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Abstract The spatial double inverted pendulum actuated at the hip, but
not at the foot, may be considered to be a model of standing creatures and
robots. Moving in-space, as opposed to in-plane, poses new control problems
which, for the most part, are still open. In this paper, a hybrid approach
where an energy-shaping, passivity-based swing-up controller hands off the
control to a linear-quadratic-regulator in the vicinity of the unstable upright
equilibrium is proposed. A direct approach and a pre-compensated approach
are described, discussed, and illustrated by means of examples in simulation.

1 Introduction

We propose that any adequate model for studying the active stabilization
of articulated structures standing on a small footprint, that is not relying
on torques exerted on the ground, should be spatial. The underlying moti-
vation being that to study the stabilization of a multi-body system in the
neighborhood of an unstable equilibrium, in addition to the forces due to
acceleration, including gravity, the analysis should also include centrifugal
and Coriolis terms. The corresponding terms entering in the system dynam-
ics are, of course, nonlinear in essence. The simplest multi-body system that
can account for these terms is the double spatial inverted pendulum which is
seen in Fig. 1.
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Fig. 1 Two bodies are articulated at the hip and at the ankle. Masses at the head and

hip provide a plausible mass distribution for a real machine. Only the hip is actuated.

Our objective is to describe a control strategy for such systems that are
characteristically underactuated and nonholonomic of order two. By the later
property we mean that accelerations constraints are not integrable. The spa-
tial double inverted pendulum is a nonlinear, underactuated mechanical sys-
tem; see related works in [1, 2]. A popular approach to achieve stabilization of
such systems uses swing-up control to a neighborhood of the desired equilib-
rium and local linear control to maintain balance within that neighborhood.
The swing-up control was demonstrated for mechanical systems in the plane
by using passivity results while the local linear controller can be designed by
making use of one the many available techniques.

The difficulty in employing passivity-based control resides in the fact that
any such design must usually be accompanied by energy shaping methods
since a given energetic level of the system usually corresponds to multiple
equilibria. Energy shaping not only requires a suitable storage function, but
also the solution of shaping partial differential equations whose explicit solu-
tion can be very difficult. It is perhaps the reason for which passivity-based
control has not yet been applied to stabilize spatial mechanical systems such
as the double inverted pendulum in space. In this context, the results pre-
sented in this paper are a pioneering attempt in this direction which effec-
tively by-passes the need for the solution of the energy shaping equations.

We first present an optimal linear controller which is effective in the neigh-
borhood the upright unstable equilibrium. A second controller based on a hy-
brid energy shaping approach, is able to steer the system from a much larger
set of initial conditions to a state suitably close to the unstable equilibrium
where the linear controller completes the stabilization. Simulation results are
presented.
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2 Model of The Spatial Double Inverted Pendulum

To capture the essential kinematic and dynamic features of a standing ma-
chine, the model, Fig. 1, has two rigid cylindrical links of lengths, lj , and
radii, rj , with masses, mj , j = 1, 2, that could represent the legs and up-
per body of a standing machine. Additional point masses m̄1 and m̄2 are
attributed to the hip and to the head. The motion of the links are restrained
by universal joints at the hip and at the unactuated ankle. The derivation of
the model is similar to that in [3], but is reproduced here for completeness.

2.1 Model Derivation

Taking the joints angles as generalized coordinates, q , [q1, · · · , q4]>, in the
absence of dissipation, the model is a simple Lagrangian system,

