KALE AN ENVIRONMENT FOR THE PROGRAMMING
AND CONTROL OF COOPERATIVE MANIPULATORS

Vincent Hayward

McGill Research Center for Intelligent Machines
3480 University Street, Montréal, Québec Canada H3A 2A7

Samad Hayati

Jet Propukion Laboratory, Robotics and Teleoperators group

WP3 - 2:00

4800 Oak Grove Drive, Pasadena, California 91109

ABSTRACT

The paper describes the design of a controller for cooperative
robots designed at McGill University in a collaborative effort
with the Jet Propulsion Laboratory. The first part of the pa-
per discusses the backgronnd and motivation for multiple arm
control. Then, a set of programming primitives, which permit a
programmer to specify cooperative tasks are described. Motion
primitives specify asynchronous motions, master/slave motions,
and cooperative motions. In the context of cooperative robots,
trajectory generation issues are discussed and our implementa-
tion briefly described. The relations between programming and
controt in the case of multiple robot are examined. Finally, the
paper describes the allocation of various tasks among a multi-
processor computer.

INTRODUCTION

Research in programming and control of manipulators requires
appropriate experimental environments so the many available
strategies can be evaluated. We describe a software package to
be used to develop robot programs and their associated control
schemes in the context of multiple cooperating robots. The com-
puter architecture to run this package is also discussed.

Programming and control multiple robot manipulators repre-
sents a significant step in complexity and computational require-
ments with respect to the case of a single robot. We describe the
choices we have made, and their implementation which is cur-
rently under way simultaneously at McGill University and at the
Jet Propulsion Laboratory. As we go along, a number of refer-
ences will be made to the RCCL system (1), which now has led
to numerous projects (10,24,26,27). The discussion addresses sev-
eral inter-related topics:

® Conceptual: What are the relevant primitives for describing

the tasks carried out by two or more cooperative robots?
Algorithmic: How can these primitives be implemented in
terms of algorithms?

Control: What are the required control techniques, or in
other words, which servo algorithms, which path planning
techniques, and which models are needed?

Computer System: What is the appropriate computer archi-
tecture, given the current state of the art, in terms of tasks,
computational requirements, and communication channels.
As a background to our discussion, we first consider a selection of
robotic tasks which, we believe, justify the endeavor to program
and control two or more cooperating manipulators, further to
Zapata et al.’s discussion (25).

o Transport of inertial loads: Consider a task consisting of
displacing a load which, because of its inertial properties,
cannot be easily manipulated by a single manipulator. On
earth, gravity forces usually limit the mass of the pay-load,
unless gravity forces are dealt with by devices such as carts
or a cranes. If no such device can be used, the gain in pay-
load is expected to be approximately proportional to the
number of manipulators. In space or underwater, the gravity
forces are greatly reduced or may become negligible. Thus,

473

the dominant forces during transport become the inertial
forces due to accelerations. Dealing with torques, in partic-
ular, demands the use of multiple manipulators, since two or
more manipulators can generate torques that are orders of
magnitude larger than those generated by a single manipu-
lator. The case of the transport problem effected by several
manipulators is usually seen as an over-determined problem.

Load balancing, may be used to constrain the problem.

Handling of non-rigid loads: In the case of non-rigid objects,

a large class of tasks can be formulated in terms of stretch-

ing forces designed to give a predictable shape to the manip-

ulated object. The handling of cables, ropes, sheets, fabrics,
and foils all require the use of multiple manipulators con-
trolled to create mutual stretching forces.

e Grasping: Grasping occurs when the size of a load is of the
same order of magnitude as the limbs employed to constrain
its motion. The simultaneous control of at least two limbs is
a case of cooperative control.

o Easing the task lay-out: The performance of a robot, in
terms of the control of its velocity, applied forces, and po-
sition accuracy is a highly variable function of its posture.
This is a prevailing consideration when designing the lay-out
of a task. It turns out that, given the limited effective work-
range of manipulators and the various geometrical require-
ments of a particular task, it may be hard to find a valid,
let alone optimal, solution. We are dealing with finding the
solution to a problem under a large number of constraints.
The usage of multiple manipulators, viewed as the replace-
ment of fixtures by robots, considerably increasés the set of
valid solutions.

