
94

Robot Manipulator
Control under Unix
RCCL: A Robot
Control "C" Library

Vincent Hayward*
Laboratoire d’Informatique et de Mécanique
pour les Sciences de l’Ingénieur
LIMSI-CNRS BP 30

91406 Orsay Cedex
France

Richard P. Paul
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, Pennsylvania 19104

* Vincent Hayward is now with the Computer Vision and Robotics
Laboratory, Department of Electrical Engineering, McGill
University, Montr6al, Qu6bec, Canada H3A 2A7.

Abstract

In this paper, we present a general purpose manipulator
control system. The system is run under the Unix operating
system. Manipulator programs are written in the "C" lan-
guage and make use of primitive functions included in a
library. Manipulator control is thus integrated within the lan-
guage in the same manner as is input-output. The system
includes a world modeler and a trajectory generator that are
accessed through two sets of primitive functions. The sys-
tem’s structured world modeler is designed for an easy inte-
gration of sensors. The first part of the paper reviews the
functional organization of the system, going through world
modeling, trajectory generation, force control, and synchroni-
zation. The second part describes actual robot programming
examples.

1. Introduction

For more than a decade, robot manipulator control
has been associated with the development of dedicated

robot programming languages (Paul 1977; Mujtaba
and Goldman 1981; Taylor, Summers, and Meyers
1982). The goal of these languages has been to provide
a suitable framework for the expression of robot tasks,
since it is believed that programmability of robots is
their principal advantage over traditional automation
(Nitzan and Rosen 1976; Lozano-Perez 1983). Robots
can no longer be considered as separate devices acting
on their own and must be integrated within manufac-
turing systems. As a result, robot languages have be-
come increasingly more powerful in order to handle
the interactions among robots, their working environ-
ment, and the remainder of the manufacturing control
system. Robot programming systems have also
evolved to implement advances made in several areas
of industrial automation, such as sensing, machine
perception, and control.
The majority of current robot programming systems

are based on a robot controller designed around a
special language (Shimano, Geshke, and Spalding
1983; Taylor 1983). The language on which robot
control is based must cope with the complexities of
real-time control of the arm and its end effector, world
modeling, sensory feedback, and general input-output.
The language must also implement, or be able to han-
dle, man-machine and machine-to-machine commu-
nications. Based on these needs, robot programming
languages have evolved to a point where they resemble
extended, high-level computer languages. Research in
task-level robot programming has demonstrated the
need for intermediate robot control primitives as tar-
gets for task-planning systems or off line programming
systems. These primitives are often not provided in
the most suitable and flexible manner by traditional
robot programming languages.

This work has been partially supported by a grant from the ARA
program (Automatique et Robotique Avanc6e) of CNRS, France.
This material is also based on work supported by the National
Science Foundation under Grant No. MEA-81119884. Any
opinions, findings, conclusions, or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

95

In this paper, we describe a different approach to
robot programming. We wanted to avoid the creation
of a specialized language, since advances in computer
science have provided widely used and e#hcient gen-
eral purpose languages. We chose the &dquo;C&dquo; language
(Kernighan 1978) and integrated robot control in the
language in the same manner as general input-output
is integrated. The &dquo;C&dquo; language is well suited for this
purpose because of its ability to handle low-level de-
tails. The services usually provided by operating sys-
tems (e.g., I/O, memory management) are revealed to
the &dquo;C&dquo; programmer through subroutine calls instead
of language primitives. In languages like Pascal, these
services are reflected in the syntax of the language;
therefore, extensions to the language often require re-
visions of its syntax. Other languages like ADA or
Modula could have provided the required flexibility
for the project at hand, but none of these languages
was in sufficient widespread use at the time of the
project inception.
RCCL is a self-standing, subroutine package offering

a suitable environment for the programming of
robots. Tools are provided for control over the sched-
uling of motions and the trajectory generation, thus
leading to an easy integration of sensors. The robot
control primitive functions are written in &dquo;C&dquo; and in-
cluded in a library. Robot applications can directly be
developed in &dquo;C,&dquo; and no modification to the com-
piler is required. The RCCL subroutine package is
built on top of a low-level robot control package called
the arm interface (briefly described in Section 2.1). An
Appendix describes the additions that have been made
to the Unix kernel to provide for real-time control.
An initial implementation of the RCCL system sug-

gests that many benefits can be gained from this ap-
proach as far as modularity, system and application
development, and portability are concerned. The sys-
tem has been designed with the following goals in mind:

Portability. The system is written in the portable
language &dquo;C,&dquo; available for a number of ma-
chines. RCCL was first implemented on a VAX
minicomputer under Unix. However, the system
has been ported and adapted to other machines
than a Vax and can run under other operating
systems. (See Kosman [1986], for example.)