L(q, q̇) = K(q, q̇)− V (q) = 1
2 q̇
>M(q)q̇ − V (q), (1)

where L(q, q̇) is the Lagrangian function, q ∈ S2 × S2 is the configuration
vector, and K(q, q̇) and V (q) are the kinetic and potential energies of the
system, respectively. The expression for M(q) can be found in [3]. If F (q) :
S2×S2 7→ R4×2, represent the selection matrix of the external forces applied
to the system then the Euler-Lagrange equations for the system are,

d

dt

∂L

∂q̇
− ∂L

∂q
= F (q)τa,

where τa , [τ3, τ4]> ∈ R2 (subscript a means “actuated”), and F (q) =
[e3, e4] where ek is the kth standard basis vector in R4. Hence, for k = 1, · · · , 4,
the system is governed by,∑

j

mkj(q)q̈j +
∑
i,j

Γ kij(q)q̇iq̇j + gk(q) = e>k F (q)τa,

where the gravity terms and the Christoffel symbols are given by [4],

gk(q) =
∂

∂qk
V (q), Γ kij(q) =

1

2

(
∂Mij(q)

∂qk
+
∂Mki(q)

∂qj
− ∂Mjk(q)

∂qi

)
. (2)

In vector form,

M(q)q̈ + q̇>Q(q)q̇ +G(q) = F (q)τa, (3)

where Q is a matrix such that C(q, q̇)q̇ , q̇>Q(q)q̇ ∈ R4. The terms involv-
ing q̇iq̇i represent the centrifugal forces and the terms involving q̇iq̇j , i 6= j,
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stand for Coriolis forces. Also, G(q) = [g1(q), ..., g4(q)]> contains the grav-
ity terms. Using (2), it is then possible to show that the matrix d

dtM(q) −
2C(q, q̇) is skew-symmetric. Recalling that M(q) is positive definite, hence
invertible, and introducing the Legendre transformation with respect to q̇ [5],

p =
∂L

∂q̇
= M(q)q̇,

then allows one to rewrite the system (3) in the Legendre normal form,

q̇ =M−1(q)p,

ṗ =−G(q) + p>Q̃(q)p+ F̃ (q)τa.

Stacking up q and p into x , [q;p] allows one to see that the Legendre
normal form of the model takes the form of a smooth nonlinear system which
is affine in the control,(

q̇
ṗ

)
=

(
M−1(q)p

−G(q) + p>Q̃(q)p

)
+

(
0

F̃ (q)

)
τa

, f(x) + F (x)τa = f(x) + f1τ3 + f2τ4, (4)

where Q̃(q) ,
(
M−> (∂M/∂q −Q)M−1) (q), f : x→ R8 is the drift vector

field related to the gravity field, and f1,f2 ∈ R8 are constant vector fields
with f1 = e7 and f2 = e8 where ek is the k-th standard basis vector in R8.

2.2 Model Properties

The expression for the system drift that includes the calculation of the Corio-
lis and centrifugal forces appearing inC(q, q̇) expressed through the Christof-
fel symbols (2) fill very many lines. It is apparent that an exact analysis of
the structure of the controllability Lie algebra for the system is practically
impossible as it requires the evaluation of repeated Lie brackets of the vector
fields f(x), f1, and f2.

System (3) is underactuated with control deficiency which is determined
by the difference between the rank of F (q) and the dimension of the config-
uration manifold. Also, the first two equations in (3) constitute a nonlinear
motion constraint on the accelerations q̈1, q̈2 which cannot be integrated even
partially, i.e., the constraints cannot be transformed into an equivalent form
that contains only velocities and positions. The relation between integrability
and the the gravity term is discussed in [6] and [7] where sufficient conditions
for integrability of second order constraints on the system accelerations are
given. Non-integrability of the acceleration constraints puts the system in
the category of nonholonomic systems of order two and precludes the dimen-



Hybrid Stabilizing Control for the Spatial Double Inverted Pendulum 5

sion of the configuration manifold to be reduced by direct integration of the
constraints. A further implication is the lack of existence of diffeomorphic
state-feedback transformations that can linearize the system globally.

The local linearization of the system in the neighborhood of the unsta-
ble upright standing position, is still controllable due to the presence of the
gravity term, see [6] and [7]. This allows one to consider constructing linear
controllers. Nevertheless, as verified by simulations, the region of attraction
for this type of stabilizing feedback is small [8, 9].