o Load mobility: Load mobility may be an important factor.
In such a case two or more robots can be particularly useful,
because moving loads over large motions may easily cause a
manipulator to reach its limits. Anyone familiar with pro-
gramming robots has found it particularly difficult to pro-
gram a regrasping sequence (2). The use of two robots, in-
stead of just one and a table or a fixture, considerably in-
creases the set of valid, solutions, thus easing the task of find-
ing one. Similarly, objects handed over from one robot to
another could travel over large distances. In space, we sug-
gest that throw and catch sequences might be an economi-
cal way of moving loads around. * However, properly aim-
ing in space is no trivial task since there is no ground ref-
erence. When an object is thrown, it will not usually travel
in straight line with respect to coordinates attached to the
device that threw it.

o Complez force constraints: The configuration of a task may

cause great difficulty for a single robot. For example, jam-
ming can occur in such tasks as pushing drawers. The use of
multiple manipulators makes it easier to control the proper
balance of forces and torques that will lead to a convergence
of the trajectory. This is particularly striking in the case of

© Marvin Minsky first suggested this possibility for earth applications.



the manipulation of elongated objects for which a good con-
trol of torques and orientations is crucial.

Partial mutual kinematic relationship: As suggested by sev-
eral authors (3), cooperative motions can be subject to a
mixture mutual kinematic and force constraints. A an exam-
ple, the task of manipulating scissors falls in this case.
Mytual posttion relationship: Sometimes, the environment
requires two parts of the same task to be physically sepa-
rated. For example, riveting, or spot welding metal sheets
as it is often required in the manufacture of cars or planes.
Two cooperative robots, one on each side of the sheets, con-
stitutes a more flexible set-up than a tool designed to wrap
around the obstacle.

Highly redundant manspulators: The concept of micromanip-
ulator (20,21,22) is increasingly attracting attention for high
performance manipulation. This concept consists of mount-
ing two manipulators with complementary characteristics
within the same kinematic chain. For example, one serial
manipulator—large workspace but high inertia- supporting
a parallel manipulator-small workspace but low inertia. The
cooperative control of these manipulators leads to a system
featuring the combined advantages of both systems (23).

o Locomotion: Multi-legged locomotion can be viewed as a co-
operative task, the reader is referred to the literature specific
to this area.

Teleoperation: Last but not least, another possible option

is the use of a pair of robots as a velocity /force reflectance
system.

CONCEPTUALIZATION

The notion of “motion system” generalises the notion of manipu-
lator. A set of links, joints, and actuators with known kinematic
and dynamic properties, usually identified as a manipulator is a
particular case of a motion system. At the programming level,
one coordinate frame is of particular interest: A frame attached
to the last link of the manipulator, usually through a fixed kine-
matic relationship. The role of the robot control system is to
allow the programmer, human or automated, to ignore, to the
greatest extent poesible, the kinematic and dynamic properties
of the underlying mechanical -system, while specifying the motion
of the coordinate frame in terms of velocities, forces and rela-
tionships of that motion with sensory information. Although the
resulting manipulator program must satisfy a large number of
constraints depending on the task, the manipulators themselves,
and their environment, all specifications are made with respect to
tha¢ frame (4).

In attempting to program multiple manipulators con-
tributing to a common task, we see no reason for changing this
paradigm. However, we are facing a greater degree of variabil-
ity of motion systems in which one, two, or several manipulators
may be involved. Because of the tight interaction between ma-
nipulators, we require our system to pay a great deal of attention
ta (1) the dynamics of the system, (2} the quality of force con-
trol, (3} synchronisation and respect of time constraints, and (4)
accuracy of path control.

Deciding at which degree of cooperation, distinct manipu-
lators should be considered as one or several motion systems is
an open question. For example, it seems legitimate to consider
two arms sharing a common load as belonging to a single motion
system. It is however perfectly possible to consider also, under
certain circumstances, that even though two arms are grasping a
comimon object they can be controlled separately. It depends, in
fact, on the existence of a closed-loop control algorithm capable
of lumping two or more manipulators into a single system capa-
ble of tracking one common input.

