrent from using a stack.

A note about implementation

Recall first-child/next-sibling data structure for representing a tree, which we saw last lecture.
Using this implementation, you can replace the line

for each child of cur

...

with the following. Here we are iterating through the siblings i.e. a singly linked list of the children
of a node.

child = child.firstChild

while (child != null){

... // do something at that child

child = child.nextSibling

}

last updated: 30th Apr, 2022 at 10:02 115 ©Michael Langer

COMP 250 W-2022 25 – binary trees & expression trees March 11, 2022

Binary Trees

The order of a (rooted) tree is the maximum number of children of any node. A tree of order n is
called an n-ary tree. It is very common to use trees of order 2. These are called binary trees.

Each node of a binary tree can have two children, called the left child and right child. The terms
“left” and “right” refer to their relative position when you draw the tree.

How many nodes can a binary tree have at each level? The root has one node. Level 1 can have
two nodes (the two children of the root). Level 2 can have four nodes, namely each child at level
1 can have two children. You can easily see that the maximum number of nodes doubles at each
level, and so level l can have 2l nodes. For a binary tree of height h, the maximum number of nodes
is thus:

nmax =
h∑

l=0

2l =
2h+1 − 1

2− 1
= 2h+1 − 1.

You have seen this geometric series before in the course, and you will see it again.
The minimum number of nodes in a binary tree of height h is of h+ 1, namely if each node has

at most one child and there is one leaf, which by definition has no children. It follows from the
above two observations that

h+ 1 ≤ n ≤ 2h+1 − 1

ASIDE: We can rearrange this equation to get a lower and upper bound of the height h in terms of
the number of nodes.

log(n+ 1)− 1 ≤ h ≤ n− 1.

Binary tree nodes: Java

We have seen the first-child/next-sibling data structure for general trees. For binary trees, one
typically uses the following data structure for the node instead:

class BTNode<T>{

T e;

BTNode<T> left;

BTNode<T> right;

}

One can have a parent reference too, if necessary, but we don’t use it now. Recall that a parent

reference is analogous to a prev reference in a doubly linked list.

Binary tree traversal

A binary tree is a special case of a tree, so the algorithms we have discussed for general trees apply
to binary trees as well. We saw two simple depth-first search algorithms for general trees, namely
pre- and post-order. For binary trees these algorithms can be written as follows. Note that we
test that the root is not null here, which would be the base case. This is slightly different from
last lecture, where we assumed that the root was not null, and then only did the recursive call to
children when there were children.

last updated: 30th Apr, 2022 at 10:02 116 ©Michael Langer

COMP 250 W-2022 25 – binary trees & expression trees March 11, 2022

preorderBT(root){

if (root is not null){ // base case

visit root

preorderBT(root.left)

preorderBT(root.right)

}

}

postorderBT(root){

if (root is not null){ // base case

postorderBT(root.left)

postorderBT(root.right)

visit root

}

}

For binary trees, there is one further traversal algorithm to be considered, which is called in-order
traversal.

inorderBT(root){

if (root is not null){ // base case

inorderBT(root.left)

visit root

inorderBT(root.right)

}

}

You could define an inorder traversal for general trees. For example, you could visit the first child,
then visit the root, then visit any remaining children. But such inorder traversals are typically not
done for general trees.

Example (different from one given in slides)

a

/ \

b c

/ \ / \

d e f g

level order: a b c d e f g (breadth first)

pre-order: a b d e c f g (depth first)

post-order: d e b f g c a "

in-order: d b e a f c g "

last updated: 30th Apr, 2022 at 10:02 117 ©Michael Langer

COMP 250 W-2022 25 – binary trees & expression trees March 11, 2022

Expressions

You are familiar with forming expressions using binary operators such as +,-,*, /, %, ˆ . (The
operator ˆ is the power operator i.e. x ˆ n is power(x,n).) Each of the operators takes two
arguments, called the left and right operands. Let’s define a set of simple expressions recursively as
follows, where the symbol | means or.

baseExpression = variable | integer

operator = + | - | * | / | ^

expression = baseExpression | expression operator expression

So, an expression can consist of either a base expression, or it can consist of one expression followed
by an operator followed by an expression. Notice that expressions are defined recursively, and that
we have a base case.

Expression trees

[In the slides, I used slightly different examples from what I use below.]

You can represent these expressions using trees, called expression trees. For example, x + 4 * y

could be defined using either of these two trees. But as we’ll see next, the meaning of the two is
different.

+ *

/ \ / \

x * + y

/ \ / \

4 y x 4

When we have an expression with multiple operators, there is a particular order in which the
operators are supposed to be applied. You learned these precedence orderings in grade school. For
example “x + 4 * y” is to be interpreted as “x + (4 * y)” shown on the left, rather than “(x +

4) * y” shown on the right. As I mentioned in the lecture, my MS Windows calculator ignores the
precedence ordering of * over +. There is also a convention that 6 ˆ z ˆ 8 means 6 ˆ (z ˆ 8)

rather than (6 ˆ z) ˆ 8. See the example that I gave in the slides.
The above precedence order implies that an expression such as

x + 4 ∗ y− 6 ^ z ^ 8

can be uniquely interpreted as if there were a nesting of brackets:

(x + (4 ∗ y))− (6 ^ (z ^ 8))

and the expression can be represented as a tree:

-

/ \

+ ^

last updated: 30th Apr, 2022 at 10:02 118 ©Michael Langer

COMP 250 W-2022 25 – binary trees & expression trees March 11, 2022

/ \ / \

x * 6 ^

/ \ / \

4 y z 8

Looking at the original expression with no brackets, you may be tempted to think that the +
operator should be in the root rather than the - operator being in the root because the + operator
is to the left. In fact, it works the other way: higher precedence means it is evaluated first, which
means it is deeper in the tree.

Expression trees can be evaluated recursively as follows.

evaluateET(root){

if (root is a leaf) // root has no children

return value

else{ // the root is an operator

firstOperand = evaluateET(left child of root)

secondOperand = evaluateET(right child of root)

return evaluate(firstOperand, root, secondOperand)

}

We may think of this algorithm as performing a postorder traversal of the tree in the sense that, to
evaluate the expression defined by a tree, you first need to evaluate the left and right child of the
root, and then you can apply the operator at the root.

In-fix, pre-fix, post-fix expressions

You are used to writing expressions as two operands separated by an operator. This representation
is called infix, because the operator is “in” between the two operands. For infix expressions, the
order of evaluation is determined by precedence rules.

An alternative way to write an expression is to use prefix notation. Here the operator comes
before the two operands. For example,

- + x * 4 y ^ 6 ^ z 8

which is interpreted as

(- (+ x (* 4 y))(^ 6 (^ z 8))) .

Notice that a prefix expression gives the ordering of elements visited in a preorder traversal of the
expression tree.

An second alternative is a postfix expression, where the operators comes after the two operands,
so

x 4 y * + 6 z 8 ^ ^ -

is interpreted as

((x (4 y *) +) (6 (z 8 ^) ^) -) .

last updated: 30th Apr, 2022 at 10:02 119 ©Michael Langer

COMP 250 W-2022 25 – binary trees & expression trees March 11, 2022

The ordering of elements is the visit order in a post-order traversal of the expression tree.
One can formally define in, pre, and postfix expressions recursively as follows:

baseExpression = digit | letter

operator = + | - | * | / | ^

infixExpression = baseExpression | infixExpression operator infixExpression

prefixExpression = baseExpression | operator prefixExpression prefixExpression

postfixExpression = baseExpression | postfixExpression postfixExpression operator

[ASIDE: Prefix notation is sometimes called “Polish” notation – it was invented by a Polish logi-
cian, Jan Lukasiewicz (about 100 years ago). Postfix notation is sometimes called “reverse Polish
notation” or RPN. Many calculators, in particular, Hewlett-Packard calculators require that users
enter expressions using RPN. There are youtube videos like this showing how to do this, if you are
interested.]

For computer science, the advantage of postfix (and prefix) expressions over infix expressions is that
with postfix expressions you do not need a precedence rule to define the order of operations. Instead,
as shown below, one can use a simple stack-based algorithm for evaluating a postfix expression.
The algorithm does not need to know about precedence orderings, since these are “built in” to the
postfix expression. See the slides for an example of how the stack evolves over time for a particular
expression.

s = empty stack

cur = head;

while (cur != null){

if (cur.element is a variable or number)

s.push(cur.element)

else{ // cur is an operator

operand2 = s.pop() // opposite order to push

operand1 = s.pop() // "

operator = cur.element

s.push(evaluate(operand1 operator operand2))

}

cur = cur.next

}

last updated: 30th Apr, 2022 at 10:02 120 ©Michael Langer

https://www.youtube.com/watch?v=cPKg_JtI-Ys

COMP 250 W-2022 26 – binary search trees March 14, 2022

Binary Search Trees

Today we consider a specific type of binary tree in which there happens to be an ordering defined
on the set of elements the nodes. If the elements are numbers then there is obviously an ordering.
If the elements are strings, then there is also a natural ordering, namely the dictionary ordering,
also known as “lexicographic ordering”.

Definition: binary search tree

A binary search tree is a binary tree such that

� each node contains an element, called a key, such that the keys are comparable, namely there
is a strict ordering relation < between keys of different nodes

� any two nodes have different keys (i.e. no repeats/duplicates)

� for any node,

– all keys in the left subtree are less than the node’s key

– all keys in the right subtree are greater than the node’s key.

This last condition is stronger than just saying that the left child’s key is less than the node’s
key which is less than the right child’s key. For example, the following is not a binary search
tree.

5

/

2

/ \

1 6

One important property of binary search trees is that an inorder traversal of a binary search
tree gives the elements in their correct order. Here is an example with nodes containing keys
abcdefghijklm. Verify that an inorder traversal gives the elements in their correct order.

g

/ \

d k

/ \ / \

b f i l

/ \ / / \ \

a c e h j m

last updated: 30th Apr, 2022 at 10:02 121 ©Michael Langer

COMP 250 W-2022 26 – binary search trees March 14, 2022

Here is another example binary search tree with the same set of keys:

k

/ \

e l

/ \ \

b g m

/ \ / \

a c f i

\ / \

d h j

BST operations

One performs several common operations on binary search trees:

� find(key): given a key, find the node containing that key (or null if key is not in tree) and
return a reference to that node

� findMin() or findMax(): find the node containing the smallest or largest key in the tree and
return a reference to the node containing that key

� add(key): insert a new node into the tree such that the node contains the key and the node
is in its correct position (if the key is already in the tree, then do nothing)

� remove(key): remove from the tree the node containing the key (if it is present), adjust the
tree if necessary so that it is a binary search tree

Here are algorithms for implementing these operations.

find(root,key){ // returns a node

if (root == null)

return null

else if (root.key == key))

return root

else if (key < root.key)

return find(root.left, key)

else

return find(root.right, key)

}

findMin(root){ // returns a node

if (root == null) // only necessary for the first call

return null

else if (root.left == null)

return root

else

return findMin(root.left)

}

last updated: 30th Apr, 2022 at 10:02 122 ©Michael Langer

COMP 250 W-2022 26 – binary search trees March 14, 2022

For example, here the minimum key is a.

f

/ \

c m

/ \ /

a e g

Notice however that the minimum key is not necessarily a leaf i.e. it can occur if the key has a
right child but no left child. Here the minimum key is c:

f

/ \

c m

\ /

e g

/

d

The reasoning and method is similar for findMax.

findMax(root){ // returns a node

if (root == null)

return null

else if (root.right == null))

return root

else

return findMax(root.right)

}

Let’s next consider adding (inserting) a key to a binary search tree. If the key is already there,
then do nothing. Otherwise, make a new node containing that key, and insert that node into its
unique correct position in the tree.

add(root,key){ // returns root

if (root == null) // base case:

root = new BSTnode(key) // makes a new node and returns it

else if (key < root.key){

root.left = add(root.left,key)

else if (key > root.key){

root.right = add(root.right,key)

return root

}

The base case is root == null and in that case a leaf is added. For the non-base case, the situation
is subtle. The code says that a new node is added to either the left or right subtree and then the
reference to that left or right subtree is re-assigned. It is reassigned to the root of the left or right
subtree, which has the new node added it. Why is it necessary to reassign the reference like that?

last updated: 30th Apr, 2022 at 10:02 123 ©Michael Langer

COMP 250 W-2022 26 – binary search trees March 14, 2022

Suppose we add the new node to the left subtree. If the new node is a descendent of the root
node of the left subtree , then the assignment root.left = add(root.left,key) doesn’t change
the reference root.left in the root node; it just assigns it to the same node it was referencing
beforehand. However, if root.left was null and then the new node was added to the left subtree
of root, then the call add(root.left,key) will create and return the new node, namely it is the
root of a subtree with one node. If we don’t assign that node to root.left as the code says, then
the new node that is created would not be added to the tree. That’s why we do need to assign the
reference.

Next, consider the problem of removing a node from a binary search tree.

remove(root, key){ // returns root

if(root == null)

return null

else if (key < root.key) (*)

root.left = remove(root.left, key)

else if (key > root.key) (*)

root.right = remove(root.right, key)

else if root.left == null (**)

root = root.right // or just "return root.right"

else if root.right == null (**)

root = root.left // or just "return root.left"

else{ (***)

root.key = findMin(root.right).key

root.right = remove(root.right, root.key)

}

return root

}

The (*) conditions handle the case that the key is not at the root, and in this case, we just
recursively remove the key from the left or right subtree. Note that we replace the left or right
subtree with a subtree that doesn’t contain the key. To do this, we use recursion, namely we remove
the key from the left or right subtree.

The more challenging case is that the key that we want to remove is at the root (perhaps after
a sequence of recursive calls). In this case we need to consider four possibilities:

� the root has no left child

� the root has no right child

� the root has no children at all

� the root has both a left child and a right child

In the first two cases – see (**) in the algorithm – we just replace the root node with the subtree
in the non-empty child. Note that the third case is accounted for here as well; since both children
are null, the root will become null.

last updated: 30th Apr, 2022 at 10:02 124 ©Michael Langer

COMP 250 W-2022 26 – binary search trees March 14, 2022

In the fourth case – (***) – we take the following approach. We replace the root with the
minimum node in the right subtree. We do so in two steps. We copy the key from the smallest
node in the right subtree into the root node, and then we remove the smallest node node from the
the right subtree.