Manipulator independence. The arm dependencies,
such as the kinematics and the physical capabili-
ties of the arm, have been isolated and can be

modified easily. The present implementation of
the library can be generated for two different arms
by means of macro compilation. Robot programs
are as independent of any particular manipulator
as Cartesian programming can allow. Dependen-
cies, such as the working envelope, sweep, reach,
and kinematic configurations, cannot be avoided
at manipulator-level programming.

World modeling. The system fully implements the
structured position description introduced in the
PAL language (Takase, Paul, and Berg 1979) with
some extensions.

Cartesian programming. Locations are described in
Cartesian space. An arbitrary coordinate frame
can be programmed to move along straight-line
trajectories or along arbitrary trajectories de-
scribed with respect to the basic motion scheme.

Sensor integration. This point is one of the main
issues of the system design. We make use of the
idea that sensor integration is handled naturally if
the world model can be synchronously or
asynchronously modified. In any case, the user
has full control over synchronization, whether the
program flow needs to be synchronized with the
arm motions, or the arm motions with the pro-
gram flow.

Force control. In a matter of months, a simple tech-
nique of compliant motion control has been de-
veloped and integrated within the system.

2. Overview

The system is built around a trajectory generator and
a world modeler. The trajectory generator is an inter-
rupt-driven process that uses position specifications
described in the world model to compute joint position
or torque set points at a fixed sample rate. From the
user’s point of view, the trajectory generator acts like a
background process. The robot program, or user’s
process, is similar to a Unix process executed under

time-sharing that asynchronously issues motion re-
quests to the trajectory generator. The motion requests

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

96

are entered into a queue and processed by the trajec-
tory generator on a first-in-first-out basis.
The world model consists of a set of homogeneous

transformations equations and is implemented in
terms of dynamic data structures. These equations, or
closed kinematics chains, structurally describe the
relative locations of objects and features involved in
the task description.
A motion request is a request to the system to mod-

ify the world model so that a position equation be-
comes verified. Several kinds of transformations have
been defined in order to deal with sensor integration,
time-dependent world modeling, and communica-
tions. Whenever necessary, the user’s process is syn-
chronized with the actual arm motions or other exter-
nal events. Synchronous processing is performed by
user written background functions specified as part of
a motion request or attached to a functionally de-
scribed transformation. Any trajectory segment can be
interrupted at a given instant. This provides control
over scheduling of motions according to arbitrary
events or conditions. Synchronous input is provided
by global variables that are updated at sample rate,
with the state of the arm itself or with the state of the

trajectory generator. Finally, the world model can be
implicitly updated upon completion of a conditional
motion. The information that is obtained on condition
detection is thus directly included in the world model.
To summarize, we have sought to separate the

world modeling problem, implemented in terms of
dynamic data structures, from the trajectory genera-
tion and the real-time control of the arm. The control
of the arm and the trajectory generation is viewed as a
high priority background process. The next sections
explain in more detail the functional organization of
the system.

2.1. LOW-LEVEL FUNCTIONS AND ARM INTERFACE

Two manipulators can be run under RCCL control: a
Puma 600 and a Stanford Arm. In both cases, an in-
dustrial robot controller from Unimation is used to
control the robot joints. The controller’s LSI- I pro-
cessor, which usually serves to run the VAL code, runs
a simple device driver in our system that establishes
the communication between the servo code and a

real-time arm interface. The arm interface and the rest
of the software runs in a VAX minicomputer. The
trajectory generator specifies either position or cur-
rent/torque set points to the servo process.
The arm interface is a function package that allows