At the conceptual level, we have found the control and pro-
gramming of cooperative manipulators to fall in the following
cases:

(a) Several arms carry out different tasks occasionally synchro-
nizing with each other, either to avoid mutual collision or to
move independently to meet at a rendes-vous in space-time.

474

(b) Several arms are required to move in velocity control mode
with a known geometrical relationship. It is preferable to
view this case as the programming of a single motion provid-
ing desired Cartesian coordinates set-points to two distinct
control systems.

{c} In order to account for the case of stretched soft objects, or
objects squeezed by two or more manipulators, the overall
velocities are specified, while mutual forces may' be specified
along certain directions. One single motion is more appropri-
ately programmed along with internal force specifications.

(d) Several arms rigidly connected to a common object, displac-
ing that object in free space, or itself exerting forces on its
environment. Again, we shall consider only one motion send-
ing set-points to a single control system closed around sev-
eral manipulators. Note that one can exits some mutual con-
straints that can be specified in velocity or in force space
(5,17).

(e) Several arms acting on a common object in an asymmetric
manner. For example for one arm to serve as a “fixture” in
velocity control mode, while others exert forces on the ob-
ject. Two motions are programmed: one with respect to a
reference frame, the other with respect to the first one.

Note that there could carry out the classification of cases in a

more general fashion. For example, one could consider that each

link of a manipulator as an entity contributing to the realisation
of a common goal. [t is however the essence of a closed loop con-
trol systems to provide abstractions which are the ingredients of
programming systems. We feel that the above classification is
made at the appropriate level.

PREVIOUS APPROACHES

The AL language was one of the first systems to tackle the prob-
lem of programming multiple manipulators (7). The NSS sys-
tem offers another perspective on this question in the context
of robotic assembly (8). These systems, however, consider only
cases of what we might call “loose cooperation”. They provide
coordination and synchronisation by mean of concurrent threads
of control and atomic events. These are programming mecha-
nisms directly inspired from the programming of computers (9).
This methodology takes care of simultaneons motions, mutual ex-
clusion of workspace areas, but not of truly cooperative motions.
The tasks involving two or more robots in close cooperation
such as in the cases mentioned in the previous section require a
high degree of integration. Because there has been a significant
increase of interest in the control of coordinated robots, there be-
gin to exit systems specifically designed with close cooperation in
mind (11). However, most of the research concentrates on control
issues at the servo level, which has no other function than track-
ing a set-point (12,13), but little is available on the programming
level and system synthesis.

PROGRAMMING PRIMITIVES

This section describes the building blocks which once put to-
gether make a robot program.

Spatial Relationships

Positions are conveniently described by frame transformation
graphs. In RCCL, those graphs adopt a ring structure (see fig-
ure 1).




This graph is equivalent to the following equation:
M T DC = Ildentity (1)

where M represents the “manipulator transform”, T the transfor-
mation from the manipulator’s last link to the controlled frame,
the “tool transform”, and C the coordinate transformation from
where the tool should reach, to where the robot is located. The
transform D or “drive transform” has an initial value that re-
flects the position of the arm before the motion begins, and is
interpolated toward the unit transform in order to produce the
desired motion. With two manipulators, as previously seen, the
rings may share common transformation frames (see figure 2).

In cases (b), (c}, or (d), M; and M are manipulator trans-
forms, T is the transform that takes into account the task con-
straints due to the environment as during sensor based motions
or compliant motions, D is the “drive transform whose value is
interpolated toward unity, such that upon motion termination,
both position equations are satisfied.

The principle is the same as in RCCL: a position is specified
by which of the frames is the controlled frame and to which ap-
plies the motion constraints. Each actuated frame is associated
with an accommodation frame to account for compliant motions,
singularities, and joint motions. The total number of position
controlled degrees of freedom remains always six. The various
transforms are evaluated and contribute to the nominal values of
the manipulator transforms. Arbitrary graphs can be created by
mean of several loops. The nodes of several loops may point to
the same transform, in order to express mutual relationships.