Finally, one common question is, why do we need a return statement? Why can’t we just
remove the node? To understand why, consider line (*) and suppose this condition is met and the
left child is a leaf. After we call remove on the left child, the left child should become null. So
we really do need that line root.left = ... , namely it will be assigned the value null. If we
just wrote remove(root.left, key) without the assignment, then root.left would continue to
point to that same node, rather than removing it.

Example (remove)

Take the following example with nodes abcdefghijklm:

g

/ \

d k

/ \ / \

b f i l

/ \ / / \ \

a c e h j m

and then remove elements g,f,k in that order.

h

/ \

d k

/ \ / \

b f i l

/ \ / \ \

a c e j m

h

/ \

d k

/ \ / \

b e i l

/ \ \ \

a c j m

h

/ \

d l

/ \ / \

b e i m

/ \ \

a c j

last updated: 30th Apr, 2022 at 10:02 125 ©Michael Langer

COMP 250 W-2022 26 – binary search trees March 14, 2022

Computational Complexity

Let’s consider the best and worst case performance. The best case performance for this data
structure tends to occur when the keys are arranged such that the tree is balanced, so that all
leaves are at the same depth (or depths of two leaves differ by at most one). However, if one
adds keys into the binary tree and doesn’t rearrange the tree to keep it balanced, then there is no
guarentee that the tree will be anywhere close to balanced, and in the worst case a BST with n
nodes could have height n− 1. This implies the following best and worst cases:

Operations/Algorithms for Lists Best case, tbest(n) Worst case, tworst(n)

findMax(), findMin() O(1) O(n)
find(key) O(1) O(n)
add(key) O(1) O(n)
remove(key) O(1) O(n)

In COMP 251, you will learn about balanced binary search trees, e.g. AVL trees or red-black
trees. If a tree is balanced, then the operations are all O(log n). This is an interesting topic, but
you’ll need to wait for COMP 251.

last updated: 30th Apr, 2022 at 10:02 126 ©Michael Langer

COMP 250 W-2022 27 – heaps 1 March 16, 2022

Priority Queue

Recall the definition of a queue. It is a collection where we remove the element that has been in
the collection for the longest time. Alternatively stated, we remove the element that first entered
the collection. A natural way to implement such a queue was using a linear data structure, such as
a linked list or a (circular) array.

A priority queue is a different kind of queue, in which the next element to be removed is defined
by a priority, which is a more general criterion. For example, in a hospital emergency room, patients
are treated not in a first-come first-serve basis, but rather by the urgency of the case. To define
the next element to be removed, it is necessary to have some way of comparing any two objects
and deciding which has greater priority. The next element to be removed is the one with greatest
priority. Heads up: with priority queues, one typically assigns small numerical values to high
priorities. Think “my number one priority”, “my number 2 priority”, etc. (One could assign larger
numerical values to higher priorities, but that’s not what’s typical.)

One way to implement a priority queue of elements (often called keys) is to maintain a sorted
list. This could be done with a linked list or array list. Each time a key is added, it would need to
be inserted where it belongs into the sorted list. If the number of keys were huge, however, then
this would be an inefficient representation. For example, if we use a singly linked list, then we can
remove from the front of the list in O(1) time which is good. However, adding would still be O(n) in
the worst case since we would need to find where the key belongs in the list and this might require
iterating through the whole list. Similarly, if we used an arraylist then the time for adding would
again still be O(n); although we could use binary search to find where the new key goes in O(log n),
we would still need to need to shift the keys to make room which is O(n). (If we sort the arraylist
by decreasing value, then we can remove in O(1) time. So its the add that’s the problem.)

Heaps

The usual way to implement a priority is to use a data structure called a heap. As we will see, this
will allow us to do both add and remove operations in O(log n) time.

To define a heap, we first need to define a complete binary tree. We say a binary tree of height
h is complete if every level l less than h has the maximum number (2l) of nodes, and in level h all
nodes are as far to the left as possible. A heap is a complete binary tree with a key at each node,
such that they keys are comparable and satisfy the property that each node’s key is less than the
keys of its children. This is the default definition of a heap, and is sometimes called a min heap.

A max heap is defined similarly, except that the key stored at each node is greater than the keys
stored at the children of that node. Unless otherwise specified, we will assume a min heap. Note
that it follows from the definition that the smallest key in a (min) heap is stored at the root.

As with stacks and queues, the two main operations we perform on heaps are add and remove.

add

To add a key to a heap, we create a new node and insert it in the next available position of the
complete tree. If level h is not full, then we insert it next to the rightmost leaf. If level h is full,
then we start a new level at height h+ 1.

last updated: 30th Apr, 2022 at 10:02 127 ©Michael Langer

COMP 250 W-2022 27 – heaps 1 March 16, 2022

Once we have inserted the new node, we need to ensure that the heap property is satisfied. The
problem is that the key of the parent of the new node is greater than the key of this node. This
problem is easy to solve. We can just swap the keys of the node and its parent. We then need to
repeat the same test on the new parent node, etc, until we reach either the root, or until the key
of the parent node is less than the key of the current node. This process of moving a node up the
heap, is often called “upheap”.

add(key){

cur = new node at next leaf position

cur.key = key

while (cur != root) && (cur.key < cur.parent.key){

swapkey(cur, parent)

cur = cur.parent

}

}

You might ask whether swapping the key at a node with its parent’s key can cause a problem
with the node’s sibling (if it exists). No, it cannot. Before the swap, the parent is less than the
sibling.15 So if the current node is less than its parent, then the current node must be less than the
sibling too (current < parent < sibling). So, swapping the node’s key with its parent’s key preserves
the heap property with respect to the node’s current sibling.

For example, suppose we have a heap with two keys e and g as shown below and so e < g.
Then we add a key to the * position below and we find that * < e. So we swap them. Since * <

e and e < g, we can be sure that * < g.

e

/ \

g *

Here is a bigger example. Suppose we add key c to the following heap.

a

/ \

e b

/ \ / \

f l u k

/

m

We add a node which is a sibling to m and assign c as the key of the new node.

15Here I say that one node is less than another, but what I really mean is that the key at one node is less than
the key at the other node.

last updated: 30th Apr, 2022 at 10:02 128 ©Michael Langer

COMP 250 W-2022 27 – heaps 1 March 16, 2022

a

/ \

e b

/ \ / \

f l u k

/ \

m c

Then we observe that c is less than f, the key of its parent, so we swap c,f to get:

a

/ \

e b

/ \ / \

c l u k

/ \

m f

Now we continue up the tree. We compare c with its new parent’s key e, see that the keys need to
be swapped, and swap them to get:

a

/ \

c b

/ \ / \

e l u k

/ \

m f

Again we compare c to its parent. Since c is greater than a, we stop and we’re done.

removeMin

Next, let’s look at how we remove keys from a heap. Since the heap is used to represent a priority
queue, we remove the minimum key, which is the root.

How do we fill the hole that is left by the key we removed ? We first copy the last key in the
heap (the rightmost key in level h) into the root, and delete the node containing this last key. We
then need to manipulate the keys in the tree to preserve the heap property that each parent is less
than its children.

We start at the root, which contains a key that was previously the rightmost leaf in level h.
We compare the root to its two children. If the root is greater than at least one of the children,
we swap the root with the smaller child. Moving the smaller child to the root does not create a
problem with the larger child, since the smaller child is smaller than the larger child.

removeMin(){ // returns smallest key

tmp = root.key

remove last leaf node and put its key into the root

last updated: 30th Apr, 2022 at 10:02 129 ©Michael Langer

COMP 250 W-2022 27 – heaps 1 March 16, 2022

cur = root

while ((cur has a left child) and

((cur.key > cur.left.key) or

(cur has a right child and cur.key > cur.right.key)))

minChild = child with the smaller key

swapkey(cur, minChild)

cur = minChild

}

return tmp

}

The condition in the while loop is rather complicated, and you may have just skipped it. Don’t.
There are several possible events that can happen and you need to consider each of them. One is
that the current node has no children. In that case, there is nothing to do. The second is that the
current node has one child, in which case it is the left child: we then need to decide if this child is
smaller than the current node. The third is that the current node might have two children. In that
case, we need to check if one of these two children is smaller than the current node, and swap with
the smaller one.

Here is an example:

a d b

/ \ / \ / \ / \

b c --> b c --> b c --> d c

/ \ / / \ / / \ / \

k e d k e d k e k e

If we apply removeMin() again and again until all the keys are gone, we get the following
sequence of heaps with keys removed in the following order: b, c, d, e, k.

c d e k

/ \ / \ /

d e k e k

/

k

Implementing a heap using an array

A heap is defined to be a complete binary tree. If we number the nodes of a heap by a level order
traversal and start with index 1, rather than 0, then we get an indexing scheme as shown below.

last updated: 30th Apr, 2022 at 10:02 130 ©Michael Langer

COMP 250 W-2022 27 – heaps 1 March 16, 2022

1

/ \

2 3

/ \ / \

4 5 6 7

/ \ / \ / \ / \

8 9 10 11 12 13 etc

These numbers are NOT the keys stored at the node. Rather we are just numbering the nodes so
we can index them.

This array representation defines a simple relationship between a tree node’s index and its
children’s index. If the node index is i, then its children have indices 2i and 2i + 1. Similarly, if a
non-root node has index i then its parent has index i/2.

add(key)

Earlier I presented an algorithm for adding a key to a heap which was based on a binary tree
structure. Here I’ll re-write that algorithm using an array and the indexing scheme above. Let
size be the number of keys in the heap. These keys are stored in array slots 1 to size, i.e. recall
that slot 0 is unused so that we can use the simple relationship between a child and parent index.

add(key){

size = size + 1 // number of keys in heap

heap[size] = key // assuming array has room for another key

i = size

// the following is called "upHeap"

while (i > 1 and heap[i] < heap[i/2]){

swapkeys(i, i/2)

i = i/2

}

}

Example

Suppose we have a heap with eight characters and we add one more, a c.

1 2 3 4 5 6 7 8 9

a e b f l u k m c

a e b c l u k m f <---- c swapped with f (slots 9 & 4)

a c b e l u k m f <---- c swapped with e (slots 4 & 2)

Next lecture we will continue with heaps, examining the time complexity of building a heap. We
will also look at the heapsort algorithm.

last updated: 30th Apr, 2022 at 10:02 131 ©Michael Langer

COMP 250 W-2022 28 – heaps 2 March 18, 2021

At the end of last lecture we showed how a heap could be represented using an array, and we
rewrote the add method using the array representation instead of the binary tree representation.
Today we will examine how to build a heap by repeatedly calling the add method on a list of keys,
and we will analyze the time complexity of building a heap. We will then review the removeMin

method and rewrite it in terms of the array representation. Finally we will put this all together
and show how to sort a list of keys using a heap – called heapsort.

Building a heap

We can use the add method to build a heap as follows. Suppose we have a list of size keys and we
want to build a heap.

buildHeap(list){

create an empty heap

for (k = 0; k < list.size; k++)

heap.add(list[k])

return heap

}

We can write this in a slightly different way.

buildHeap(list){

create an array arr with list.size+1 slots

for (k = 1; k <= list.size; k++){

arr[k] = list[k-1] // say list indices are 0, .. ,size-1

upHeap(arr, k)

}

}

where upHeap(arr, k) is defined as follows.

upHeap(arr, k){

i = k

while (i > 1 and arr[i] < arr[i/2]){

swapkeys(i, i/2)

i = i/2

}

}

Time complexity

How long does it take to build a heap in the best and worst case? Before answering this, let’s recall
some notation. We have seen the “floor” operation a few times: it rounds down to the nearest
integer. If the argument is already an integer then it does nothing. We also can define the ceiling,
which rounds up. It is common to use the following notation:

� bxc is the largest integer that is less than or equal to x. b c is called the floor operator.

last updated: 30th Apr, 2022 at 10:02 132 ©Michael Langer

COMP 250 W-2022 28 – heaps 2 March 18, 2021

� dxe is the smallest integer that is greater than or equal to x. d e is called the ceiling operator.

Let i be the index in the array representation of keys/nodes in a heap, then i is found at level level
in the corresponding binary tree representation. The level of the corresponding node i in the tree
is such that

2level ≤ i < 2level+1

or
level ≤ log2 i < level + 1,

and so
level = blog2 ic.

We can use this to examine the best and worst cases for building a heap.
In the best case, the node i that we add to the heap satisfies the heap property immediately,

and no swapping with parents is necessary. This can happen if the keys are added in their natural
order. In this case, building a heap takes time proportional to the number of nodes n. So, best case
is O(n).

What about the worst case? Since level = blog2 ic, when we add key i to the heap, in the worst
case we need to do blog2 ic swaps up the tree to bring key i to a position where it is less than its
parent, namely we may need to swap it all the way up to the root. (This can happen if the keys are
added in their reverse order.) If we are adding n nodes in total, the worst case number of swaps
is:

t(n) =
n∑

i=1

blog2 ic

To visualize this sum, consider the plot below which show the functions log2 i (thick) and blog2 ic
(dashed) curves up to i = 5000. In this figure, n = 5000.

The area under the dashed curve is the above summation. It should be visually obvious from
the figures that

1

2
n log2 n < t(n) < n log2 n

where the left side of the inequality is the area under the diagonal line from (0,0) to (n, log2 n) and
the right side (n log2 n) is the area under the rectangle of height log2 n. From the above inequalities,
we conclude that in the worst of building a heap is O(n log2 n).

last updated: 30th Apr, 2022 at 10:02 133 ©Michael Langer

COMP 250 W-2022 28 – heaps 2 March 18, 2021

removeMin

Next, recall the removeMin() algorithm from last lecture. We can write this algorithm using the
array representation of heaps as follows.

removeMin(arr){

key = arr[1] // heap[0] not used.

arr[1] = arr[size]

arr[size] = null

size = size - 1

downHeap(arr, size) // see below

return key

}

This algorithm saves the root key to be returned later, and then moves the key at position size

to the root. The situation now is that the two children of the root (node 2 and node 3) and
their respective descendents each define a heap. But the tree itself typically won’t satisfy the heap
property: the new root will be greater than one of its children. In this typical case, the root needs
to move down in the heap.