The study of small time local controllability (stlc) of the system at ev-
ery configuration point away from the equilibrium would require a detailed
analysis of the structure of controllability Lie algebra of the system [10].

3 Control of the spatial Double Inverted Pendulum

Since the approach adopted here is of a hybrid type, a linear controller is
first constructed to stabilize the linearized system. The linear controller is
able to stabilize the nonlinear system in a small neighborhood of the unstable
equilibrium. Next, a nonlinear controller is designed to swing-up the system
to a region of the state space from which the linear controller can take over.

3.1 LQR controller for the linearized system

Denoting x , [q;p], the linearization of (4) into ẋ = Ax+Bu is first derived,

A =
∂f(x)

∂x

∣∣∣∣
x=0

=

[
0 M−1(q)

−∇G(q) 0

]∣∣∣∣
q=0,p=0

,

where the matrix ∇G(q) is the gradient of the vector field G(q), which is
also the Hessian of the potential energy. The matrix B is given by B =
F (x) = [e7, e8] and the control vector is u = [τ3; τ4] = τa. Using the following
values of parameters: m1 = m2 = m̄1 = m̄2 = 1.0 kg, l1 = l2 = 1.0 m,
r1 = r2 = 0.1 m, g = 9.81 m/s2, the cost function is

J=

∫ ∞
0

(
q>Q1q + p>Q2p+ τ>aRτ a

)
dt, Q1 = 50 I4, Q2 = 1

2M(0), R = 100 I2.

Solving the algebraic Riccati equation using Matlab delivers the following
feedback law for the stabilization of the linearized system,

τa =

(
−606 0 −182 0

0 −606 0 −182

)
q −

(
−37 0 17 0

0 −37 0 17

)
p.
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Several initial conditions were used to probe the region of convergence (roc),
see Table 1, with several initial positions of the center of mass (com).

Table 1 Simulation results with lqr control for different initial conditions.

Example q>0 q̇>0 com eccentricity x0 in roc

1 [−4◦, 2◦, 8◦,−5◦] 0 3.69 Yes
2 [10◦,−10◦,−30◦, 30◦] 0 8.26 Yes

3 [−4◦, 0, 0, 0] 0 8.72 No

4 [±2.7◦, 0, 0, 0] 0 5.84 Yes
5 [0,±2.6◦, 0, 0] 0 5.63 Yes

6 [0, 0,±7.7◦, 0] 0 5.02 Yes

7 [0, 0, 0,±7.5◦] 0 4.89 Yes

As seen in Fig. 2a, for Example 1, the system stabilizes in about 3 seconds
and in about 5 seconds for Example 2. These examples might lead to believe
that the region of convergence of the lqr controller is relatively large; how-
ever, Example 3 shows that the same controller cannot stabilize the system,
a fact from which we can infer that the region of convergence does not have
the shape of a ball in the configuration space.
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Fig. 2 Lqr control Examples 1 (a,b,c) and 2 (d,e,f). a,d: Joint angles and torques through

time. b,e: Generalized momenta. c,f: Stabilograms.
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3.2 Energy Shaping and Passivity Based Control

The fact that the generalized inertia matrix is positive definite allows one to
employ the collocated partial linearization of the system as proposed in [11].
It leads to system representation in the form of a parallel connection of sub-
systems that in turn facilitates the design of passivating system outputs.

Referring to (3), the Euler-Lagrange equations of the underactuated spa-
tial double inverted pendulum can be written,

M11(q)q̈u +M12(q)q̈a + Cu(q, q̇) +Gu(q) = 0, (5)

M21(q)q̈u +M22(q)q̈a + Ca(q, q̇) +Ga(q) = τa, (6)

where the matrices and vectors are partitioned into the actuated and un-
actuated parts,

M(q) =

(
M11 M12

M21 M22

)
, C(q, q̇)q̇ =

(
Cu(q, q̇)
Ca(q, q̇)

)
G(q) =

(
Gu(q)
Ga(q)

)
, qu =

(
q1
q2

)
, qa =

(
q3
q4

)
.