Motion Specifications

The motion specifications apply to a motion system as discussed
earlier. As in RCCL, they are captured by motion requests pro-
cessed on a first in first out basis by a trajectory generator. The
motion requests consist of records which contain all information
pertaining to the calculation of the trajectory.

Goal position. It is described by a data structure describ-
ing the geometrical relationships of the goal position. Geomet-
rical relationships fall in two cases. If there are m manipulators
involved, there will be m kinematic loops described which will
have to share at least one relationship: the “drive transform”,
the transform that describes the common motion. For each kine-
matic relationship, the initial value of all transformations must
be specified. If the relationship is not rigid it will be represented
by what we call a “bound transform”. The user is then required
to provide a pointer to a function to update it, and the trans-
form becomes bound to that function. Transforms not bound to
a function are called “free transforms”. The simplest kinematic
loop will include at least two non-rigid relationships, the “drive
transform” and the “manipulator transform”. Other non-rigid
relationships are used to program sensor-based accommodation
motions, parametric motions, etc...

475

Order of Evaluation. For each kinematic relationship, the
order in which they must be evaluated is also specified. The nor-
mal order is: sensor-based functions, path planning function and,
lastly, the manipulator transform update.

Coupling. For each kinematic relationship, the user can
specify a “coupling factor”. This factor is normally set to 1,
which means that all forces applied to an object attached to that
relationship must be accounted for by the next object. For exam-
ple, if a robot is holding an object in its gripper, all forces caused
by the velocity, the acceleration and the gravity of that object
will be transmitted to the next object which is the gripper, which
in turn will be transmitted to the robot after having added the
gripper’s contribution. If an object is held by two robots, the fac-
tors, in the two forking branches will indicate how much each
robot is expected to contribute dynamically.

Dynamics. For each object involved in the task, the user is
required to provide its dynamic model in terms of the accelera-
tion terms, gravity terms, and velocity terms. Pointers to func-
tions returning these values must be specified. In the case of
solid objects, this is easy, once the moments of inertia of an ob-
ject are known, and standard functions are provided. In the case
of the manipulators, the system provides standard functions to
implement the dynamic models of the robots. For each relation-
ship, the user may specify the maximum force that can taken at
the interface. For example, if a gripper can only generate a given
gripping force, motions will computed such that this imit will
not be violated. Of course, the normal usage of that feature will
be to ensure that motions will never violate the manipulator’s
capabilities, which also come as standard functions.

Timing Information. In a very accurate manner the user can
either specify desired velocity, motion segment time, or scheduled
arrival time. If these constraints cannot be enforced, an error
condition will result, unless these constraints are explicitly re-
laxed.

Transition Information. The properties of path transitions
can be controlled by mean of two parameters as discussed below.
The user can specify how close a trzjectory should stick to a “via
point® and the type of trajectory wander is desirable in order to
limit the acceleration.

Control information. All terminating motions return an exit
code which can be bound to an arbitrary external of internal con-
dition. The execution of subsequent motions can be made condi-
tional to a particular exit code of the previous motion. Thus, this
mechanism allows to specify alternative successors in a motion
queue.

Trajectory Computation

In RCCL as well as in Kali, the trajectories are viewed as a
string of path segments connected by transitions. It is assumed
that the velocity of the controlled frame is the variable of concern
during path segments. Accelerations are supposed to be small
because the direction of the velocity should not change abruptly.
On the other hand, during transitions, the acceleration is the
variable of concern because of the velocity change. As a conse-
quence the path must be allowed to wander off the ideal trajec-
tory or the manipulator brought to a stop, that is giving up on
timing constraints.

We have developed a transition computation method based
on the blending of successive path segments. The type of blend is
controlled by two factors. The preview factor conveys the amount
of look ahead the system must perform before a transition. The
acceleration factor conveys the amount of trajectory wander is
admissible. These two factors, and the knowledge of the dynam-
ics of the system lead to the automatic determination of the tran-
sition time. A smaller wander will lead to a longer acceleration
period. This method is quite robust and is not affected by ill-
defined trajectories, such as thoses produced by tracking using
sensory data, since it does not rely on boundary conditions in po-
sition, velocity, and acceleration. The details of the method are
available in a companion report {14).