The downHeap helper method moves an key from a starting position in the array down to some
maximum position in the heap. We will see later (in heapsort) why we need this maximum position
as a parameter.

downHeap(arr, size){ // move key from starting position

// down to at most position size

i = 1

while (2*i <= size){ // check if there is a left child

child = 2*i

if (child < size) { // check if there is a right sibling

if (arr[child + 1] < arr[child]) // is rightchild < leftchild ?

child = child + 1 // if so, then smaller child is right

}

if (arr[child] < arr[i]){ // swap with child?

swapkeys(child , i)

i = child

}

else return // exit

}

}

This is essentially the same algorithm we saw last lecture. What is new here is that I am expressing
it in terms of the array indices.

Heapsort

A heap can be used to sort a set of keys. The idea is simple. Just repeatedly remove the minimum
key by calling removeMin(). This naturally gives the keys in their proper order.

last updated: 30th Apr, 2022 at 10:02 134 ©Michael Langer

COMP 250 W-2022 28 – heaps 2 March 18, 2021

Here I give an algorithm for sorting “in place”. We repeatedly remove the minimum key the
heap, reducing the size of the heap by one each time. This frees up a slot in the array, and so we
insert the removed key into that freed up slot. This yields the keys sorted in the reverse order.
That’s easy to fix afterwards: just reverse the order of the keys.

The pseudocode below does exactly what I just described, although it doesn’t say “removeMin().
Instead, it says to swap the root key i.e. heap[1] with the last key in the heap i.e. heap[size+1-i].
After i times through the loop, the remaining heap has size - i keys, and the last i keys in the
array hold the smallest i keys in the original list. So, we only downheap to index size - i .

heapsort(list){

arr = buildheap(list)

n = list.size

for i = 1 to n-1{

swapkeys(arr, 1, n + 1 - i)

downHeap(arr, n - i)

}

return reverse(arr) // reverse keys in slots 1 to n

}

The end result is an array that is sorted from largest to smallest. Since we want to order from
smallest to largest, we must reverse the order of the keys which are in slots 1 to n.

Example

The example below shows the state of the array after each pass through the for loop. The vertical
line marks the boundary between the remaining heap (on the left) and the sorted keys (on the
right).

1 2 3 4 5 6 7 8 9

a d b e l u k f w |

b d k e l u w f | a (removed a, put w at root, ...)

d e k f l u w | b a (removed b, put f at root, ...)

e f k w l u | d b a (removed d, put w at root, ...)

f l k w u | e d b a (removed e, put u at root, ...)

k l u w | f e d b a (removed f, put u at root, ...)

l w u | k f e d b a (removed k, put w at root, ...)

u w | l k f e d b a (removed l, put u at root, ...)

w | u l k f e d b a (removed u, put w at root, ...)

Note that there is no need for an nth pass through the loop since the heap after n − 1 passes has
only one key left (w in this example), which is the largest key.

last updated: 30th Apr, 2022 at 10:02 135 ©Michael Langer

COMP 250 W-2022 28 – heaps 2 March 18, 2021

Time complexity for heapsort

What is the time complexity of heapsort? If we have n keys, then we have to go through the for
loop n times. Each time through, we need to swap down at most the height of the tree (and for
many keys, we don’t have to go that far). More precisely, the worst case number of swaps is

t(n) =
n∑

i=1

blog2(n− i)c

which is essentially the same for as the worst case for buildHeap earlier in the lecture. Thus, the
worst case time complexity for the n removals is O(n log2 n).

The final step, where we reverse the keys in the array only needs to be done once. It is done in
O(n) time, by swapping i and n+ 1− i for i = 1 to n

2
. So heapsort in the worst case is O(n log2 n).

You might think the best case for heapsort is that the keys in the list are already in order,
since in that case the buildheap step is O(n) rather than O(n log2 n), i.e. there are no swaps in the
build heap step since each key is compared to its parent and found to be greater than its parent.
However, the n − 1 removes must be considered also. If the keys are already in order, then the
largest n/2 keys are in the bottom level of the heap. So when we do the first n/2 removes, these
largest keys will be brought into slot 1 of the array and will need to be downHeap’ed. They will
tend to downheap quite far since they are the largest n/2 keys.

Even if the keys are not in order, once we build a heap, the last n/2 keys in the array will tend
to be amoung the largest keys since they are at the bottom level of the heap. So again, when we
do the first n/2 removes, these keys will be brought to the top and then have to be downheaped.
Since they tend to be larger keys, they will tend to downheap to deeper levels.

What if the keys are in the opposite order to begin with? In this case, the buildheap step will
take time O(n log2 n) since each key that is added needs to be swapped all the way to the root.

So from the above, you can see that heapsort requires close to log n swaps for each of the keys.
As it turns out, this makes heapsort run slower in practice than quicksort.

ASIDE: Why is quicksort quicker than heapsort?

Real quicksort implementations do not choose the last element of the given list as the pivot. The
reason is that choosing the last element would lead to O(n2) performance if the list is already sorted
or nearly so, and this case does come up in practice sometimes. Instead, quicksort can choose a
different element and swap this element with the last element of the input list, and then run the
algorithm as presented (where pivot is the last element).

For example, a better pivot choice is to take the first, middle, and last elements of the list,
and choose the median value of these three. If the list is sorted forward or sorted backwards to
begin with, then choosing the “median of three” as it is called (instead of simply choosing the last
element) will indeed split in the middle (yipeee!). And if the list has random order, then the median
of three will tend to be closer to the actual median than if one just choses the last element. Of
course, determining which of the three chosen ones is the median requires a bit of extra work for
every split, and so it increases the constant factor at each step of the recursion. But in practice this
extra work tends to pay off overall.

This is related to a question that was asked in class: why doesn’t heapsort or quicksort just
check at the start if the list is already sorted, which would take time only O(n). Yes, you could

last updated: 30th Apr, 2022 at 10:02 136 ©Michael Langer

COMP 250 W-2022 28 – heaps 2 March 18, 2021

do that. And it might make sense to do that if this case did arise in practice often enough. But if
this case arises only rarely, then this would be extra work that you need to do every time, but that
would benefit you only rarely.

last updated: 30th Apr, 2022 at 10:02 137 ©Michael Langer

COMP 250 W-2022 29 – maps March 21, 2022

Maps

The last few lectures, we have looked at ways of organizing a set of elements that are comparable,
namely binary search trees and heaps. When elements are comparable, we have the potential to
access elements quickly, rather than having to search through all elements to find the one we want.
Binary search trees are designed for this purpose, whereas priority queues are more specific as they
are designed to access just the element with lowest priority value.

Today we will begin looking at ways of organizing things which doesn’t require that they are
comparable. We will specifically consider how to represent maps. You are familiar with maps
already. In high school math and in Calculus and linear algebra, you have seen functions that go
from (say) <n to <m.
[ASIDE: To be more mathematically precise, a map is a set of ordered pairs {(x, f(x))} where x
belongs to some set called the domain of the map, and f(x) belongs to a set called the co-domain.
The word range is used specifically for the set {f(x) : (x, f(x)) is in the map}. That is, some values
in the co-domain might not be reached by the map.]

Maps as (key,value) pairs

You are also familiar with the idea of maps in your daily life. You might have an address book which
you use to look up home or business addresses, telephone numbers, or email addresses. You index
this information with a name. So the mapping is from name to address/phone/email. A related
example is “Caller ID” on your phone. Someone calls from a phone number (the index) and the
phone tells you the name of the person. Many other traditional examples are social security number
or health care number or student number for the index, which maps to a person’s employment record,
health file, or student record, respectively. In our definitions below, we will use the more general
term ‘key’ rather than ’index.

We will use the following definitions and notation for maps. Suppose we have two sets: a set of
keys K, and a set of values V . A map is a set of ordered pairs

M = {(k, v) : k ∈ K, v ∈ V } ⊆ K × V.

The pairs are called entries in the map.
A map cannot just be any set of (key, value) pairs, however. Rather, for any key k ∈ K, there

is at most one value v such that (k, v) is in the map. We allow two different keys to map to the
same value, but we do not allow one key to map to more than one value. Also note that not all
elements of K need to be keys in the map.

For example, let K be the set of integers and let V be the set of strings. Then the following is
a map:

{(3, cat), (18, dog), (35446, meatball), (5, dog), }

whereas the following is not a map,

{(3, cat), (18, dog), (35446, meatball), (5, dog), (3, fish)}

because the key 3 has two values associated with it.

last updated: 30th Apr, 2022 at 10:02 138 ©Michael Langer

COMP 250 W-2022 29 – maps March 21, 2022

Map ADT

The basic operations that we perform on a map are:

� put(key, value) – this adds a new entry to the map

What if the map previously contained a mapping for the key? As we will see, for a Java Map

interface, the policy is that the old value is replaced by the new value, and the old value is
returned. (If the map didn’t contain that key, then put returns null.)

� get(key) – this returns the value associated with the entry (key, value).

What if the given key did not have an entry in the map? The Java Map policy is that get

would return null.

� remove(key) – this removes the entry (key, value)

The Java Map policy is that it return the value if the key was present, and it returns null if
the key wasn’t present.

There are other Map methods such as contains(key) or contains(value) as well but the above
are the main ones.

Map data structures

How can we represent a map using data structures that we have seen in the course? We might have
a key type K and a value type V and we would like our map data structure to hold a set of object
pairs { (k, v) }, where k is an object of type K and v is an object of type V.

We could use an arraylist or a linked list of entries, for example. See the Exercises for a few
questions on the time complexity of put, get, and remove in this case

What if we made a stronger assumption that the keys of map are comparable? In this case, we
could organize the entries of the map using a sorted arraylist or a binary search tree. Again, see
the Exercises. By the way, what about using a heap? A heap would not be an appropriate data
structure for a map because it only allows you to efficiently get or remove the minimum key. For a
general get operation, a heap would be O(n) in the worst case, since one would have to traverse the
entire heap. Note that the heap is represented using an array, so this would just be a loop through
the elements of the array.

Another special case to consider is that the keys K are small positive integers. In this case, we
could just use an array and have the key be an index into the array and the value be stored at
that slot in the array. Note that this typically will not be an arraylist, since there may be gaps
in the array between entries. Using an array would give us access to map entries in O(1) time.
However, this would only work well if the integer values are within a small range. For example, if
the keys were social insurance numbers (in Canada), which have 9 digits, then it would not work
well because we would need to define an array of size 109 which is infeasible because it is too big.

Despite this being infeasible, let’s make sure we understand the main idea here. Suppose we are
a company and we want to keep track of employee records. We use social insurance number as a
key for accessing a record. Then we could use a (unfeasibly large) array whose entries would be of
type Employee. That is, you would use someone’s social insurance number to index directly into
the array, and that indexed array slot would hold a reference to an Employee object associated with

last updated: 30th Apr, 2022 at 10:02 139 ©Michael Langer

COMP 250 W-2022 29 – maps March 21, 2022

that social insurance number. This would only retrieve a record if there were an Employee with
that social insurance number; otherwise the reference would be null and the get call would return
null.

For the rest of today, we consider the case that the keys map to a set of integers, without
requiring these integers to be a small range. These integers are called hash codes. Next lecture we
will return to the problem of mapping to a small range of integers, and we will treat these integers
as an index into an array. This is the method of hash maps or hash tables.

Java hashCode()

Object.hashCode()

Recall way back when we discussed the Java Object class and its methods. We mentioned the
hashCode() method but didn’t say much about it, other than that we can think of it as a unique id
for an object.16 The expression “obj1 == obj2” means the same thing as “obj1.hashCode() ==

obj2.hashCode()”. The statement can be either true or false, depending on whether the variables
obj1 and obj2 reference the same object or not.

String.hashCode()

Some classes override this default hashCode() method. To understand how hashCode() is defined
for the String class, let’s first as a warmup consider a simple map from String to positive integers.
Suppose s is a string which consists of characters s[0]s[1]...s[s.length− 1]. Consider the function

h(s) =

s.length−1∑
i=0

s[i]

which is just the sum of the codes of the individual characters. Notice that two strings that consist
of the same letters but in different order would have the same h() value. For example, “eat”, “ate”,
“tea” all would have the same code. Since the codes of a, e, t are 97, 101, and 116, the code of
each of these strings would be 97+101+116.

In Java, the String.hashCode() method is defined17 :

h(s) =

s.length−1∑
i=0

s[i] xs.length−i−1

where x = 31. So, for example,

h(”eat”) = 101 ∗ 312 + 97 ∗ 31 + 116

16When a Java programming is running, every object is located somewhere in the memory of the Java Virtual
Machine (JVM). This location is called an address. In particular, each Java object has a unique 24 bit number
associated with it which by default is the number returned when the object calls hashCode() method. (What
exactly this 24 bit number means may depend on the implementation of the JVM. We will just assume that the
number is the object’s (starting) address in the JVM.) Since different objects must be non-overlapping in memory,
it follows that they have different addresses.

17You might wonder why Java uses the value x = 31. Why not some other value? There are explanations given
on the website stackoverflow, but I am not going to repeat them here. Other values would work fine too.

last updated: 30th Apr, 2022 at 10:02 140 ©Michael Langer

COMP 250 W-2022 29 – maps March 21, 2022

and
h(”ate”) = 97 ∗ 312 + 116 ∗ 31 + 101

Thus, here we have an example of how strings that have the same letters do not have the same
hashCode.

What about if two strings have the same hashcode? Can we infer that the two strings are equal?
No, we cannot. Two different strings might have the same hashcode. See the Exercises.

ASIDE: Horner’s rule

Suppose you wish to evaluate a polynomial

h(s) =
N∑
k=0

ak x
k

It should be obvious that you don’t want to separately calculate x2, x3, x4, ..., xN since there would
be redundancies in doing so. We only should use O(N) multiplications, not O(N2). Horner’s Rule
describes how to do so.