In (5), the 2 × 2 block matrix M11(q) is invertible, as M(q) is positive
definite, thus q̈u can be solved for,

q̈u = −M−1
11M12q̈a −M−1

11 Cu(q, q̇)−M−1
11 Gu(q) (7)

Substituting (7) into (6) yields

(M22−M21M
−1
11M12)q̈a+(Ca−M21M

−1
11 Cu)+(Ga−M21M

−1
11 Gu) = τa

(8)
where the Schur complement ofM22 inM(q) isM22 = M22−M21M

−1
11M12

and where Ca = Ca −M21M
−1
11 Cu and Ga = Ga −M21M

−1
11 Gu. The ma-

trix M22 is positive definite since M(q) is positive definite. Eq. (8) is thus
written

M22 q̈a + Ca +Ga = τa. (9)

If a new control input v is chosen such that,

τa = M22 v + Ca +Ga, (10)

then Eq. (9) is partially feedback linearized to read q̈a = v. Together with
Eq. (5), the complete system is then described by,

M11(q)q̈u + Cu(q, q̇) +Gu(q) = −M12(q)v, q̈a = v, (11)

with the new control input v defined in Eq. (10). At this point, it is convenient
to introduce new state variables,
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η =

quqa
q̇u

 , z =

(
qa
q̇a

)
=

(
z1
z2

)
.

Then, the second order system in (11) is expressed as a first order system,

η̇ =ω(η) + h(η, z) + ρ(η)v, (12)

ż =Φz + Ψv, (13)

where the linearized sub-system that represents two double integrators has

state space matrices, Φ =

(
0 I
0 0

)
, Ψ =

(
0 I
)
, and where the functions

ω(η), h(η, z), ρ(η) are defined by,

ω(η) =

 q̇u
0

−M−1
11 (Gu(q) + C̃u(q, q̇u)q̇u)

 ,

h(η, z) =

 0
q̇a

−M−1
11 Ĉu(q, q̇)

 , ρ(η) =

 0
0

−M−1
11M12

 .

Since the vector Cu(q, q̇) is a quadratic function of q̇, it can be decomposed

into a sum of two terms, Cu(q, q̇) = C̃u(q, q̇u)q̇u + Ĉu(q, q̇), where the first

term, C̃u(q, q̇u)q̇u, contains the quadratic terms in q̇u, and the second term,

Ĉu(q, q̇), contains the cross terms involving both q̇u and q̇a and also the
quadratic terms in q̇a. We conclude that

h(η,0) = 0.

Introducing the energy-like function associated with the η-sub-system as

Eη = 1
2 q̇
>
uM11(q)q̇u + V (q),

it is easy to verify that its time derivative is given by

Ėη =
∂Eη
∂η

η̇ =
∂Eη
∂η

(ω(η) + h(η, z) + ρ(η)v)

= LωEη + LhEη + Lρ1Eηv1 + Lρ2Eηv2. (14)

The following calculation shows that LωEη = 0,

LωEη =
∂Eη
∂η

ω(η) =
1

2
q̇>u

(
∂M11(q)

∂qu
q̇u

)
q̇u +Gu(q)>q̇u

− q̇>uM11M
−1
11 (Gu(q) + C̃u(q, q̇u)q̇u = 0
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since 1
2

(
(∂M11(q)/∂qu)q̇u

)
− C̃u(q, q̇u) is skew-symmetric and appears in

a quadratic expression. Hence, Eη = LhEη + LρEηv, where LρEη =
(Lρ1Eη, Lρ2Eη). The term LhEη in (14) vanishes when z = q̇a = 0. It is
easy to verify that

LρEη = −q̇TuM11M
−1
11M12 = −M12q̇

>
u .

It is now possible to attempt the local passivation of the parallel intercon-
nection (12,13) in two ways, leading to the same zero dynamics analyses but
different design conditions.