Synchronization
Motions are treated as processes, they are created, go through



a sequence of states, and are eliminated from the system after a
while. As it is common practice in software engineering, a pro-
cess, when created, is represented as a record. Each motion is
assigned an identification number that allows the controlling pro-
gram to perform further referernces to this particular motion.
Since motions are treated as individual processes, synchronisa-
tion between motions themselves is also easy to achieve through
the combined use the motion control flags and motion parameter
such as velocity or time of arrival. The details are available in a
separate report (28).

SERVOING AND CONTROL

H a task requires a great deal of mechanical coupling among the
manipulators, effective control can only be achieved in a con-
trol loop which is closed around the entire system, and not only
around each individual manipulator. Hayati (15,16) (see figure
3, extracted from {16)) has developed a multiple manipulator
control scheme based on an extension of Raibert and Craig’s hy-
brid control (17) and Khatib’s operational space control (see fig-
ure 4, extracted from (18)). When using such a scheme, a mo-
tion syébem can be seen as a point in the velocity and force sub-
spaces. The input to the control is a nominal trajectory specified

in Cartesian coordinates.

by
Pigate 3. Prepesed Bybrid Pesitica/Ferse
Coatrel Blosk Blagrin foc & Bulti-Arm Rebot
Fig. 8
e
L4
s
"
°
1]
-
Figure 1. Operaticaal Space Control Architecture

Fig. 4

These schemes form the control error in task space and drive
a highly non-linear plant. To compensate for this, feed-forward
dynamics are used to linearize and decouple the system. Our
Cartesian coordipates trajectory generator with acceleration de-
mand limitation is designed to effectively provide set-points to

476

these control loops. It is important to notice that our method
still allows us to generate joint-interpolated motions while nsing
Cartesian based servoing, provided that the manipulators do not
become singular. Several methods for dealing with singularities
at trajectory level are currently being investigated by us and by
others (29).

In the case of single manipulators, the control algorithm may
consists as in classical controllers of the inverse kinematics pro-
viding joint set-points to ordinary PID joint servo loops. It is
however only one of the possible arrangements of our system.

ORGANIZATION

Run Time Structure

The run time structure consists of a sét of processes, some of
which are high priority synchronous processes, some others are
low priority and may execute asynchronously. The processors are
distributed over an array of processors connected by a bus. De-
tails will be given further on in the discussion.

The task allocation reflects the attempt to minimise bus
traffic, and synchronised inter-process communications. Short
delays are paramount to obtain adequate control. In many other
proposed architectures, pipelining is seen as a method for im-
proving control by augmenting the computational throagh-put.
Unfortunately, this approach fails to take into account that the
benefits of high rates are often lost in the computations delays
spent in the stages of a pipelined architecture which cause the
correction signals to be computed on stale data.

To improve the control rate, we adopt a different approach
based on the consideration of the physics of the plant to be con-
trolled, on the structure of the control algorithm (18,19}, and the
evolution of today’s computing technology. First, rapidly chang-
ing quantities {control error, for example) are updated more of-
ten than slowly changing ones (inertia characteristics, for exam-
ple). Second, parallelism is achieved by observing that certain
computations, within one sample period, can be performed in-
dependently from others, and by allocating them on a limited
number of concurrently running processors. Although it has been
observed that a great deal of parallelism can be achieved in this
fashion at the cost of great hardware complexity, we have pre-
ferred to make use make a limited use of it in favor of simplicity.
Finally, the technology of processors is rapidly improving perfor-
mance and we base our design on conservative projections.

Synchronous Processes. As in RCCL, there exists a main
synchronous process whose task is to compute nominal set-points
for the manipulators. This process is time-shared for all instances
of motion systems. Others synchronous processes implement the
servo control algorithm. There is also also a synchronous 1/0
process wlhich runs at the same frequency as the setvo process.
This process is in charge of gathering sensor itformation: joint
position, current, wrist force readings, etc... and post them in a
shared area of memory.