The following example gives the idea of Horner’s rule for the case of hashcodes for a String

object with four characters:

s[0] ∗ 313 + s[1] ∗ 312 + s[2] ∗ 31 + s[3] = ((s[0] ∗ 311 + s[1]) ∗ 31 + s[2]) ∗ 31 + s[3]

For a String object of arbitary length, Horner’s rule is the following algorithm :

h = 0

for (i = 0; i < s.length; i++)

h = h*31 + s[i]

last updated: 30th Apr, 2022 at 10:02 141 ©Michael Langer

COMP 250 W-2022 30 – hashing March 23, 2021

Hashing

Recall the scenario from last lecture: suppose we have a map, that is, a set of ordered pairs {(k, v)}.
We want a data structure such that, given a key k, we can quickly access the associated value v. If
the keys were integers in a small range, say 0, 1, . . . ,m− 1, then we could just use an array of size
m and the keys could indices into the array. The locations k in the array would correspond to the
keys in the map and the slots in the array would hold references to the corresponding values v.

In most situations, the keys are not integers in some small range, but rather they are in a large
range, or the keys are not integers at all – they may be strings, or something else. In the more
general case, we need to define a function – called a hash function – that maps the keys to the
range 0, 1, . . . ,m− 1. Then, we will put the two maps together: the hash function maps from keys
to a small range of integer values, and from this small range of integer values to the corresponding
values v. Let’s now say more about how we make hash functions, and then we’ll talk about a data
structures that uses them called a “hash map” or “hash table”.

Hash function: hash code followed by compression

Given a space of keys K, a hash function is a mapping:

h : K → {0, 1, 2,m− 1}

where m is some positive integer. That is, for each key k ∈ K, the hash function specifies some
integer h(k) between 0 and m− 1. The h(k) values in 0, . . . ,m− 1 are called hash values.

It is very common to design hash functions by writing them as a composition of two maps. The
first map takes keys K to a large set of integers. The second map takes the large set of integers
to a small set of integers {0, 1, . . . ,m − 1}. The first map is called a hash code, and the integer
chosen for a key k is called the hash code for that key. The second mapping is called compression.
Compression maps the hash codes to hash values, namely in {0, 1, . . . ,m− 1}.

The Java hashCode() method returns an int, and int values can be either positive or negative,
specifically, they are in {−231, ...− 1, 0, 1, ...231− 1}. The compression function that is used in Java
for hashmaps is

| hashCode() | mod m,

i.e. gives a number in {0, 1, . . . ,m− 1}, as desired. I will discuss the java HashMap class a bit later.
A hash function is two functions:

hash function h = compression ◦ hash code

where ◦ denotes the composition of two functions, and

hash code : keys K→ integers

compression : integers→ {0, ..,m− 1}

and so
h : keys K → {0, 1, . . . ,m− 1},

i.e. the set of hash values is {0, 1, . . . ,m− 1}.

last updated: 30th Apr, 2022 at 10:02 142 ©Michael Langer

COMP 250 W-2022 30 – hashing March 23, 2021

Note that a hash function is itself a map. So there are a several different maps being used here,
and in particular the word ”value” is being used in two different ways. The values v ∈ V of the
map we are ultimately trying to represent are not the same thing as the “hash values” h(k) which
are integers in 0, 1, . . . ,m− 1. Values v ∈ V might be Employee records, or entries in an telephone
book, for example, whereas hash values are indices in {0, 1, . . . ,m− 1}.

Collisions

To represent the (k, v) pairs in our map, we use an array. The number of slots m in the array is
typically bigger than the number of (k, v) pairs in the map. However, it can happen that two keys
k1 and k2 map to the same hash value. This is called a collision. There are two ways a collision can
happen: two keys might have the same hash code, or two keys might have different hash codes,but
these two different hash codes map (compress) to the same hash value.

To allow for collisions, we use a linked list of pairs (k, v) at each slot of our array. These linked
lists are called buckets.18 Note that we need to store a linked list of pairs (k, v), not just values v.
The reason is that when use a key k to try to access a value v, we need to know which of the v’s
stored in a bucket corresponds to which k. We use the hash function to map the key k to a location
(bucket) in the array; we then try to find the corresponding value v in the list. We examine each
entry (k, v) in the linked list and check if the search key equals the key in that entry.

A good hash function will distribute the key/value pairs over the buckets such that, if possible,
there is at most one pair per bucket. This is only possible if the number of entries in the hash map
is less than or equal to the number of buckets. We define the load factor of a hash map to be the
number of entries (k, v) in the map divided by the number of slots in the array (m). A load factor
that is slightly less than one is recommended for good performance.

Having a load factor less than one does not guarentee good performance, however. In the worst
case, all the keys in the collection hash to the same bucket, and then we would have one linked list
only and access is O(n) where n is the number of entries. This is undesirable obviously. To avoid
having such long lists, we want to choose a hash function so that there are few, if any, collisions.

The word hash means to “chop/mix up”.19 We are free to choose whatever hash function we
want and we are free to choose the size m of the array. So, it isn’t difficult to choose a hash function
that performs well in practice, that is, a hash function that keeps the list lengths short. In this
sense, one typically regards hash maps as giving O(1) access. (To prove that the performance of
hash map really is this good, one needs to do some math that is beyond COMP 250.)

As an example of a good versus bad hash function, consider McGill student ID’s which are 9
digits. Many start with the digits 260. If we were to use an array of size say m = 100, 000, then it
would be bad to use the first five digits as the hash function since most students IDs would map to
one of those two buckets. Instead, using the last five digits of the ID would be better.

Java HashMap

In Java, the HashMap<K,V> class implements the hash map that we have been describing. The
hashCode() method for the key class K is composed with the “mod m” (and absolute value) com-

18Storing a linked list of (k, v) pairs in each hash bucket is called chaining.
19It should not be confused with the # symbol which is often the “hash” symbol i.e. hash tag on Twitter, or with

formerly illicit drugs.

last updated: 30th Apr, 2022 at 10:02 143 ©Michael Langer

COMP 250 W-2022 30 – hashing March 23, 2021

pression function where m is the capacity of an underlying array, and it is an array of linked lists.
The linked lists hold (K,V) pairs. Have a look at the Java API to see some of the methods and
their signatures: put , get, remove, size, containsKey, containsValue, and think of how these
might be implemented.

In Java, the default maximum load factor for the hash map is than 0.75 and there is a default
array capacity as well. The HashMap constructor allows you specify the initial capacity of the array,
and you can also specify the maximum load factor. You use put() to add a new entry to a hash
map. When this makes the load factor go above 0.75 (or the value you specify), then a new array
is generated, namely there is larger number m of slots and the (key,value) pairs are remapped to
the new underlying hash map. This happens “under the hood”, similar to what happens with
ArrayList when the underlying array fills up and so the elements needs to be remapped to a larger
underlying array.

hashCode() and equals()

For any class, the hashcode() and equals() method should be related as follows: if k1.equals(k2)
is true, then k1.hashCode() == k2.hashCode() should be true. The reason is that when we call
put, get, or remove, or other methods such as contains, we need to check if the key is already in
the map. But this should be done by checking if there is a key in the map that is equal to the key
we are searching for. If our key class overrides the Object class’es equals method, then we should
use the key’s equals method. (Otherwise, what would be the point of the key having its own equals
method?)

What about the converse of the above rule? If k1.hashCode() == k2.hashCode() is true, then
should we require that k1.equals(k2) returns true ? No, this would be too strong. For example,
we often use strings for the keys of a map. Two different string keys in a map might have the same
hash code. This would create a collision. We would prefer not to have collisions, but we do allow
for them.

Bottom line: if you write a class which uses the hashCode() method and you want to over-
ride either the Object class’es hashCode() or equals() methods, then you should ensure this: if
k1.equals(k2) returns true or false, then k1.hashCode() == k2.hashCode() should return true
of false, respectively. This may require that you override both of them.

Java HashSet<K> class

Java also has a HashSet<T> class. This is similar to a HashMap except that it only holds objects
of type <T>, not key/value pairs. It uses the hashCode() method of the type T. Why would this
class be useful? Sometimes you want to keep track of a set of elements and you just want to ask
questions such as, ”does some element e belong to my set, or not?” You can add elements to a set,
remove elements from a set, compute intersections of sets or unions of sets.” What is nice about
the HashSet class is that it give you quick access to elements. Unlike a list, which requires O(n)
operations to check if an element is present in the worst case, a hash set allows you to check in time
O(1) – assuming a good hash function.

HashSet<T> uses an underlying array, just like hashmap. For the hash function it uses the
hashCode() method for type T, together with the absolute value and “mod m” compression function

last updated: 30th Apr, 2022 at 10:02 144 ©Michael Langer

COMP 250 W-2022 30 – hashing March 23, 2021

where again m is the capacity of the underlying array. Each bucket in the array holds a list of objects
of types T. Think of a HashSet<T> as a HashMap<T,V> without the values V!

HashSet does not implement the List interface, but rather it implements the Set interface.
(Check it out.) For example, suppose you simply want to keep track of a set of Strings. Suppose
you don’t need the strings to be ordered, i.e. you won’t be asking for the i-th string in a lexicographic
order (as you might for a sorted list), and you won’t be asking for the string that was added last
(as you would for a stack), and you won’t be asking for the string that was added first (as you
would for a queue). Suppose you simply want to keep track of a set of strings, and be able to ask
questions like “is string x a member of this set?” or perform operations like adding a string to the
set or deleting a string from the set. In this case, using a hash set would work great since it would
allow you to answer these questions in time O(1). The cost of doing so, of course, is that you are
limited in the operations you can do.

Cryptographic hashing

Hash functions come up in many problems in computer science, not just in hash table data struc-
tures. Another common use is in password authentication. For example, when you log in to a
website, you typically provide a username and password. On a banking site, you might provide
your ATM bank card number or your credit card number, again along with a password. What
happens when you do so?

You might think it works like this. The web server has a file that lists all the user names
and corresponding passwords (or perhaps a hash map of key-value pairs, namely usernames and
passwords, respectively). When you log in, the web server takes your user name, goes to the file,
retrieves the password stored there for that username, and compares it with the password that you
entered. This is not how it works however! The reason is that this method would not be secure. If
someone (an employee, or an external hacker) were to break in an steal the file then that person
would have access to all the passwords and would be able to access everyone’s data.

Instead, the way it typically works is that the webserver stores the user names and hashed
passwords. Then, when a user logs in, the web server takes the password that the user enters,
hashes it (that is, applies the hash function), throws away the password entered by the user, and
compares the hashed password to the hashed password that is stored in the file.

Why is then any better? The answer is that if a hacker could access the user names and hashed
passwords then this itself would not be good enough to log in, since the process of logging in requires
entering a password, not a hashed password.

Now you might wonder if it is possible to compute an inverse hash map: given a hashed password,
can we compute the original password or perhaps some other password that is hashmapped to the
given hashed password? If such a computation were feasible, then this inverse hashmap could be
used again to hack into a user’s account.

The answer is basically no. “Cryptographic” hashing functions are designed so that such that
it not feasible to compute the inverse hash map. These hashing functions have a mixing property
that two strings that differ only slightly will map to completely different hash values, and given a
hash value, one can say almost nothing about a keyword that could produce that hash function.

A few final observations. First, a cryptographic hashing function does not need to be secret.
Indeed there are standard cryptographic hashing functions. One example is MD5 http://www.

last updated: 30th Apr, 2022 at 10:02 145 ©Michael Langer

http://www.miraclesalad.com/webtools/md5.php
http://www.miraclesalad.com/webtools/md5.php

COMP 250 W-2022 30 – hashing March 23, 2021

miraclesalad.com/webtools/md5.php. This maps any string to a sequence of 128 bits.20

Second, cryptographic hashing is not the same as encryption. With the latter, one tries to
encode a string so that it is not possible for someone who is not allowed to know the string to
decode the coded string and have the original one again. However, it should be possible for someone
who is allowed to know the original string to be able to decode the encrypted string to get the
original message back. So, the main difference is that with encryption it is possible to invert the
“hash” function. (It isn’t called hashing, when one is doing encryption, but the idea is similar.)
You will learn a bit about encryption/decryption if you take MATH 240 Discrete Structures, and
you will learn a lot about it if you take COMP 547 Cryptography and Data Security.

20If you check out that link, you’ll see that the hash values are represented not as 128 bits there, but rather as 32
hexadecimal digits.

last updated: 30th Apr, 2022 at 10:02 146 ©Michael Langer

http://www.miraclesalad.com/webtools/md5.php
http://www.miraclesalad.com/webtools/md5.php

COMP 250 W-2022 31 – graphs (definitions and examples) March. 25, 2022

Graphs

You are familiar with data structures such as arrays and linked lists (linear), and trees and hashtables
(non-linear). We next consider a more general non-linear data structure, known as a graph. Here
is an example.

Like in many previous data structures, a graph contains a set nodes. Each node has a reference to
other nodes. For graphs, a reference from one node to another is called an edge.

In a linked list, there are “edges” from one node to the “next” and/or “previous” node. In a
rooted tree, there are edges from children nodes to parent nodes or vice-versa. In a graph, there is
no notion of a “next” or “prev” as in a list, or a child or parent as in a tree. Every node in a graph
can potentially have an edge to every other node. We will discuss data structures for graphs below.

Graphs have been studied and used for many years, and some of the basic results go back a few
hundred years, to mathematicians like Euler. Mathematically, a graph consists of a set V called
“vertices” and a set of edges E ⊆ V ×V . The edges E in a graph is a set of ordered pairs of vertices.

When the ordering of the vertices in an edge is important, we say that we have a directed graph.
One can also define graphs in which the edges do not have “arrows”, that is, each edge is a pair
of vertices but we don’t care about the order. This is called an undirected graph, and in this case
we would draw the edges as line segments with no arrows. We will deal with directed graphs only.
(But undirected graphs are also important, and you’ll see lots of examples in COMP 251.)

There are many examples of graphs in the world. In a flight network, V might be a set of
airports and E might be direct flights between airports. In the world wide web, V might be a set of
html documents and E would be the URLs (links) between documents. In a running Java program,
V might be a set of objects and E would be a set of references, namely when an object has a field
(reference variable) that references another object.

Terminology

Here is some basic graph terminology that you need to know. Please see the slides for examples.