a user to implement real-time programs in the VAX
computer for the control of the manipulators. Pro-
grams written using this system execute as two tasks
running in parallel: a control task or background pro-
cess, which executes at sample rate, and a planning
task or user process, which provides high-level direc-
tives to the control task. These tasks are arranged in a
two-level hierarchy. The control level executes at high
priority in a noninterruptable context, while the plan-
ning task executes in a conventional, time-sharing
context. Both levels communicate with the robot

through predefined data structures. A &dquo;C&dquo; structure,
called how, contains information describing the state
of the arm, while a structure called chg is used to con-
trol the arm. The global structure how is simply read
by the application program to obtain the robot state
information, while joint level commands can be speci-
fied by setting appropriate fields in the global structure
chg. The levels communicate with each other using
shared memory. In order to implement these features
under Unix, it has been necessary to take liberties with
the user-operating system interface. These are de-
scribed in the Appendix.
The communications among levels have been found

to fall into the following categories (Lloyd 1985):

Directives fram the planning level. Commands and
associated parameters are sent to the control level
from the planning level, either through global
variables or through a motion queue.

Feedback from the control level. Information com-
puted by the control level is placed in a global
area where it may be sampled at the discretion of
the planning level.

Synchronization. The tasks synchronize their activi-
ties through the setting of global flags.

These communication activities may be compared to
the ones described by the designers of a hierarchical
control system for legged vehicles (Schwan et al. 1985):

Asynchronous communication with data loss.
Synchronous communication without data loss.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

97

Synchronous or asynchronous communication with
possible loss of data.

Finally, a set of mapping functions allows the user
to program in terms of physical units (mm, radians,
newton-meters) instead of encoder counts and motor
currents. When joint torques are measured or speci-
fied, Coulomb friction terms are automatically re-
moved or added. The details of the arm interface are
fully described in Hayward 1983a; Zhang 1983; and

Lloyd 1985. The robot programs written using the
actual RCCL functions have access to all the features

of the arm interface.

2.2. WORLD MODEL

The RCCL world model is a set of geometrical situa-
tions described by closed kinematic chains. Each situa-

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

98

tion corresponds to a homogeneous transformation
equation (Paul 1981). These equations are directly im-
plemented in terms of linked data structures. Equa-
tions are dynamically created and deallocated. Func-
tionally, the world model describes the relative
locations of chains of coordinate frames. The values of
these transformations can be explicitly specified in the
program text; read from files; and asynchronously or
synchronously modified during the task execution
from sensor readings, computations, or other sources
of information (see Figure 1).
The world model enables the user to program robot

tasks in Cartesian coordinates. It is derived from the
PAL robot programming system (Takase, Paul, and
Berg 1979). The basic component is a 4 X 4 frame
transformation matrix that describes the position and
orientation of one frame with respect to another.
These matrices, called homogeneous transformatiJns,
possess a number of properties.

Let A be the transform that describes the position of
frame F2 with respect to Fl, and let B be the trans-
form that describes frame F3 with respect to F2. The
product AB is also a transform and describes the posi-
tion of F3 with respect to F~ . Frame transformations
are thus easily composed. The inverse of a transform,
obtained at low computational cost, is also a trans-
form. For example, A-’ describes the position of Fl
with respect to F2. A transform can be interpreted as
the description of one frame with respect to another, or
as a transformation performed on the first frame. Dif-
ferential transforms are used to express generalized
forces, differential motions, and velocities among var-
ious frames. Transforms not only lead to efficient
computer implementations but are also powerful
mathematical tools. For this reason, they have
been used traditionally in manipulation, arm kine-
matics, dynamics, computer vision, and computer
graphics.

In order to illustrate our discussion, we shall borrow
a simple task example from the AL system user’s
manual (Mujtaba and Goldman 1981). The task in-
volves a table top, a robot, and two blocks. The task is
to grasp and move the first block, then to grasp and
stack the second block on top of the first one. Figures
2A and 2B show the six intermediate states necessary
to describe this task. The states are expressed in terms
of frame transformations and coincidence. For the

sake of simplicity, no mention is made of trajectory
generation and collision avoidance.