Asynchronosus processes. The main asynchronous process is
the so-called ‘user process’. It is the process that contaihs the
‘robot program’. Its mains functions are: presetting the transfor-
mation values, setting up the kinematic loops, issuing the motion
requests, synchronising: itself with the task execution, and per-
forming I/O with the external world. The other asynchronous
processes are related to the dynamic computations. These pro-
cesses can run asynchronously because the performance of the
system will degrade only slowly if the data they produce is a lit-
tle bit “old” (19). Five of these processes are needed per robot.
The first one computes three sets of forces created by the velocity
terms under various conditions: before and after a potential tran-
sition, and for the current set-point. The second one compute the
current gravity terms. The third one updates the inertia matrix.
One other compute the maximum force the robot can produce.

Communications and Processor Allocation. In ordet to make
the minimum of assumptions with respect to the performance
of the underlying operating system, only two forms of commu-
nication are considered: Message passing, which is inevitably



rather slow but appropriate to transfer information across dif-
ferent processors, and shared memory with no explici¢ synchro-
nization mechanism, which allows to use these forms of commu-
nication: Without data loss: Type 1. Message queues from the
asynchronous processes to the synchronous ones. Type 2. Mes-
sage buffers from one synchronous process to its successors. Type
3. Atomic event flags. With possible data loss: Type 4. Data
updated and utilized by any process with no need of explicit syn-
chronization mechanism. The trajectory generator communicates
with synchronous because users written monitor functions need
to have access to fresh external information (Type 4). No explicit
synchronization is required, because the latest update of such val-
ues as force sensor readings, and digital I/O lines assigned to a
fixed located in shared memory need to be read. The trajectory
generator transmits set-points to the servo process processes at
a fixed rate (Type 2). The servo process and the i/o process run
at the same multiple rate of the trajectory generator rate. The
dynamic computations are left running on a dedicated proces-
sor with no explicit synchronization. They need external 10 data
to obtain the robot state variables. They produce data located
in fixed place in shared memory to be read at leisure by the
other processes. Priorities are adjusted to insure adequate perfor-
mance. The user process communicates with the external world
through ordinary 1/O over the Ethernet. This process is likely to
use very little CPU time and since it communicates mostly with
the trajectory generator (Type 1 and 3), conveniently shares a
processor with it, on which the motion queue also resides. This
way, the motion synchronization which mostly consists of manip-
ulations in the motion queue buffer is simple to implement.

See figure 5 for a summary.

General i0 ‘-—j
[GorPrcess ]
il
Synctv ‘on ; AT

4 Gartesian Trajectory

Fig. 5

Software Organization

Not counting the real-time operating system level, the software
is divided in roughly five layers which may consist each of several
libraries.

The bottom layer is meant to provide a development en-
vironment for the development of closed loop control code. It
provides an interface for programming closed loop control laws,
usually understood by the user as a “block diagram” or a set of
equations, between the user and a real time multi-processor op-
erating system. The second function of this software layer is to
establish the environment suitable for running the various syn-
chronous and asynchronous processes described above.

The second software layer is also a support layer and is
totally independent from the operating system. It consists of
several small utility libraries. Currently there is a library for
buffered input and output of data, useful for debugging and
dumping data into files. The ‘geo’ library is a set of function for
geometrical computations on vectors, transforms, and quater-

477

nions. This layer also includes kinematic and dynamic models for
our Puma robots.

The third software layer implements the servo control code
and uses the above layers.

The fourth layer is the heart of Kali. It consists of two li-
braries. The ‘rings’ library contain code to maintain and update
in real time kinematics loops. As discussed earlier, loops are ori-
ented graphs whose nodes point to transformation values. Each
node is attached to a function which specifies the ‘method’ to
update the value. Provision is made for the same function to be
attached to several nodes. Also, if a value is shared by several
loops, the update will take place only once. Intermediate val-
ues, results of transform multiplies, are stored into an internal
hash table in order to avoid redundant computations. There is
no need to keep track explicitly of the fact that the same kine-
matic relationship may be used several times. The other library,
the ‘motion’ library, contains the ‘method’ to compute smooth
interpolated Cartesian coordinate trajectories according to a vari-
ety of constraints specified in a ‘motion record’. Robot programs
using the ‘motion’ library can be extremely verbose.