� outgoing edges from v - the set of edges of the form (v, w) ∈ E where w ∈ V

� incoming edges to v - the set of edges of the form (w, v) ∈ E where w ∈ V

� in-degree of v - the number incoming edges to v

� out-degree of v - the number outgoing edges from v

last updated: 30th Apr, 2022 at 10:02 147 ©Michael Langer

COMP 250 W-2022 31 – graphs (definitions and examples) March. 25, 2022

� path - a sequence of vertices (v1, . . . , vm) where (vi, vi+1) ∈ E for each i. The length of a path
in a graph is the number of edges in the path (not the number of vertices). The definition of
path is essentially the same for graphs as it was for trees.

� cycle - a path such that the first vertex is the same as the last vertex

If there were an edge (v, v), then this would be considered as a cycle. Such edges are called
loops.

� directed acyclic graph (DAG) – a directed graph that has no cycles. Such graphs are used
to capture dependencies between objects or events. For example, the graph of prerequisite
relationships in McGill courses is directed and acyclic.

� weighted graph – a graph that has a number (weight) associated with each edge; for example,
in a flight network where the vertices are airports, the weight might be the time it takes to
fly between two airports

In the slides, I highlight a few important graph problems that you will see in COMP 251.

ASIDE: web graph and Google’s pagerank

An important example of a graph is the world wide web. As mentioned earlier, the vertices are web
pages and the edges are the hyperlinks from one web page to another.

Let’s consider a few basic ideas of how Google search works. The idea goes back to the late
1990’s when the co-founders Sergey Brin and Larry Page were graduate students. They had some
very clever new ideas for how to improve the search for web pages on the world wide web. The idea
is described in a paper draft. Here I will present one of the very basic ideas.

When you search for some set of terms on google, you want to find the most important web
pages for those terms. One of the core early ideas was to define whether a web page v is (relatively)
important or not. Here are two factors:

� Which set of web pages {w} point to (have a hyperlink to) this web page v, and how important
are each of those web pages w ?

� For each such web page w that points to v, how many web pages does w point to. From v’s
perspective, w’s link to v should contribute less if w points to lots of other web pages.

Let Nout(w) be the out-degree of vertex w. Then the page rank (or importance) of a web page v is
defined roughly as follows21

R(v) =
∑

w:(w,v) is an incoming edge to v

R(w)

Nout(w)
.

The idea for computing R(v) is to initialize it to the value 1 for all v. Then, iteratively update R(v)
by plugging the current values of R() into the right hand side.

21Even the basic formula is a bit more complicated than this, but hopefully you get the basic idea.

last updated: 30th Apr, 2022 at 10:02 148 ©Michael Langer

http://infolab.stanford.edu/~sergey/
http://infolab.stanford.edu/~backrub/google.html

COMP 250 W-2022 31 – graphs (definitions and examples) March. 25, 2022

Data structures for graphs

Adjacency List

A graph is a generalization of a tree. Each node in a tree has a list of children. Similarly, each
graph vertex v has a list of other vertices w that are adjacent to it. We call this an adjacency list,
namely for each vertex v ∈ V , we represent a list of vertices w such that (v, w) ∈ E. For example,
here is the adjacency lists for the graph on page 1.

a - c

b - f

c - f

d - a,c

e - b,f

f - b,e

g - h

h -

I have represented vertices in alphabetic order, and will do so in most examples.
Java does not have a Graph class since there are too many different types of graphs and no one

standard way works best. So one needs to implement one’s own Graph class. A very basic Graph

class might be as simple as this:

class Graph<T>{

class Vertex<T> {

LinkedList<Vertex<T>> adjList;

T element;

}

: // various methods

}

However, it is common to have other vertex attributes and also to have attributes for the edges, in
particular, edge weights. So a more common graph would be like this:

class Graph<T>{

class Vertex<T> {

LinkedList<Edge<T>> adjList;

T element;

}

class Edge<T> {

Vertex<T> endVertex;

double weight;

:

}

last updated: 30th Apr, 2022 at 10:02 149 ©Michael Langer

COMP 250 W-2022 31 – graphs (definitions and examples) March. 25, 2022

Now the adjacency list for a vertex is a list of Edge objects and each edge is represented only by
the end vertex of the edge. The start vertex of each edge does not need to be represented explicitly
because it is the vertex that has the edge in its adjacency list adjList.

An important difference between rooted trees and graphs is that rooted trees have a special
node (the root) where most methods begin. However, for graphs, we may wish to access any node.
For this, we need a map.

We will have a label (key) for each of the vertices, and we will use the key to access the vertices
by using a hash map. The key might be a string. For example, in a graph network of airports, YUL
might be the key for Trudeau airpot, LAX for the main Los Angeles airport, etc.

class Graph<T>{

HashMap< String, Vertex<T> > vertexMap;

:

// Vertex and Edge inner classes as above

}

Adjacency Matrix

A different data structure for representing the edges in a graph is an adjacency matrix which is a
|V |×|V | array of booleans, where |V | is the number of elements in set V i.e. the number of vertices.
The value 1 at entry (v1, v2) in the array indicates that (v1, v2) is an edge, that is, (v1, v2) ∈ E,
and the value 0 indicates that (v1, v2) /∈ E.

The adjacency matrix for the graph from earlier is shown below.

abcdefgh

a 00100000

b 00000100

c 00000100

d 10100000

e 01000100

f 01001000

g 00000001

h 00000000

Note that in this example, the diagonals are all 0’s, meaning that there are no edges of the form
(v, v). But graphs can have such edges (called loops). An example is given in the slides.

For a weighted graph, the entries would be numbers rather than boolean (0,1) values. Again, a
0 would indicate that there is no edge, as opposed to an edge with weight 0.

See the Exercises for some examples of when you would you an adjacency list versus adjacency
matrix.

last updated: 30th Apr, 2022 at 10:02 150 ©Michael Langer

COMP 250 W-2022 32 – graph traversals March 28, 2022

Graph traversal

One problem we often need to solve when working with graphs is to decide if there is a sequence of
edges (a path) from one vertex to another. If there are multiple paths then the problem is to find
the “best” one. There are various versions of this problem. One familiar one to you is Google Maps
which finds the shortest path from one location to another. You’ll cover a shortest path algorithms
in COMP 251.

Today we will consider the problem of finding the set of all vertices that can be reached from a
given vertex v, or equivalently, the set of all vertices w for which there is a path from v to w.

Depth First Traversal

Recall the depth first traversal algorithm for trees.

depthfirst_Tree(root){

visit root // preorder

for each child of root

depthfirst_Tree(child)

}

This algorithm generalizes to graphs as follows.

depthfirst_Graph(v){

v.visited = true

for each w such that (v,w) is in E

if !w.visited // avoids cycles

depthfirst_Graph(w)

}

I call this algorithm a “traversal” but in fact it only reaches the nodes in the graph for which there
is a path from the input vertex. This algorithm is sometimes called “depth first search” since we
are searching for all vertices that can be reached from the input vertex.

Note that before running this algorithm, we need to set the visited field to false for all vertices
in the graph. To do so, we need to access all vertices in the graph. This is a different kind of
traversal, which is independent of the edges in the graph. For example, if you were to use a linked
list to represent all the vertices in the graph, then you would traverse this linked list and set the
visited field to false, before you called the above traversal algorithm. If you were using a hash
map to represent the vertices in the graph, you would need to go through all buckets of the hash
map by iterating through the hash map array entries and following the linked list stored at each
entry. You would set the visited field to false on each vertex (value) in each bucket.

Example

Let’s run the above preorder depth first traversal algorithm on the graph shown below. Also shown
is the call stack and how it evolves over time, and the call tree. (A node in the call tree represents one
“call” of the depthfirst Graph method. Two nodes in the call tree have a parent-child relationship
if the parent node calls the child node.)

last updated: 30th Apr, 2022 at 10:02 151 ©Michael Langer

COMP 250 W-2022 32 – graph traversals March 28, 2022

Note that the call stack is actually constructed when you run a program that implements this
recursive algorithm, whereas the call tree is not constructed. The call tree is just a way of thinking
about the recursion.

CALL STACK CALL TREE

b e a

f f f f f |

c c c c c c c c

a a a a a a a a a |

f

------------------> time / \

b e

Notice that nodes d, g, h are not visited.
Here is another example. The graph is on the left and the call tree is on the right. Cover up the

tree on the right with your hand, and then do the depth first search for the tree, starting from (a).
Assume that within each adjacency list, the elements are lexicographically (alphabetically) ordered.

Non-recursive depth first traversal

We do not need recursion to do a depth first traversal. We can do depth first traversal using a
stack. Our algorithm here generalizes the non-recursive tree traversal algorithm that used a stack.

The tree traversal algorithm using a stack went like this:

treeTraversalUsingStack(root){

s.push(root)

while !s.isEmpty(){

cur = s.pop()

visit cur

for each child of cur

s.push(child)

}

}

last updated: 30th Apr, 2022 at 10:02 152 ©Michael Langer

COMP 250 W-2022 32 – graph traversals March 28, 2022

Here we visited each node after popping it from the stack. Let’s rewrite this slightly so that we
visit each node before pushing it onto the stack. (It is basically at the same time as pushing on the
stack, since the order of the two instructions within the for loop below doesn’t matter.)

treeTraversalUsingStack(root){

visit root

s.push(root)

while !s.isEmpty(){

cur = s.pop()

for each child of cur{

visit child

s.push(child)

}

}

}

Now let’s generalize this to graphs. In the tree case, we pushed the children of a node onto the
stack. In the graph case, we will push the adjacent vertices (nodes) onto the stack. We only do so,
however, if the adjacent vertex has not yet been visited. The reason is that the graph may contain
a cycle and we want to ensure that a vertex does not get pushed onto the stack more than once.
See Exercises 12 (graphs) Question 6.

graphTraversalUsingStack(v){

initialize empty stack s

v.visited = true

s.push(v)

while (s is not empty) {

u = s.pop()

for each w in u.adjList{

if (!w.visited){

w.visited = true

s.push(w)

}

}

Note that this still is a preorder traversal. We visit a vertex before we visit any of the children
vertices.

Breadth first traversal

Like depth first traversal, breadth first traversal finds all vertices that can be reached from a given
vertex v. However, breadth first traversal visits all vertices that are one edge away, before it visits
any vertices are two vertices away, etc. We have already seen breadth first traversal in trees, also
known as level order traversal. Breadth traversal in graphs is more general: the levels correspond
to vertices that are a certain distance away (in terms of number of edges i.e. path length) from the
starting vertex.

last updated: 30th Apr, 2022 at 10:02 153 ©Michael Langer

COMP 250 W-2022 32 – graph traversals March 28, 2022

Since we are working with a graph rather than a tree, we visit the nodes before enqueueing
them. When we reach a node, we only visit and enqueue it if it hadn’t yet been visited.

breathFirst(u){

initialize empty queue q

u.visited = true

q.enqueue(u)

while (!q.empty) {

v = dequeue()

for each w in adjList(v)

if !w.visited{

w.visited = true

enqueue(w)

}

}

Since enqueue a vertex only if we have not yet visited it, we cannot enqueue a vertex more than
once. Moreover, all vertices that are enqueued are eventually dequeued, since the algorithm doesn’t
terminate until the queue is empty.

Take the same example graphs as before, again starting with vertex a. Below we show the queue
q as it evolves over time, namely we show the queue at the end of each pass through the while

loop.
Since this is not a recursive function, we don’t have a “call tree”. But we can still define a tree.

Each time we visit a vertex – i.e. w in adjList(v) and we set w.visited to true – we get a edge
(v, w) in the tree. We can think of the w vertex as a child of the v vertex, which is why we are
calling this a tree. Indeed we have a rooted tree since we are starting the tree at some initial vertex
that we are searching from.

Note how the queue evolves over time, and the order in which the nodes are visited. The tree
in this case happens to be the same as the tree defined by the depth first traversal.

QUEUE q TREE

(snapshots)

a a

c |

f c order visited = acfbe

be |

e f

/ \

b e

last updated: 30th Apr, 2022 at 10:02 154 ©Michael Langer

COMP 250 W-2022 32 – graph traversals March 28, 2022

Another Example

Here is another example, which better illustrates the difference between depthFirst and breadFirst.
To simplify the drawing, I suppose here that the graph is undirected. In the slides, I did a directed
version of this.

GRAPH ADJACENCY LIST depth first depth first breadth first

(recursive) (stack) (queue)

a - b - c a - (b,d) a - b - c a - b c a - b - c

| | | b - (a,c,e) | | | | | |

d - e - f c - (b,f) d - e - f d - e f d e f

| | | d - (a,e,g) | | | | | |

g - h - i e - (b,d,f,h) g - h - i g - h - i g h i

f - (c,e,i)

g - (d,h)

h - (e,g,i)

i - (f,h)

order visited: abcfedghi abdeghifc abdcegfhi

I claim that this algorithm first visits all nodes reachable from the start node via a path length
1, then visits all nodes reachable from the start node via a path length 2, etc, then visits all nodes
reachable from the start node via a path length k, etc. You can prove such a claim by induction.
Can you do the proof?

last updated: 30th Apr, 2022 at 10:02 155 ©Michael Langer

COMP 250 W-2022 33 - Recurrences 1 March 30, 2022

Recurrences

We have seen many algorithms thus far. For each one we have tried to express how many basic
operations are required as a function of some parameter n which is typically the size of the input
e.g. the number of elements in a list.

For algorithms that involve for loops, we can often write the number of operations of the loop
component as a power of n, which corresponds to the number of nested loops. For example, if we
have two nested for loops, each of which run n times, then these loops take time proportional to n2.
The quadratic sorting algorithms and the grade school multiplication algorithm are a few examples.

For recursive algorithms, it is less obvious how to express the number of operations as a function
of the size of the input. We have given some examples of recursive algorithms in the lectures, and
argued what there O() behavior is. But this was informal only. For these examples and others, we
would like to express in a more general and formal way how the time (or number of steps) it takes
to solve the problem depends on n. In each case, we express a function t(n) in terms of t(...) where
the argument depends on n but it is a value smaller than n. Such a recursive definition of t(n) is
called a recurrence relation or just a recurrence.