2.2.1. Description Using Af~txment
The AL language and other languages (e.g., Latombe
and Mayer 1981) model the geometric relationship of
the frame with the AFFIX statement:

AFFIX f l TO f2 AT trans

where the transform trans defines the position of f 2
with respect to f 1. The relationship is symmetric:
whenever f 1 or f2 moves, the other frame also moves.
With affixment, a situation is modeled as a tree in
which frames correspond to nodes or leaves, and
transformations correspond to links, as in Figs. 2A
and 2B. State changes are requested through the
MOVE statement:

MOVE f2 TO f3

The execution of this MOVE statement involves a
walk through the a~cment tree to determine the mov-
able frame arm and the trajectory that lead to the co-
incidence of f2 with f3. When the motion is per-
formed, the position of all the frames a~ed to the
movable frame are updated.
The task is described by the following sketch of

statements:

AFFIX block1_grasp TO block1 AT ...
AFFIX block2_top TO block2 AT ...

AFFIX block2_grasp TO block2 AT ...
MOVE arm TO block1_grasp
GRASP

AFFIX blockl TO arm

MOVE block1 I TO final_place
RELEASE

UNFIX blockl FROM arm

MOVE arm TO block2_grasp
GRASP

AFFIX block2 TO arm

MOVE block2 TO blockl_top
RELEASE

UNFIX block2 FROM arm

MOVE arm TO park

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

99

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

100
 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.

 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

101

2.2.2. Description with Position Equations
In the RCCL system, the notion of frame does not
exist explicitly. Instead, all the transformations in-
volved in position description are explicit. Frames are
uniquely defined by their mutual relationships, and
only the frames involved in a position description are
considered at one time. For example, consider state 2
of the task, as in figure 2A. The following graph is
obtained by establishing a link between the frame
blockl_grasp and the frame world:

ARM, BLOCK], and GRASP] are transformations.
Eliminating the frames, an equivalent representation
of this graph is a transformation equation:

ARM = BLOCKI GRASPI.

Following this principle, the six intermediate states of
the task can be described in terms of six labeled equa-
tions :

(park) ARM = P,QRK

(get_block 1) ARM=BLOCK:I GRASP]

(place_block1) ARM = FINAL_PLACE GRASP]
(get_block2) ARM=BLOCK2 GRASP2

(stack_block2) ARM= FINAL_PLACE TOP] GRASP2
(park) ARM= PARK

The computer representation of these equations is
straightforward, and their solution for the transform
ARM is simple regardless of their complexity. Once
these equations have been specified to the system, the
program is sketched as follows:

MOVE(get_block1)
CLOSE

MOVE(place_block1)
OPEN

MOVE(get_block2)
CLOSE

MOVE(stack_block2)
OPEN

MOVE(park)

2.2.3. RCCL Position Equations

As shown above, the RCCL system only uses transfor-
mations to describe the robot workspace. Position
equations reflect the spatial structure of the task inde-
pendently from the flow of control. There is no need
to keep track of the a~xment relationships in the flow
of the program, because this information is contained
in the layout of the equations. By the addition of
terms to the equations, the user can refine the descrip-
tions without changing the structure of the programs.
We shall now consider the structure of commonly

encountered equations. A frame is first assigned to the
last link of the manipulator. We call T6 the transform
that describes the position of the last link of the ma-
nipulator with respect to its base. When the manipula-
tor is required to move to some known location POS,
also described with respect to the manipulator’s base,
the position equation is

We may wish, however, to specify that a certain frame
described with respect to the last link of the manipula-
tor (at the tip of a gripper, for example) must reach
the given position. The equation can then be changed to

We now want to describe the position for grasping a
pin lying on a table. We write:

In this equation, the transforms are:

B is the position of the base of the robot with respect
to an arbitrary reference frame.

T6 is the position of the manipulator’s last link with
respect to its base.

E is the position of the controlled frame with respect
to the manipulator’s last link.

T is the position of the table with respect to the
arbitrary reference frame.

P is the position of the pin with respect to the table.
PG is a grasping position with respect to the pin.

If the pin is to be inserted into a hole of an assembly,

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

102

we define two more transforms:

AS is the position of the assembly with respect to
the table.

H is the position of the hole with respect to the as-
sembly.