3.2.1 Direct passivity based approach

A double integrator sub-system (13) is passive for any output of the form
yz = Cz = (0;K2)z, K2 > 0, with a storage function S1 = 1

2z
>Q1z,

as it is readily verified that Φ>Q1 + Q1Φ = 0 for Q1 = (0;0,0;K2) ≥ 0
while B>Q1 = C. Such an input-output system is however not zero state
detectable since yz ≡ 0 does not imply that z1 ≡ 0. A possible “energy
shaping” output function for the nonlinear sub-system is

yη , (Eη − Vmax)LρEη

in which Vmax is the largest potential energy of the system at the unstable
equilibrium. If not for the presence of the term h(η, z) in (12), the corre-
sponding storage function for the nonlinear sub-system would be given by,

Sη(η) ,
1

2
(Eη − Vmax)2,

as then

Ṡη = (Eη − Vmax)Ėη = (Eη − Vmax)LhEη + (Eη − Vmax)LρEηv

= (Eη − Vmax)LhEη + yηv.

The presence of the term associated with LhEη is an obstacle to the design
of a passivity-based stabilizing controller since setting v = −K3 y

>
η ;K3 > 0

does not immediately ensures that Ṡη ≤ 0 at all times. It is useful to investi-
gate the rate of change of the storage function for the parallel interconnection
of the linear and nonlinear sub-systems in the hope that the lack of passivity
in the nonlinear sub-system can be compensated by passivity in the linear
sub-system. The storage function for the parallel interconnection is the sum
of the storage functions for the individual sub-systems:

S(z,η) = S1(z) + Sη(η).

Thus,
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Ṡ(z,η) = 1
2 [ż>Q1z + z>Q1ż] + [Eη − Vmax]Ėη

= 1
2v
>Ψ>Q1z +

1

2
z>Q1Ψv + [Eη − Vmax]LhEη + yηv

= yzv + yηv + [Eη − Vmax]LhEη.

Setting

v , −K3[yz + yη]> = −K3K2q̇a − [Eη − Vmax]K3LρEη, (15)

yields

Ṡ(z,η) = −[yz + yη]K3[yz + yη]> + [Eη − Vmax]LhEη. (16)

For the parallel interconnection to be passive one should have Ṡ ≤ 0 in
some neighborhood of the desired equilibrium. The two terms in (16) contain
quadratic as well as linear terms in q̇a. These terms have to be balanced so
that Ṡ ≤ 0 by adequate selection of the gains K2 and K3 while the gain
K3 must be positive definite and bounded, and could be state dependent, if
necessary. The following assumption is made to ensure the passivity of the
parallel connection.

Assumption 1. There exist gain matrices K2 > 0, K3 > 0 such that in
some neighborhood Ω ⊂ R8 of the unstable equilibrium, for some constant
c > 0,

Ṡ(z, η) ≤ −c[yz + yη][yz + yη]>. (17)

The zero dynamics of the system with control (15) is obtained by observing
that if Ṡ(z,η) ≡ 0 then v ≡ 0 so that the equations of motion reduce to

η̇ = ω(η),

(
ż1
ż2

)
=

(
z2
0

)
.

since h(η, z) ≡ 0 due to z2 ≡ 0. The latter follows from the fact that
z2 ≡ const 6= 0 is impossible in free fall: when v ≡ 0 the machine moves
only under the action of the gravity field. It follows that also qa ≡ const,
and that yz ≡ 0 so yη ≡ 0 for all times. Based on rigid body momentum
considerations it can then be shown that:

Proposition 1. The zero dynamics of the system with control (15) is the
dynamics of the system moving only under the gravitational forces (since
v ≡ 0). The trajectories can only exhibit three types of ω-limit sets:

1. {0;0} — the unstable equilibrium point,
2. {qdown;0} — the stable equilibrium point,
3. periodic trajectories where the system rotates in the vertical plane such

that qa ≡ 0 at all times.
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The downward equilibrium is the only undesirable ω-limit point which
must be avoided and which clearly restricts the region of convergence of the
swing-up controller. In view of the above discussion it then follows that