Example 1: reversing a linked list

Let t(n) be the time it takes to reverse a list with n elements. Think of how this is done in the
case of a linked list. You remove the first element of the list. Then, you take the remaining n − 1
element list and recursively reverse them. Then you add the element that you removed at the end
of the reversed list.

Each recursive call reduces the problem from size n to size n− 1. This suggests a relationship:

t(n) = c+ t(n− 1)

where the constant c is the time it takes in total to remove the first element from a list plus the
time it takes to add that same element to the end of a list. We are not saying what c is. All that
matters is that it is constant: it doesn’t depend on n. (Note that I am making an assumption here
that the first element can be removed in constant time. If we are using an array list, then this
assumption would be incorrect.)

To obtain an expression for t(n) that is not recursive, we repeatedly substitute on the right side,
as follows:

t(n) = c+ t(n− 1)

= c+ c+ t(n− 2)

= c+ c+ c+ t(n− 3)

= . . .

= c(n− 1) + t(1).

This method is called backwards substitution. Note t(1) is the base case of the recursion and done
in constant time.

Informally, we say that t(n) is O(n) since the time it takes is roughly proportional to n. A few
lectures from now, we’ll say more formally what we mean by O().

last updated: 30th Apr, 2022 at 10:02 156 ©Michael Langer

COMP 250 W-2022 33 - Recurrences 1 March 30, 2022

One often writes such a recurrence in a slightly simpler way (c = 1):

t(n) = 1 + t(n− 1) .

The idea is that since the constant c has no “units” anyhow, its meaning is unspecified except for
the fact that it is constant, so we just treat it as a unit (1) number of instructions.

Example 2: sorting a list by finding the minimum element

Consider a recursive algorithm for sorting which finds the smallest element in a list and removes it,
then sorts the remaining n − 1 elements, and finally adds the removed element to the front of the
list. We express the time taken, using the recurrence:

t(n) = c n+ t(n− 1) .

We could write the recurrence more precisely as

t(n) = c1 + c2 n+ t(n− 1)

since in each recursive call there is some constant c1 amount of work, plus some amount of work
c1n that depends linearly on the size n of the list in that call. But let’s keep it simple and consider
just the first recurrence. Using back substitution:

t(n) = c n+ t(n− 1)

= c n+ c · (n− 1) + t(n− 2)

= . . .

= c { n+ (n− 1) + (n− 2) + · · ·+ (n− k)}+ t(n− k − 1)

= c { n+ (n− 1) + (n− 2) + · · ·+ 2 + 1}+ t(0)

=
cn(n+ 1)

2
+ t(0)

Informally we will say that is O(n2) since the largest term here that depends on n is n2. Next week
we will give a more formal definition of big O.

Example 3: Tower of Hanoi

Recall the Tower of Hanoi problem. Let t(n) be the number of disk moves. The recurrence relation
is:

t(n) = 1 + 2 t(n− 1).

There is the single disk move that is done in each call. One also needs to solve the problem twice
for n− 1 disks.

last updated: 30th Apr, 2022 at 10:02 157 ©Michael Langer

COMP 250 W-2022 33 - Recurrences 1 March 30, 2022

Proceeding by back substitution, we get

t(n) = 1 + 2 t(n− 1)

= 1 + 2(1 + 2 t(n− 2))

= (1 + 2) + 4 t(n− 2)

= (1 + 2) + 4 (1 + 2 t(n− 3))

= (1 + 2 + 4) + 8 t(n− 3)

= ...

= (1 + 2 + 4 + 8 + · · ·+ 2k−1) + 2k t(n− k)

= (1 + 2 + 4 + 8 + · · ·+ 2n−2) + 2n−1 t(1)

= (2n−1 − 1) + 2n−1 t(1)

= 2n − 1, since t(1) = 1

where we have used the familiar geometric series

m−1∑
i=0

xi =
xm − 1

x− 1

for the case that x = 2.
Verify the above expression for yourself by considering n = 1, 2, 3, ...

Example 4: binary search

Recall the recursive binary search algorithm. We assume we have an ordered list of elements, and
we would like to find a particular element e in the list. The algorithm computes the mid index
and compares the element e to the element at that mid index. The algorithm then recursively calls
itself, searching for e either in the lower or upper half of the list. Since the recursive call is on a list
that is only half the size, we can express the time using the recurrence:

t(n) = c+ t(
n

2
) .

For the purposes of solving the recurrence, we suppose that n is a power of 2. Then,

t(n) = c+ t(
n

2
)

= c+ c+ t(
n

4
)

= c+ c+ · · ·+ t(
n

2k
)

= c+ c+ · · ·+ c+ t(
n

n
) ,where 2k = n i.e. k = log2 n, and we have log2 c′s

= c log2 n+ t(1)

So we say that binary search is O(log2 n) since the largest term that depends on n is log2 n.

last updated: 30th Apr, 2022 at 10:02 158 ©Michael Langer

COMP 250 W-2022 34 - Recurrences 2 April 1, 2022

Today we examine the recurrences for mergesort and quicksort.

Mergesort

Recall the mergesort algorithm: we divide the list of things to be sorted into two approximately
equal size sublists, sort each of them, and then merge the result. Merging two sorted lists of size n

2

takes time proportional to n, since the merging requires iterating through the elements of each list.
If n is even, then there are n

2
+ n

2
= n elements in the two lists. If n is odd then one of the lists

has size one greater than the other, but there are still n steps to the merge. Let’s assume that n is
a power of 2. This keeps the math simpler since we don’t have to deal with the case that the two
sublists are not exactly the same length. In this case, the recurrence relation for mergesort is:

t(n) = cn+ 2t(
n

2
).

[ASIDE: If we were to consider a general n, then the correct way to write the recurrence would be:

t(n) = t(bn
2
c) + t(dn

2
e) + cn

where the bn
2
c means floor(n/2) and dn

2
e means ceiling(n/2), or ”round down” and ”round up”,

respectively. That is, rather than treating n/2 as an integer division and ignoring the remainder
(rounding down always), we would be treating it as n/2.0 and either rounding up or down. In the
lecture, I gave the example of n = 13 so bn

2
c = 6 and dn

2
e = 7. In COMP 250, we don’t concern

ourselves with this level of detail since nothing particualrly interesting happens in the general case,
and we would just be getting bogged down with notation. The interesting aspect of mergesort is
most simply expressed by considering the case that n is a power of 2.]

Let’s solve the mergesort recurrent using backwards substitution:

t(n) = c n+ 2 t(
n

2
)

= c n+ 2 (c
n

2
+ 2t(

n

4
))

= c n+ c n+ 4 t(
n

4
)

= c n+ c n+ 4 (c
n

4
+ 2 t(

n

8
))

= c n+ c n+ c n+ 8 t(
n

8
)

= c n k + 2k t(
n

2k
)

= c n log2 n+ n t(1), when n = 2k

which is O(n log2 n) since the dominant term is n log2 n.
What is the intuition for why mergesort is O(n log2 n) ? Think of the merge phases. The list of

size n is ultimately partitioned down into n lists of size 1. If n is a power of 2, then these n lists are
merged into n

2
lists of size 2, which are merged into n

4
lists of size 4, etc. So there are log2 n ”levels”

of merging, and each require moving (as part of merging) all n elements which requires O(n) work.

last updated: 30th Apr, 2022 at 10:02 159 ©Michael Langer

COMP 250 W-2022 34 - Recurrences 2 April 1, 2022

See the lecture slides for a Java implementation of the mergesort and merge methods. The
mergesort method takes an input array and copies the elements into two smaller arrays. The
merge method then takes these smaller arrays and merges their elements back into the takes an
input array and copies the elements into the original big array.

How many recursive calls to mergesort?

Suppose the n is a power of 2. When we run mergesort on a list of size n, how many calls f(n) do
we make to mergesort?

If n ≥ 2, then we have the recurrence

f(n) = 1 + 2f(
n

2
)

namely to mergesort a list of size n, we call mergesort on this list which then requires we call
mergesort twice on a list of size n/2. The base case is n = 1, where we have just one call so
f(1) = 1.

Let’s solve the recurrence:

f(n) = 1 + 2 f(
n

2
)

= 1 + 2 (1 + 2f(
n

4
))

= 1 + 2 + 4f(
n

4
)

= 1 + 2 + 4(1 + 2f(
n

8
))

= 1 + 2 + 4 + 8f(
n

8
)

= 1 + 2 + 4 + · · ·+ 2k−1 + 2kf(
n

2k
)

= 1 + 2 + 4 + · · ·+ n

2
+ nf(1) when n = 2k

= 1 + 2 + 4 + · · ·+ n

2
+ n, since base case is f(1) = 1

=

log2 n∑
i=0

2i geometric series, i.e.n = 2log2 n

= 2n− 1

How many recursive calls to merge?

Again, suppose the n is a power of 2. When we run mergesort on a list of size n, each call to
mergesort makes one call to merge. So you might think that the same recurrence applies.

However, that’s not quite correct. In the base case n = 1, there are no calls to merge, so f(1) = 0
in this case. Using the same derivation as above, we would now get a different solution namely
n− 1 instead of 2n− 1.

last updated: 30th Apr, 2022 at 10:02 160 ©Michael Langer

COMP 250 W-2022 34 - Recurrences 2 April 1, 2022

On the base case of mergesort

With mergesort, we have a base case of n = 1. What if we had stopped the recursion at a larger
base case? For example, suppose that when the list size has been reduced to 4 or less, we switch to
running bubble sort instead of mergesort. Since bubble sort is O(n2), one might ask whether this
would cause the mergesort algorithm to increase from O(n log2 n) to O(n2).

Let’s solve the recurrence for mergesort by assuming t(n) = 2t(n
2
) + c1n when n > 4 but that

some other t(n) holds for n ≤ 4. Assume n is a power of 2 (to simplify the argument). We want to
stop the backsubstitution at t(4) on the right side. So we let k be such that n

2k
= 4, that is, 2k = n

4
.

t(n) = c n+ 2 t(
n

2
)

= . . .

= c n k + 2k t(
n

2k
), and letting 2k =

n

4
gives...

= c n(log2 n− 2) +
n

4
t(4)

= c n log2 n − 2cn+
n

4
t(4)

Note that this is still O(n log2 n) since the dominant term is n log2 n. Also note that by switching
to bubble sort when n = 4, we really should write the solution as:

t(n) = c n log2 n − 2cn+
n

4
tbubble(4).

Would this method would be faster than the original mergesort? It depends on which is faster: the
recursive mergesort on a list of size 4 (or less) or bubblesort on a list of size 4 (or less). I say “or
less” here because the size of the original list might not be a power of 2 and so the base case might
be size 3 or 2 (e.g. a list of size 5 would be split into lists of size 3 and 2). Why would bubblesort
be faster on small lists? Well, bubblesort doesn’t have to do the extra work of making new arrays
and copying; rather bubblesort (like insertion and selection sort) can be done in place.

Quicksort

Let’s now turn to the recurrence for quicksort. Recall the main idea of quicksort. We choose some
element called the pivot, and then partition the remaining elements based on whether they are
smaller than or greater than the pivot, recursively quicksort these two lists, and then concatentate
the two, putting the pivot in between.

In the best case, the partition produces two roughly equal sized lists. This is the best case because
then one only needs about log n levels of the recursion and approximately the same recurrence as
mergesort can be written and solved.

What about the worst case performance? As we have discussed in earlier lectures, if the element
chosen as the pivot happens to be smaller then all the elements in the list, or larger then all the
elements in the list, then the two lists are of size 0 and n − 1. If this poor splitting happens for
each list at each level of the recursion, then performance degenerates to that of the O(n2) sorting
algorithms we saw earlier, namely the recurrence becomes

t(n) = cn+ t(n− 1) .

last updated: 30th Apr, 2022 at 10:02 161 ©Michael Langer

COMP 250 W-2022 34 - Recurrences 2 April 1, 2022

Solving this by backstitution (see last lecture) gives

t(n) = c
n(n+ 1)

2
+ t(0)n

which is O(n2).
Why is quicksort called “quick” when its worst case is O(n2) ? In particular, it would seem that

mergesort would be quicker since mergesort is O(n log n), regardless of best or worst case.
There are two basic reasons why quicksort is ”quick”. One reason is that the first case is easy

to avoid in practice. This was discussed at the end of the heapsort 2 lecture, but I’ll mention it
again here as reminder. If one is a bit more clever about choosing the pivot, then one can make
the worst case situation happen with very low probability One idea for choosing a good pivot is to
examine three particular elements in the list: the first element, the middle element, and the last
element (list[0], list[mid], list[size-1]. For the pivot, one sorts these three elements and
takes the middle value (the median) as the pivot. The idea is that it is very unlikely for all three of
these elements to be among the three smallest (or three largest). In particlar, if the list happens to
be close to sorted (or sorted in the wrong direction) then the ”median of three” will tend to be close
the median of the entire list. Note that the best split occurs if we take the pivot to be the median
of the whole list. In practice, such a simple idea works very well, and partitions have close to even
size.

The second reason that quicksort is quick is that, if one uses an array list to represent the list,
then it is possible to do the partition in place, that is, without using extra space. The ”in place”
property of quicksort is a big advantage, since it reduces the number of copies one needs to do. By
contrast, the straightforward implementation of mergesort requires that we use additional arrays.
Creating such arrays and using extra space ends up slowing you down in practice when n is very
large.

last updated: 30th Apr, 2022 at 10:02 162 ©Michael Langer

COMP 250 W-2022 35 - big O April 4, 2022

We have seen several algorithms in the course, and we have loosely characterized their runtimes
t(n) in terms of the size n of the input. We say that the algorithm takes time O(n) or O(log2 n)
or O(n log2 n) or O(n2), etc, by considering how the runtime grows with n, ignoring constants and
only considering the dominant term in t(n). This level of understanding of O() is usually good
enough for characterizing algorithms. However, we would like to be more formal about what this
means. What does it mean to ignore constants? What do we mean by the dominant term?

ASIDE: An analogy from Calculus: limits

A good analogy for informal versus formal definitions is one of the most fundamental ideas of
Calculus: the limit. In your Calculus 1 course, you learned about various types of limits and you
learned methods and rules for calculating limits e.g. squeeze rule, ratio test, l’Hopital’s rule, etc.