The corresponding equation is

A task description includes a number of these equa-
tions. The system computes trajectories such that
these equations are successively satisfied. A motion
from one position to the next is generated by the sys-
tem by implicitly inserting an additional transforma-
tion in the equation. This transformation DRI VE(s)
represents a rotation about an axis and a straight-line
translation that will drive the robot from one state to
the next. The rotation and the translation are linearly
dependent on a scalar variable s. The DRIVE(s) trans-
formation is inserted into the position equation to the
right of the controlled frame selected by the user. The
position equations can always be rewritten as follows:

where the P;’s describe the controlled frames, the R;’s
are the transform expressions to the left of the P;’s,
and the EI’s are the transform expressions to the right
of the Pi’s. In order to express the motions from one
position to the next, we write the first transform ex-
pression in terms of the destination position

with

During motion, the position equation is evaluated as

with

The goal position is obtained when s = 1, such that

In RCCL, the transformations that make up the terms
of the position equations actually fall into one of the
following categories:

Constant transformations are used to represent the
geometrical relationships of features and objects
that remain unchanged during the execution of
trajectories. This is the basic type found in most
other robot programming systems. Constant
transformations are internally premultiplied by
the system before the actual computation of the
trajectories in order to reduce the computational
load.

Variable transformations can be read and written
throughout the execution of the user process. The
resulting trajectories will immediately reflect the
modifications made to those transforms. The

programmer is then responsible for providing
small smooth changes in order to obtain mean-
ingful results. The changes can occur asynchron-
ously, and this type of transformation is usually
useful for tracking applications when the sensory
information cannot be made available at sample
rate. This is an example of communication with
data loss.

Hold transformations can be modified at arbitrary
instants by the user process. When a motion re-
quest involving such a transformation is issued,
the system makes a copy of it. The copy then
becomes part of the motion request. These trans-
forms find their application when positional in-
formation cannot be obtained within a predictable
period of time. They allow the user process to
perform input-output operations with a transfor-
mation database, for example, without having to
stop the arm. This is an example of communica-
tion with no loss of data.

Functionally defined transformations are attached to

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

103

a &dquo;C&dquo; function. During the computation of the
corresponding trajectory, the function is evaluated
at sample rate and is expected to compute values
for the transformations. If the values are func-
tions of some parameter (time, for example), one
obtains parametrized trajectories. If the values are
functions of sensor readings, one obtains synchro-
nous sensory feedback for control of the arm. The

applications are limited by the execution time of
the function, which must fit in the allocated CPU
time slot. Tracking and other active path correc-
tion methods are easily implemented, however.

Position equations may include any combination of
transformation types. Section 3.4, Sensor Integration,
will show examples of the use of these transformations.

2.3. TRAJECTORY GENERATION

The RCCL system handles two types of trajectories. In
both cases, the manipulator is controlled to move
toward a target position described by a transformation
equation, but the two modes differ by the way inter-
mediate points are generated. In joint mode, for each
motion request, the final manipulator position is com-
puted by Eq. (7). The corresponding joint set point is
then obtained with the inverse kinematic solution of
the arm. Intermediate set points are linearly interpo-
lated in joint space. This type of motion leads to effi-
cient trajectories, but the path of the controlled frame
is not always easily predictable. The other type of mo-
tion, or Cartesian mode, uses Eq. (10) to compute the
manipulator position at sample rate. Joint set points
are once again obtained by the inverse kinematics.
The path of the controlled frame is then determined
by the parametric transform DRIVE(s). These path
generation techniques are described in more details in
Paul (1981).
Smooth transitions between each path segment are

provided by an interpolating, quartic polynomial.
Since the position equations may contain arbitrary
parametric transformations, unpredictable velocity
changes may occur at the beginning of the transition.
Discontinuities of that nature also occur when the
control is switched from joint interpolated to Cartesian
path generation, or vice versa. These cases are handled

)

by adding a third-order polynomial to the quartic
transition. The slope of the polynomial is made equal
to the measured extra velocity at the beginning of the
transition. The slope is set to zero at the end of the
transition. One important feature of the trajectory
generator is its capacity to initiate a transition at arbi-
trary instants.