The fifth layer may consist a set a function to emulate
RCCL functions in terms of third and fourth layer calls. How-
ever, it might be worthwhile customizing new sets a functions,
based on specific needs. For example, multiple arm motion primi-
tives such as “follow-the-leader, move-rendez-vous, accommodate-
with-each-other, lift-with-squeeze, or two-hand-twist” can be de-
fined at that level.

COMPUTING SYSTEM

From the control point of view, we encounter stringent compu-
tational requirements. Estimation shows that we shall require a
system capable of executing at least 10 million floating point in-
structions per second. Such a computational requirement calls
for the allocation of distributed computing system. We have se-
lected an arrangement consisting of a number of identical single
board computers based on Motorola’s 68020/68881 chips sharing
a common VME backplane. All the code development is done in
C and is made on a SUN work-station under Unix connected via
Ethernet to the VME backplane. The particular system we have
selected features secondary VSB buses. We make use of these
buses for high-speed point to point commurication between the
processors without affecting the VME bus bandwidth. We have
felt that this combination was offering us the best performance,
complexity and cost ratio, while providing a large third party
product support.

CONCLUSION

The design of a multi-manipulator multi-processor control system
has been discussed. It results from the balance between a large
number of various requirements. In many cases, simplicity has
taken precedence over efficiency. We have have sought to achieve
generality through the elaboration of 2 number of building blocks
that can be combined in various ways, rather than attempting to
establish a rigid framework such as those offered by designs based
on the selection of pre-determined options. Specific applications
can be developed by mean of function libraries, macro process-
ing, or dedicated languages. The initial version of Kali will be
available summer 1988 through NASA’s COSMIC technology de-
velopment program.

ACKNOWLEDGMENTS
John Lloyd, Laeeque Daneshmend, Ajit Nilakantan, and Tony
Topper contributed to this paper.

The research described in this paper has been funded by
the Jet Propulsion Laboratory under contract with the National
Aeronautics and Space Administration, and by Natural Science
and Engineering Research Council of Canada.

REFERENCES
(1) Hayward, V., Paul, R. P. 1987 (Winter). Robot manipulator

control under unix: RCCL a robot control ‘C’ library, Interna-
tional Journal of Robotic Research, Volume 5, Number 3.



(2) Tournassous, P., Losano-Peérez, T., and Maser, E. 1987. Re-
grasping. 1987 IEEE International Conference on Robotics and
Asxtomation, Raleigh, North Carolina. pp. 1924-1928.

(3) Mason, M. T., 1981. Compliauce aud force control for com-
puter controlled manipulators. [FFE Transactions on Systems,
Man, and Cybernetics, SMC-11. June 1931, pp. 418-432.

(4) Paul, R. P. 1981. Robot manipuiutors: mathematics, program-
ming, and control. MIT Press, Cambridge, Mass.

(5) Salisbury, J. K., Craig, J. 1982 (Spring). Articulated hands:
force and Kinematic Issues. The International Journal of
Robotics Research, Volume 1., Number 1.

(6) Brooks, T. L. 1981 Optimal path generation for cooperat-
ing robots or redundant manipulators. Jet Propuision Laboratory
Technical Report.

(7) Mujtaba, S., and Goldman, R. 1981. AL users’s manual.
AIM-344, Stanford, Calif., Stanford University Artificial Intelli-
gence Laboratory.

(8) Alami, R., and Chochon H. 1985 (April). Programming of
flexible assembly cells: task modeling and system integration.
IEEE International Conference on Robotics and Automation, St.
Louis.

(9) Dijkstra, E. W. 1968. Cooperating Sequential Processes. In:
Programming Languages, F. Genuys {Ed.), Academic Press, New
York.