You were also given the formal definition of a limit. This formal definition didn’t play much
role in your Calculus class. You were more concerned with using rules about limits than in fully
understanding where these rules come from and why they work. If you go further ahead in your
study of mathematics then you will find this formal definition comes up again22.

Here is the formal definition of the limit of a sequence. A sequence t(n) of real numbers converges
to (or has a limit of) a real number t∞ if, for any ε > 0, there exists an n0 such that for all
n ≥ n0, | t(n)− t∞ | < ε.

This definition is subtle. There are two “for all ” logical quantifiers and there is one “there exists”
quantifier, and the three quantifiers have to be ordered in just the right way to express the idea,
which is this: if you take any finite interval centered at the t∞, namely (t∞ − ε, t∞ + ε), then the
values t(n) of the sequence will all fall in that interval once n exceeds some finite value n0. That
finite value n0 may depend on ε.

This is relevant to big O for two reasons. First, the formal definition of big O has a similar
flavour to the formal definition of the limit of a sequence in Calculus. Second, we will see two
lectures from now that there are rules that allow us to say that some function t(n) is big O of some
other function e.g. t(n) is O(log2 n), and these rules combine the formal definition of big O with the
formal definition of a limit. Let’s put limits aside for now, and return to them once we understand
more about big O.

Big O

Let t(n) be a well-defined sequence of integers. In the last two lectures, such a sequence typically
represented the time or number of steps it takes an algorithm to run as a function of n which is the
size of the input. However, today we put this interpretation aside and we just consider t(n) to be a
sequence of numbers, without any meaning. We will look at the behavior of this sequence t(n) as
n becomes large.

22in particular, starting in Real Analysis (e.g. MATH 242 at McGill)

last updated: 30th Apr, 2022 at 10:02 163 ©Michael Langer

COMP 250 W-2022 35 - big O April 4, 2022

Definition (preliminary)

Let t(n) and g(n) be two sequences of integers23, where n ≥ 0. We say that t(n) is asymptotically
bounded above by g(n) if there exists a positive number n0 such that,

for all n ≥ n0, t(n) ≤ g(n).

That is, t(n) becomes less than or equal to g(n) once n becomes sufficiently large.

Example

Consider the function t(n) = 5n+ 70. It is never less than n, so for sure t(n) is not asymptotically
bounded above by n. It is also never less than 5n, so it is not asymptotically bounded above by
5n either. But t(n) = 5n + 70 is less than 6n for sufficiently large n, namely n ≥ 12, so t(n) is
asymptotically bounded above by 6n. The constant 6 in 6n is one of infinitely many that work here.
Any constant greater than 5 would do. For example, t(n) is also asymptotically bounded above by
g(n) = 5.00001n, although n needs to be quite large before 5n+ 70 ≤ 5.00001n.

The formal definition of big O below is slightly different. It allows us to define an asymptotic
upper bound on t(n) in terms of a simpler function g(n), e.g. :

1, log n, n, n log n, n2, n3, 2n, . . .

without having a constant coefficient. To do so, one puts the constant coefficient into the definition.

Definition (big O):

Let t(n) and g(n) be well-defined sequences of integers. We say t(n) is O(g(n)) if there exist two
positive numbers n0 and c such that, for all n ≥ n0,

t(n) ≤ c g(n).

We say “t(n) is big O of g(n)”. I emphasize: this definition allows us to keep the g(n) simple by
having a constant factor (c) that is separate from the simple g(n).

A few notes about this definition: First, the definition still is valid if g(n) is a complicated
function, with lots of terms and constants. But the whole point of the definition is that we keep
g(n) simple. So that is what we will do for the rest of the course. Second, the condition n ≥ n0 is
also important. It allows us to ignore how t(n) compares with g(n) when n is small. This is why
we are talking about an asymptotic upper bound.

23Usually we are thinking of positive integers, but the definition is general. The t(n) could be real numbers,
positive or negative

last updated: 30th Apr, 2022 at 10:02 164 ©Michael Langer

COMP 250 W-2022 35 - big O April 4, 2022

Example 1

The function t(n) = 5n+ 70 is O(n). Here are a few different proofs:
First,

t(n) = 5n+ 70

≤ 5n+ 70n, when n ≥ 1

= 75n

and so n0 = 1 and c = 75 satisfies the definition.
Here is a second proof:

t(n) = 5n+ 70

≤ 5n+ 6n, for n ≥ 12

= 11n

and so n0 = 12 and c = 11 also satisfies the definition.
Here is a third proof:

t(n) = 5n+ 70

≤ 5n+ n, for n ≥ 70

= 6n

and so n0 = 70 and c = 6 also satisfies the definition.
A few points to note:

� If you can show t(n) is O(g(n)) using constants c, n0, then you can always increase c or n0 or
both, and these constants with satisfy the definition also. So, don’t think of the c and n0 as
being uniquely defined.

� There is no “best” choice of c and n0. The examples above show that if you make c bigger
(less strict) then you can make n0 smaller (more strict, since the inequality needs to hold for
more values of n). The big O definition says nothing about “best” choice of c and n0. It just
says that there has to exist one such pair.

� There are inequalities in the definition, e.g. n ≥ n0 and t(n) ≤ cg(n). Does it matter if the
inequalities are strict or not? No. If we were to change the definitions to be strict inequalities,
then we just might have to increase the c or n slightly to make the definition work.

An example of an incorrect big O proof

Many of you are learning how to do proofs for the first time. It is important to distinguish a formal
proof from a “back of the envelope” calculation. For a formal proof, you need to be clear on what
you are trying to prove, what your assumptions are, and what are the logical steps that take you
from your assumptions to your conclusions. Sometimes a proof requires a calculation, but there is
more to the proof than calculating the “right answer”.

last updated: 30th Apr, 2022 at 10:02 165 ©Michael Langer

COMP 250 W-2022 35 - big O April 4, 2022

For example, here is a typical example of an incorrect “proof” of the above: (in the lecture, I
presented this a bit later)

5n+ 70 ≤ cn

5n+ 70n ≤ cn, n ≥ 1

75n ≤ cn

Thus, c > 75, n0 = 1 works.

This proof contains all the calculation elements of the first proof above. But the proof here is
wrong, since it isn’t clear which statement implies which. The first inequality may be true or false,
possibly depending on n and c. The second inequality is different than the first. It also may be
true or false, depending on c. And which implies which? The reader will assume (by default) that
the second inequality follows from the first. But does it? Or does the second inequality imply the
first? Who knows? Such proofs tend to get grades of 0.24 This is not the big O that you want.
Let’s turn to another example.

ASIDE: another incorrect proof

When one is first learning to write proofs, it is common to leave out certain important information.
Let’s look at a few examples of how this happens.

Claim:

For all n ≥ 1, 2n2 ≤ (n+ 1)2.
If you are like me, you probably can’t just look at that claim and evaluate whether it is true

or false. You need to carefully reason about it. Here is the sort of incorrect “proof” you might be
tempted to write, given the sort of manipulations I’ve been doing in the course:

2n2 ≤ (n+ 1)2

≤ (n+ n)2, where n ≥ 1

≤ 4n2

which is true, i.e. 2n2 ≤ 4n2. Therefore, you might conclude that the claim you started with is
true.

Unfortunately, the claim is false. Take n = 3 and note the inequality fails since 2 · 32 > 42. The
proof is therefore wrong. What went wrong is that the first line of the proof assumes what we are
trying to prove. This is a remarkably common mistake.

Let’s now get back to big O and consider another example.

24As mentioned in class, with 600 students, we just don’t have the resources to ask you to write out these proofs
on exams.

last updated: 30th Apr, 2022 at 10:02 166 ©Michael Langer

COMP 250 W-2022 35 - big O April 4, 2022

Example 2

Claim: The function t(n) = 8n2 − 17n+ 46 is O(n2).

Proof: We need to show there exists positive c and n0 such that, for all n ≥ n0,

8n2 − 17n+ 46 ≤ cn2 .

t(n) = 8n2 − 17n+ 46

≤ 8n2 + 46n2, for n ≥ 1

= 54n2

and so n0 = 1 and c = 54 does the job.

Here is a second proof:

t(n) = 8n2 − 17n+ 46

≤ 8n2, n ≥ 3

and so c = 8 and n0 = 3 does the job.

Miscellaneous but important notes

Here are a few points to be aware of:

� We sometimes say that a function t(n) is O(1). What does this mean? Applying the definition,
it means that there exists constants c and n0 such that, for all n ≥ n0, t(n) ≤ c. That is, t(n)
is bounded above by a constant, namely max{t(0), t(1), . . . , t(n0), c}.

� You will not write that a function or algorithm is O(3n) or O(5log2n), etc. Instead, you should
write O(n) or O(log2n), etc. Why? Because the point of big O notation is to avoid dealing
with these constant factors. So, while it is still technically correct to write the above, in that
it doesn’t break the formal definition of big O, we just never do it.

� We generally want our g(n) to be simple, and we also generally want it to be small. But the
definition doesn’t require this. For example, in the above example, t(n) = 5n + 70 is O(n)
but it is also O(n log n) and O(n2) and O(n3), etc. For this example, we say that O(n) is a
“tight bounds”. We generally express O() using tight bounds. I will return to this point next
lecture.

last updated: 30th Apr, 2022 at 10:02 167 ©Michael Langer

COMP 250 W-2022 36 - big Omega April 6, 2022

Big O and sets of functions

When we characterize a function t(n) as being O(g(n)) we usually use simple functions for g(n)
such as in the list of inequalities:

1 < log2 n < n < n log2 n < n2 < n3 < ... < 2n < n! < nn

Note that these inequalities don’t hold for all n. Each of the inequalities holds only for sufficiently
large n: For example, 2n < n! holds only for n ≥ 4, and n3 < 2n only holds for n ≥ 10. But for
each of the inequalities, there is some n0 such that the the inequality holds for all n ≥ n0. This is
good enough, since big O deals with asymptotic behavior anyhow.

When we talk about O() of some function t(n), we usually also use the “tightest” (smallest)
upper bound we can. For example, if we observe that a function t(n) is O(log2 n), then generally
we would not say that that t(n) is O(n), even though technically t(n) would be O(n), and it would
also be O(n2), etc.

A related observation is that, for a given simple g(n) such as listed in the sequence of inequalities
above, there are infinitely many functions t(n) that are O(g(n)). So let’s think about the set of
functions that are O(g(n)). Up to now, we have been saying that some function t(n) is O(g(n)).
But sometimes we say that t(n) is a member of the set of functions that are O(g(n)), or more simply
t(n) “belongs to” O(g(n)). In set notation, one writes “t(n) ∈ O(g(n))” where ∈ is notation for set
membership. With this notation in mind, and thinking of various O(g(n)) as sets of functions, the
discussion in the paragraphs above implies that we have strict containment relations on sets of t(n)
functions:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) · · · ⊂ O(2n) ⊂ O(n!) . . .

For example, any function t(n) that is O(1) must also be O(log2 n), and any function t(n) that is
O(log2 n) must also be O(n),etc. It is common to use this set notation and say “t(n) ∈ O(g(n))”
instead of “t(n) is O(g(n))”. The set containment relationships can be visualized as shown below.
The green ellipse represents the set of functions that are O(n).

Some Big O Rules

Last lecture, we showed some simple examples of how to show that some function t(n) is O(g(n))
for some other function g(n). In these examples, we manipulated an inequality and found a c and
n0. We don’t want to have to do this every time we make a statement about big O, and so we
would like to have some rules that allow us to avoid having to state a c and n0. Thankfully and not
surprisingly, there are such rules.

last updated: 30th Apr, 2022 at 10:02 168 ©Michael Langer

COMP 250 W-2022 36 - big Omega April 6, 2022

I emphasize: the point of the rules that I am about to explain is that they allow us to make
immediate statements about the O() behavior of some rather complicated functions. For example,
we can just look at the following function

t(n) = 5 + 8 log2 n+ 16n+
n(n− 1)

25

and observe it is O(n2) by noting that the largest term is n2. The following rules justify this informal
observation.

The “scaling rule” says that if we multiply a function by a positive constant, then we don’t
change the O() class of that function. The “sum rule” says that if we have a function that is a sum
of two terms, then the O() class of the function is the larger of the O() classes of the two terms.
The “product rule” says that if we have a function that is the product of two functions, then the
O() class of the product function is given by the product of the (simple) functions that represent
the O() classes of the original two functions. Here are the statements of the rules, and the proofs.

Scaling Rule

If f(n) is O(g(n)) and a > 0 is a positive constant, then af(n) is O(g(n)).

Proof: There exists a c such f(n) ≤ cg(n) for all n ≥ n0, and so af(n) ≤ acg(n) for all n ≥ n0.
Thus we use ac and n0 as constants to show a f(n) is O(g(n)).

Sum Rule

If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then f1(n) + f2(n) is O(max(g1(n), g2(n)).

Proof:
From the three big O relationships given in the premise (i.e. the“if” part of the “if-then”), there

exists constants c1, c2, c3, n1, n2, n3 such

f1(n) ≤ c1g1(n) for all n ≥ n1

f2(n) ≤ c2g2(n) for all n ≥ n2

Thus,
f1(n) + f2(n) ≤ c1g1(n) + c2g2(n) for all n ≥ max(n1, n2).

From this we can conclude:

f1(n) + f2(n) ≤ (c1 + c2)(max(g1(n), g2(n)) for all n ≥ max(n1, n2)

So we can let c = c1 + c2, n0 = max(n1, n2) which proves the claim.

Product Rule

If f1(n) is O(g1(n)) and f2(n) is O(g2(n), then f1(n)f2(n) is O(g1(n) g2(n)).

Proof: Using similar constants as in the sum rule, we have: f1(n) ∗ f2(n) ≤ c1g1(n) ∗ c2g2(n) for
all n ≥ max(n1, n2). So we can take c1 ∗ c2 and max(n1, n2) as our two constants.

last updated: 30th Apr, 2022 at 10:02 169 ©Michael Langer

COMP 250 W-2022 36 - big Omega April 6, 2022

Big Omega (asymptotic lower bound)

With big O, we defined an asymptotic upper bound. We said that one function grows at most as fast
as another function. There is a similar definition for an asymptotic lower bound. Here we say that
one function grows at least as fast as another function. The lower bound is called “big Omega”.