1

2.4. FORCE CONTROL

The RCCL system allows the user to program the
manipulator so that it exerts forces and torques along
or around selected directions. The manipulator is then
said to perform compliant motions. This capability

I raises both the problem of the motion specification
and of the control of the arm. Force controllers have

I been implemented by Raibert and Craig (19 $1) and
Salisbury (1980) using feedback signals from wrist
force sensors. For practical reasons, we have imple-
mented a version of Paul and Shimano’s (1976) com-
pliant motion scheme. Force specifications are ex-
pressed in the controlled frame. Compliant motion is
obtained by matching the manipulator joints with
each programmed compliant direction. For each di-
rection, the joints most suitable for providing the de-
sired forces or torques are selected and are force or

torque controlled, instead of being position servoed.
The amount of joint force or torque to exert the de-
sired forces or torque is obtained by the transposed
Jacobian matrix and offset by gravity compensation
terms (Paul 19981):

1

where

T is the vector of forces or torques applied to the joints.
S is a selection vector composed of 0’s and 1’s (the

joints corresponding to the 0 elements are position
I servoed).

RJ is the Jacobian matrix, computed in frame R.
T~~,R is the function mapping forces expressed in

frame C into frame R.
cf is the desired forces and torques expressed in the

controlled frame C.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

104

R is the frame in which the Jacobian matrix is com-
puted.

,

G is the gravity compensation term obtained from
the dynamics.

We used the method of Renaud (1981) to compute
the Jacobian matrix. The matrix is computed in link
four coordinates because it leads to the greatest sim-
plicity for manipulators like the Puma or the Stanford
arm.

For reasons of simplicity, we used this force control
scheme, although it is only an approximation since the
contributions of the nonselected joints are ignored. In
our installation, the Stanford arm controller was mod-
ified to incorporate joint torque control (Fisher 1981;
Luh, Fisher, and Paul 1983) and good quality compli-
ant motions could be demonstrated. The Puma robot
controller can drive the joint motors with current
specifications. A method for relating joint torques to
currents, which takes into account the Coulomb fric-
tion effects, was implemented by Zhang (1983). Al-
though the method lacks accuracy in the case of the
Puma robot, compliant behavior could also be dem-
onstrated for experiments such as the insertion of a
peg into a hole with loose tolerance.
As the selected manipulator joints cause motions

that never exactly match the compliant directions, any
motion along or around these directions causes un-
wanted motions along or around orthogonal direc-
tions. These effects are eliminated by computing com-
pensating motions. The basic position equation is
once again modified during compliant motions to

T6 = R P DRI VE(s) COMPL Y E. (15) }

The terms of the COMPLY transform are computed
by transforming the differential motions of the com-
pliant joints back into Cartesian space using the Jaco-
bian matrix. The COMPLY transform is reset to iden-
tity before being updated. The unwanted motions are
canceled each time a new solution is obtained:

where

je is the joint error vector computed from the desired
joint position jd and the observed joint position jo.

Rxe is the Cartesian position error computed in the
frame R in which the Jacobian matrix is expressed.

cXe is the Cartesian error in the controlled frame.
M~~,~ is a function mapping forces and torques

expressed in frame R into frame C.
A is a function that builds a differential transform
from a differential motion vector.

2.6. SYNCHRONIZATION

In ordinary robot programming languages, the MOVE
statements are implicitly synchronized with the arm
motions. In the best cases, however, the choice is left to
the user to decide if the flow of the program, after a
MOVE statement, must proceed when the corre-
sponding motion is initiated or when it is about to
terminate.

For RCCL we wanted to provide a larger amount of
generality because we were stressing system integra-
tion. As the motion requests and the associated posi-
tion equations fully describe the desired motions, a
general queueing mechanism and a set of synchroniza-
tion primitives have been implemented, at the expense
of greater programming complexity. Several motion
requests can be programmed ahead, making the user
process available to perform simultaneous computa-
tions. Synchronization becomes necessary when the
program flow depends on some external sources of
information, such as sensors and motion termination
conditions, or when variable transformations are used
to cause incremental modifications to the manipulator
position.

There is no provision for a dynamic management of
the motion queue, as we felt that such a facility would
become useful only when on-line, collision-free, path-
finding algorithms become practical.