Theorem 1. Let ε > 0 be such that B(0; ε) is contained in the region of at-
traction of a lqr controller and let the gain matrices K2,K3 > 0 be such
that (17) holds in some set Ω which contains B(0; ε). Then every trajectory
of the system with the swing-up controller that starts and remains in Ω even-
tually enters B(0; ε) where the lqr controller stabilizes the system asymptot-
ically to the unstable equilibrium. The hybrid control employing these gains
is hence stabilizing the system with region of convergence Ω.

3.2.2 Passivity based approach with pre-compensation.

Prior to passivation of the parallel interconnection, the linear sub-system (13)
can first be made asymptotically stable (therefore passive) by introducing a
feedback transformation

v = −K1qa −K2q̇a + u, with K1 > 0,K2 > 0,

leading to a parallel interconnection with the new control variable u:

η̇ =ω(η) + h(η, z2)− ρ(η)(K1qa +K2q̇a) + ρ(η)u,

ż =(Φ̃− Ψ̃(K1;K2))z + Ψ̃u,

where the linearized sub-system is equivalent to two periodic systems (double

oscillator) with state space matrices Φ̃ =

(
0 I
−K1 −K2

)
, Ψ̃ =

(
0 I
)
.

An output of the form y2 = [QT
12;Q22]z, renders the linear sub-system

passive, this time, for a strictly positive definite matrix Q2 > 0, satisfying

Φ̃
>
Q2 +Q2Φ̃ < 0; Ψ̃

>
Q2 = [Q>12;Q22].

Clearly, one such matrix Q2 is of the form

Q2 =

(
Q11 Q12

Q>12 Q22

)
.

The quadratic form S2(z) = 1
2z
>Q2z then obviously satisfies,

Ṡ2 ≤ y2u.

and hence is a storage function for the linear sub-system. The bound for the
rate of change in the storage function for the parallel connection, S , S2+Sη,
while employing the same output yη and storage function Sη for the nonlinear
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sub-system as before, is now:

Ṡ(z,η) = 1
2 [ż>Q2z + z>Q2ż] + (Eη − Vmax)Ėη

= 1
2u
>Ψ>Q2z + 1

2z
>Q2Ψu

+ (Eη − Vmax)(LhEη − LρEηK1qa − LρEηK2q̇a) + yηu

= yzu+ yηu+ (Eη − Vmax)(LhEη − LρEηK1qa − LρEηK2q̇a).

Selecting the swing-up control u as before while remembering about the pre-
compensation yields

v , −K1qa −K2q̇a −K3(yz + yη)>

= −K1qa −K2q̇a −K3Q
>
12qa −K3Q22q̇a − (Eη − Vmax)K3LρEη. (18)

Hence, the new bound becomes

Ṡ(z,η) = −(yz+yη)K3(yz+yη)>+(Eη−Vmax)(LhEη−LρEηK1qa−LρEηK2q̇a).

The counterpart of Assumption 1 is needed.

Assumption 2. There exist gain matrices K1 > 0, K2 > 0 and K3 > 0
such that in some neighborhood Ω ⊂ R8 of the unstable equilibrium, for some
constant c > 0

Ṡ(z,η) ≤ −c(yz + yη)(yz + yη)>. (19)

It should be noted that the gains must satisfy: −K1 −K3Q
>
12 < 0 and

−K2−K3Q22 < 0. Only the first inequality requires attention sinceQ12 < 0.
The zero dynamics of the system with control (18) is obtained by observing
that if Ṡ(z,η) ≡ 0 then v ≡ 0 so that the equations of motion reduce to

η̇ = ω(η) + h(η, z2),(
ż1
ż2

)
=

(
z2

−K1z1 −K2z2

)
.