The reason we care about lower bounds is that we want to say that something takes at least a
certain amount of time to run. For example, if you want to find the largest element in a list of size
n, then you have to examine all the elements and so it takes at least n steps (and in fact it always
takes you exactly n steps).

An interesting example you will likely see in COMP 251 is comparison based sorting: these are
sorting algorithms that require comparing pairs of elements. (All of the sorting elements we’ve seen
are of this type, but there are other interesting types of sorting algorithms/problems that one can
come up with.) You will see in COMP 251 that any comparison based sorting algorithm has to do
at least cn log2 n comparisons in the average case, that is, averaged over all possible permutations
of the n inputs. By saying “at least”, we mean a lower bound.

Definition (big Omega): We say that t(n) is Ω(g(n)) if there exists positive constants n0 and c
such that, for all n ≥ n0,

t(n) ≥ c g(n).

The idea is that t(n) grows at least as fast as g(n) times some constant, for sufficiently large n.
Note that the only difference between the definition of O() and Ω() is the ≤ vs. ≥ inequality.

Example

Claim: Let t(n) = n(n−1)
2

. Then t(n) is Ω(n2).

To prove this claim, first note that t(n) is less than n2

2
for all n, so since we want a lower bound

we need to choose a smaller c than 1
2
. Let’s try something smaller, say c = 1

4
.

n(n− 1)

2
≥ n2

4
⇐⇒ 2n(n− 1) ≥ n2

⇐⇒ n2 ≥ 2n

⇐⇒ n ≥ 2

Note that the “if and only if” symbols⇐⇒ are crucial here. For any n, the first inequality is either
true or false. We don’t know which, until we check. But putting the ⇐⇒ in there, we are say that
the inequalities in the different lines have the same truth value.

The last lines says n ≥ 2, this means that the first inequality is true if and only if n ≥ 2. Thus,
we can use c = 1

4
and n0 = 2.

last updated: 30th Apr, 2022 at 10:02 170 ©Michael Langer

COMP 250 W-2022 36 - big Omega April 6, 2022

Are these the only constants we can use? No. Let’s try c = 1
3
.

n(n− 1)

2
≥ n2

3

⇐⇒ 3

2
n(n− 1) ≥ n2

⇐⇒ 1

2
n2 ≥ 3

2
n

⇐⇒ n ≥ 3

So, we can use c = 1
3

and n0 = 3.

last updated: 30th Apr, 2022 at 10:02 171 ©Michael Langer

COMP 250 W-2022 36 - big Omega April 6, 2022

Sets of Ω() functions

Recall earlier in the lecture when we discussed sets of functions that all have the same O() behavior.
We can do the same with Ω. When we say that “t(n) ∈ Ω(g(n))” for some g(n), we mean that t(n)
is a member of the set of functions that are Ω(g(n)). The set relationship is different from what we
saw with O(), however, since we are now discussing lower bounds rather than upper bounds. For
Ω, the set membership symbols are in the opposite direction:

Ω(1) ⊃ Ω(log n) ⊃ Ω(n) ⊃ Ω(n log n) ⊃ Ω(n2) · · · ⊃ Ω(2n) ⊃ Ω(n!) . . .

namely we have supersets instead of subsets.
For example, the largest set is Ω(1). The reason is that is relatively easy for a function to be

in this set: the function just needs to be bounded below by a constant for n sufficiently large, i.e.
this is the definition of Ω(1). Indeed the only way any function would not be in Ω(1) is if it had
an infinite subsequence of n values for which t(n) converged to 0. For example, t(n) = 1

n
would be

such a function. Such functions certainly exist, of course, but they are irrelevant for the discussion
of time complexity, i.e. where t(n) is the time (or number of steps) for an algorithm to run as a
function of n.

We can also talk about tight bounds on Ω() of any function t(n), namely again it is the smallest
of the above Ω() sets that contains t(n). In the above illustration, the function t(n) is in Ω(n). It
is therefore also in Ω(log2 n) and Ω(1). But the tight (lower) bound is Ω(n).

last updated: 30th Apr, 2022 at 10:02 172 ©Michael Langer

COMP 250 W-2022 37 - Best and Worst Cases April 8, 2022

Big Theta

In the last two lectures, we discussed O() and Ω() bounds. As it turns out, for all time complexity
functions t(n) that we will care about in this course, there is be a simple function g(n) such that

t(n) is both O(g(n)) and Ω(g(n)). For example, t(n) = n(n+1)
2

is both O(n2) and Ω(n2). In this
case, we say that t(n) is “big theta” of n, or Θ(g(n)).

Definition (big theta): We say that t(n) is Θ(g(n)) if t(n) is both O(g(n)) and Ω(g(n)) for some
g(n). An equivalent definition is that there exists three positive constants n0 and c1 and c2 such
that, for all n ≥ n0,

c1 g(n) ≤ t(n) ≤ c2 g(n).

Obviously, c1 ≤ c2. Note that here we have such one constant n0. This is just the max of the n1, n2

constants of the O() and Ω() definitions.
For example, a function such as t(n) = 4 + 17 log2(n+ 3) + 9n log2 n+ 1

2
n(n− 1) is Θ(n2). Don’t

be thrown off by all the other terms. What matters for both O() and Ω as n gets big is only the
term that depends on n2.

Sets of Big Theta functions

Since a function t(n) is Θ(g(n)) if it is both O(g(n)) and Ω(g(n)), it means that the set of Θ(g(n))
functions is the intersection of the set of O(g(n)) functions and the set of Ω(g(n)) functions. Thus,
unlike different O() and Ω() classes which form nested sets, as discussed earlier, the big Θ classes
form disjoint sets. If t(n) belongs to one big Θ class, then it doesn’t belong to any other Θ class.

Note that there exist functions t(n) that do not belong to any Θ(g(n)) class. For example,
consider a function that has a constant value, say 5, when n is even and has value n when n is
odd. Such a function t(n) is Ω(1) and it is O(n) but it is neither Θ(1) nor Θ(n). Obviously one
can contrive many such functions. But these functions rarely come up in real computer science
problems. For every t(n) function that we have discussed in this course, it belongs in some Θ()
class.

If the time complexity functions that we care about in computer science are always characterized
by some Θ(), then why do we bother talking about O() and Ω() ? The answer is that often we
are using these asympototic bounds because we want to express that something takes at most or
at least a certain amount of time. When we want to say “at most”, we are talking about an upper
bound and so saying O() emphasizes this. When we say “at least”, we are talking about a lower
bound and so saying Ω() that. I’ll have more to say about that next.

Best and worst case

The time it takes to run an algorithm depends on the size n of the input, but it also depends on the
values of the input. For example, to remove an element from an arraylist takes constant time (fast)
if one is removing the last element in the list, but it takes time proportion to the size of the list if
one is removing the first element. Similarly, quicksort is fastest if one chooses pivots that split the
lists into two roughly equal sublists but it is slowest if one chooses the worst possible pivot at each
step. So one cannot always say that a given algorithm always has a certain t(n) behavior: there
are different behaviors, depending on the inputs. (Note for ArrayList.remove(i), the variable i is a

last updated: 30th Apr, 2022 at 10:02 173 ©Michael Langer

COMP 250 W-2022 37 - Best and Worst Cases April 8, 2022

parameter, and here I am considering this to be part of the input to the algorithm. The other part
of the input would be the list of size n.)

Whe we talk about best case and worst case for an algorithm, we are restricting the discussion to
a particular set of inputs in which the algorithm takes a minimum number of steps or a maximum
number of steps, respectively. With this restriction, one writes the best or worst case time as two
functions tbest(n) or tworst(n) respectively.

The tbest(n) or tworst(n) functions usually each can be characterized by some Θ(g(n)). However,
the g(n) may be different for tbest(n) and tworst(n) as in the examples just mentioned. Here are some
other examples that you should be very familiar with by now.

List Algorithms tbest(n) tworst(n)

add, remove element (array list) Θ(1) Θ(n)
add, remove an element (doubly linked list) Θ(1) Θ(n)
insertion sort Θ(n) Θ(n2)
selection sort Θ(n2) Θ(n2)
binary search (sorted array) Θ(1) Θ(log n)
mergesort Θ(n log n) Θ(n log n)
quick sort Θ(n log n) Θ(n2)

Note that selection sort and mergesort have the same best and worst case complexities, but for the
other algorithms the best and worst cases differ.

In the table above, I wrote the best and worst cases using Θ(). However, as I mentioned on the
previoius page, for a given algorithm it is common to characterize tbest(n) using a Ω() bound and
to characterize tworst(n) using a O() bound. One does so when want wishes to emphasize that one
is talking about the best case one often wants to express how good (lower bound) the best case can
be. Similarly when discussing the worst case one often wants to express how bad this worst case
can be. I believe this is why http://bigocheatsheet.com/ lists some best and worst case bounds
using Ω and Θ respectively.

Note that it could still be mathematically correct to characterize tbest(n) using a O() bound.
For example, if we were to say that the best case of removing an element from an arraylist takes
time O(1), we would be emphasizing that it is not worse (bigger) than constant time. Similarly, if
we were to say that the worst case of quicksort is Ω(n2), we would be emphasizing that the worst
case takes at least that amount of time. So again, it really depends what you are trying to say.
[ASIDE: From what I’ve seen on various web posting and in textbooks, authors often are not clear
about what they are trying to say when they use these terms, and in particular, people use O()
rather than Θ probably more than they should. Oh well... nothing to lose sleep over.]

Using “limits” for asymptotic complexity

In Calculus 1, you are given a formal definition of a limit of a sequence. Typically you are not re-
sponsible for knowing this formal definition there. Rather, you are responsible for knowing methods
to decide if a limit exists and what the limit is, but you were probably not asked for formal proofs.
Instead you are given certain rules that you follow for determing the limits e.g. l’Hopital’s rule, the
ratio test, etc.

Similarly, we have rules for limits that show if one function is O(), Ω(), and Θ() of another
function. To be complete here, I would need to use the formal definition of a limit from mathematics

last updated: 30th Apr, 2022 at 10:02 174 ©Michael Langer

http://bigocheatsheet.com/

COMP 250 W-2022 37 - Best and Worst Cases April 8, 2022

which I mentioned back in lecture 35. However, at this point in the semester, I don’t think most
of you would be in the mood to struggle with that (unless you’ve taken MATH 242 Real Analysis).
So I’ll keep it informal. But I do require you to know the rules that I’ll present.

For the following rules, we suppose that t(n) and g(n) are two sequences of non-negative numbers.

Limit rule: case 1a

If limn→∞
t(n)
g(n)

= 0, then t(n) is O(g(n)).

[ASIDE i.e. I am not holding you responsible for the proof: The mathematical proof uses the formal

definition of a limit. Since t(n)
g(n)
→ 0 as n → ∞, we have (by the definition of a limit) that for any

c > 0, there would be an n0 such that | t(n)
g(n)
| < c for all n ≥ n0. To show t(n) is O(g(n)), we only

need one such c (”there exists c > 0...” is a much weaker condition than ”for all c > 0...” so the
limit rule easily holds.)]

Note that the rule does not work in the opposite direction (the converse), that is, we cannot say

that if t(n) is O(g(n)) then limn→∞
t(n)
g(n)

= 0, An example is the case that t(n) = g(n) since t(n)

would be O(g(n)) but t(n)
g(n)

= 1 for all n and so the limit would not be 0.

Limit rule: case 1b

If limn→∞
t(n)
g(n)

= 0, then t(n) is not Ω(g(n)).

To prove this rule, we first note the definition for big Ω (Omega) can be written equivalently as
follows: there exist two positive numbers n0 and c > 0 such that, for all n ≥ n0,

t(n)

g(n)
≥ c .

Note that we do require c > 0. If we were to allow c = 0, then the definition would always hold for
any strictly positive sequences t(n) and g(n), which would not express anything interesting since
the sequences t(n) and g(n) were assumed to be positive.

The proof of the case 1b rule should now be obvious. The above inequality cannot hold when
the limit t(n)

g(n)
is 0, since the limit of 0 means that the sequence would become less than any fixed

c > 0 when n is sufficiently large, whereas the above inequality says that the sequence would be
greater than c > 0 when n is sufficiently lager. In particular, notice that t(n) cannot be Θ(g(n)).

Limit rule: case 2a

If limn→∞
t(n)
g(n)

=∞, then t(n) is Ω(g(n)).

The idea here is to flip the expression and realize that limn→∞
g(n)
t(n)

= 0. Thus from case 1a, g(n) is

O(t(n)) and so it follows that t(n) is Ω(g(n)).

last updated: 30th Apr, 2022 at 10:02 175 ©Michael Langer

COMP 250 W-2022 37 - Best and Worst Cases April 8, 2022

Limit rule: case 2b

If limn→∞
t(n)
g(n)

=∞, then it cannot be that t(n) is O(g(n)).

The reason that “ t(n) is O(g(n))” would require there is a c > 0 such that t(n)
g(n)

< c for all n

beyond some n0. But this would contradict the fact that limn→∞
t(n)
g(n)

= ∞. In particular, t(n) is

not in Θ(g(n)).

Limit rule: case 3

If limn→∞
t(n)
g(n)

= a where 0 < a <∞, then t(n) is Θ(g(n)).

The intuitive idea here is that if the limit exists, then t(n)
g(n)

will be bounded above by a constant
once n becomes sufficiently large. In particular, if we consider a number slightly larger than the
limit a, say a + ε where ε > 0, then we can be sure that there is an n0 such that t(n)

g(n)
< a + ε once

n ≥ n0. But this tells us immediately that t(n) is O(g(n)).
Similarly, if we consider a number slightly smaller than the limit a, say a− ε where ε > 0, then

we can be sure that there is an n0 (possibly different from the one in the previous paragraph) such

that t(n)
g(n)

> a − ε once n ≥ n0. But this tells us immediately that t(n) is Ω(g(n)). So since t(n) is

both O(g(n)) and Ω(g(n)), it means (by definition) that t(n) is both Θ(g(n))

And if you are still reading this and you understood what I wrote above, then you are in great
shape: well done!!

last updated: 30th Apr, 2022 at 10:02 176 ©Michael Langer