(10) Lee, J. S., Hayati, S., Hayward, V., Lloyd, J. E. 1987. Im-
piementation of RCCL, a robot control C library on a microVAX
IL Intelligent Robots and Computer Vision: Fifth in a Series, D.
Casasent, Editor, Proc. SPIE 726

(11) IEEE Conference on Robotics and Automation; 1987, Ses-
sion on Multi-Arm Robots, pp. 1236~1255.

(12) Clark, C. J., and Stark, L. 1986 {April}. A comparison of
control laws for a cooperative robot system. IEEE International
Conference on Robotics and Astomation, San Francisco. pp. 390-
394.

(13) Zheng, Y. F.; and Luh, J. Y. S. 1986 (April). Joint torques
for control of two coordinated moving robots. 1985 IEEE Inter-
national Conference on Robotics and Axtomation, San Francisco,
California.

(14) Hayward, V. Model based trajectory planning using preview.
McGill Research Center for Intelligent Machines Techwnical Re-
port, In preparation.

{15) Hayati, S. 1987 (January). Dynamics and control of coordi-
nated multiple manipulators. Jet Propulsion Laboratory/NASA
workshop on Space Robotics, Pasadena, California.

(16) Hayati, S. 1986 (April). Hybrid position/force control of
multi-arm cooperating robots. IEEE International Conference
on Robotics and Astomation, San Francisco. pp. 82-89.

(17) Raibert, M. H., and Craig, J. J. 1981. Hybrid position/force
control of manipulators. Trans. ASME J. Dynamic Syst., Meas.,
Contr., Vol 103, pp. 126-133.

(18) Khatib, O., Burdick, J. 1986 {April). Motion and force con-
trol of robot manipulators. JEEE International Conference on
Robotics and Astomation, San Francisco. pp. 1381-1386.

{19) aguirre, A., Hashimoto, M., Paul, R. P,, Hayward, V. 1987
{September). A new computational structure for real-time dy-
namics. IEEE International Workshop on Robotics Trends, Tech-
nology and Applications, Madrid, Spain.

478

(20) Reboulet, C., Berthomieu, T. 1987 (October}. Hybrd po-
sition force control implementation on a paralle] manipulator.

Nato Advanced Rescarch Workshop on kinematic and dynamic
13sues 1n sensor based control.

(21) Inoue, H., Tsusaka, Y., Fukuisumi, J. 1985. Parallel manip-
ulator Robotic Research, Srd ISRR, Cambride, MA, MIT Press.

(22) Trevelyan, J. P, Kovesi, P. D., Ong, M. C. H. 1985. Motion
control of a sheep shearing robot. Robotic Research, 3rd ISRR
Cambride, MA, MIT Press.

(23) Hayward, V., 1987 (July). An integrating survey of robot
manipulator control and connections with their biclogical coun-
terparts. McGill Research Center for Intelligent Machines Tech-
nical Report, CIM-87-13, McGill University. Montréal, Canada.

(24) Lloyd, 1., Parker, M., McClain, R. 1988 Extending the

RCCL programming environment to maktiple robots and proces-

s;rs IEEE Int. Conf. on Robotics and Astomation. Philadelphia,
2.

(25) Zapata, R., Fournier, A., Dauches P 1987. True cooperation
of robots in multi-arms tasks. - JEEE Iat. ('onf. on Robotics and
Astomation. Raleigh, Pa

(26) Guptill, R., Stahura, P. 1987. Muliple robotics devices
Position specification and coordination IEEE Int. Cosf. on
Robotics and Astomstion. Raleigh, Pa

(27) Kossman, D., Malowany, A. 1987. A multi-processor Robot
control system for RCCL under iRMX. [EEE Int Conf. on
Robotics and Automation. Raleigh, Pa.

(28) Nilankatan, A., Hayward, A. 1988. Synchronising Multi-
ple Manipulators. Second International Symposium on Robotics
and Manufacturing Research, Education and Applications, Albu-
querque, New Mexico.

(29)_ Aboaf, E. W., Paul, R. P. 1987. Living with the singularity
of robot wrists. JEEE Int. Conf. on Robotics and Astomation.
Raleigh, Pa.