Clearly, z1 → 0 and z2 → 0 sinceK1 andK2 are stabilizing for the linearized
sub-system. It follows that h(η, z2)→ 0 which implies that the zero dynamics
is reduced to

η̇ = ω(η), z1 ≡ 0, z2 ≡ 0.

Since the zero dynamics is also equivalent to the system moving under the
sole action of gravity, Proposition 1 still holds. Like before, the downward
equilibrium is the only undesirable ω-limit point which must be avoided. It
follows that

Theorem 2. Let ε > 0 be such that B(0; ε) is contained in the region of
attraction of a lqr controller and let the gain matrices K1,K2,K3 > 0
be such that (19) holds in some set Ω which contains B(0; ε), then every
trajectory of the system with the swing-up controller that starts and remains
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in Ω eventually enters B(0; ε) where the lqr controller stabilizes the system
asymptotically to the unstable equilibrium. The hybrid control employing these
gains is hence stabilizing the system with region of convergence Ω.

The passivity approach with pre-compensation enjoys advantages com-
pared to the un-compensated approach. The zero dynamics is easier to isolate
and S2 → 0 so that S → 1

2E
2
η ≡ const. The latter delivers a simple crite-

rion by which to tune the controller gains. It is also possible to consider a
non-smooth output function yη , |Eη − Vmax|LρEη leading to the controller

v , −K1qa −K3K2q̇a − |Eη − Vmax|K3LρEη (20)

3.3 Simulation results

The switching algorithm between the two controllers is designed as follows.

1. Activate swing-up controller (20);
2. If Vmax + L(q, q̇) < 3%Vmax, switch to 4;
3. If Vmax + L(q, q̇) > 10%Vmax, switch to 1;
4. Employ lqr to upright position.

where L(q, q̇) is the Lagrangian (1) of the system. For the balance phase, the
parameters of the lqr controller are as in in Section 3.1. In Example 8 the
initial conditions were q0 = [10◦,−10◦,−30◦, 30◦]>, q̇0 = 0. The following
parameters were employed,

K2K3 =

(
20 0
0 20

)
, K1 =

(
100 0
0 100

)
, K3 =

(
1 0
0 1

)
.

As shown in Fig. 3a below, the controller switches at t = 0.182 s, and the
system stabilizes to its unstable equilibrium configuration in about 6 seconds.
In Example 9 the initial condition is q0 = [30◦, 10◦,−135◦,−20◦]>, q̇0 = 0
which is very far from the unstable equilibrium. The following parameters for
the swing-up controller were successful,

K2K3 =

(
8 0
0 8

)
, K1 =

(
16 0
0 16

)
, K3 =

(
2.1 0
0 2.1

)
.

The controller switches at t = 0.688 s, and the system stabilizes in about
2 seconds. Its trajectories are shown in Fig. 3f below. The hybrid algorithm
provides for a much larger roc but one of the difficulties in applying the
passivity approach is to have to tune the parameters.
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Fig. 3 Examples 8 and 9. (a,f): Joint angles and torques. Arrows shows where the con-
troller switches. (b,g): Joint velocities. (c,h): Stabilograms of com projected on the ground.

(d,i): Total energy and Lagrangian. (e,j): Potential and kinetic Energy.
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4 Conclusion

We have employed a passivity-based approach to stabilize the spatial double
inverted pendulum actuated at the hip that can be viewed as a model of
standing creatures. An energy-shaping control could be found with proper
design of a storage function, by-passing the solution of the energy shaping
equations. Such approach was more effective if the system was partially lin-
earized by pre-compensation. The controller has a swing-up phase, applicable
to a large set of initial conditions, that drives the system to a small neigh-
borhood of the unstable equilibrium where a linear controller can regulate
the system near the unstable equilibrium thanks to its robustness proper-
ties. A shortcoming of the present method is the necessity to design the
controller gains. Enforcing control constraints such as limiting the maximum
joint torques is also difficult. We are currently investigating a number of other
nonlinear control approaches that would be applicable to systems with larger
numbers of degrees of freedom.
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