3. Introduction to Robot Programming
with RCCL

In this section, we would like to show some aspects of
robot programming with RCCL and give the flavor of
the primitive functions.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

105

3. 1. LOCATION DESCRIPTION

A set of RCCL functions allows the user to dynami-
cally create transformations. The basic call is

t = newtrans(name, type);

where t is a pointer to the created transform, name is a
character string used by the system to keep traces of
the program execution, and type specifies the desired
kind of transformation. Transforms are created as
identity transforms. A family of calls, however, both
creates and initializes transforms. For example,

t = gentr-rot (name , px, py, pz , v, a) ;

creates a transform of name name, which is made up
of a translation part px, py, pz and a rotation of angle
a around vector v. Similar functions are provided for
dealing with Euler angles, &dquo;roll pitch and yaw&dquo; angles,
and the like. Of course, users may write their own
functions. The following statement creates a position
equation:

p = makeposition
(name, lhs, EQ, rhs, TL, t);

where p is a pointer to the newly created position
equations. The argument name is also used to generate
traces of the program execution. The arguments Ihs
and rhs are lists of pointers to previously created
transforms. The list Ihs must contain the system de-
fined pointer t6 to the T6 transform. The argument t
must belong to the Ihs or rhs list and specifies the
controlled frame. For example, the equation R T6 E =
C 0 will be created by

p = makeposition
(&dquo;P&dquo;, r, t6, e, EQ, c, o, TL, e);

assuming that the controlled frame is described by the
transform pointed by e with respect to the last link of
the manipulator.
To a user, a position appears as a &dquo;C&dquo; structure that

can be viewed as a position descriptor:

struct position {
char *name;
int code;
float scal;
event end;

I ;

in which the entry code is set upon termination of a
motion to this position to reflect the reason of the
termination. The value seal varies from 0 to 1, while
the motion is performed. This is useful for generating
parametrized motions or to synchronize the user pro-
cess at some intermediate point of the trajectory path
segment. Finally, the entry end is an event count that is
signaled upon termination of the corresponding mo-
tion.

3.2. MOTION SPECIFICATION

The call

move(p) >

causes a motion request to be transmitted to the tra-
jectory generator. When all previous requests are pro-
cessed, the system actuates the arm so that the posi-
tion equation pointed by p becomes and remains true,
if no other request is pending. This effect is obtained
by periodically reissuing the last motion request when-
ever the queue becomes empty. If the last position
equation contained functionally defined transforms,
they will continue to be evaluated. This is desirable if
the robot is tracking a moving coordinate frame. If an
absolute stop is required, the system provides a built-
in position equation that always reflects the current
position of the arm.
Some motion parameters, when set, affect all subse-

quent motions until they are reset to another value:

s e t v a 1 (t v , r v) : specify translational and ro-
tational velocity.
s e t m o d e (m) : motion mode, Cartesian or joint.
s e t c o n f (c) : request an arm configuration
change.
s amp 1 e (s) : change the sampling period.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

106

Another set of parameters affects one subsequent mo-
tion :

s e t i m e (t a , t s } : specify travel duration ts,
transition time ta.
e v a 1 f n (f n) : specify the function fn to be run
in the background during the motion.
distance (spec, values): specify any
combination of small translations or rotations,
expressed in the controlled frame, as modifiers for
the goal position. -

1 i m i t (s p e c , v a 1 u e s) : specify forces and
torques limit values along or around selected
directions. The same function serves to specify
maximum differential motions.
c omp 1 y (d i r s , va 1 u e s) : causes the arm to
enter active comply mode when the next motion
begins and to exert forces or torques until reset in
position servo mode.
1 o c k (d i r s } : reset the arm in position servo
mode along or around the selected directions.
u p d a t e (t r a n s , e q u a) : calculates the value
of the transform trans in the equation when the
motion ends.

This set of functions serves to build a motion request
packet that contains all the information necessary to
generate a motion. The functions listed above only fill
entries in a &dquo;C&dquo; structure. The choice of these func-
tions is somewhat arbitrary, and any program able to
supply such a motion request packet could control the
arm equally well.

3.3. SYNCHRONIZATION
,

Synchronization is achieved through two basic mecha-
nisms : (1) user process suspension and (2) motion
interruption. Two primitives can be used to synchro-
nize the program flow:

waitfor(event)
waitas(predicate) >

The macro waitfor suspends the program execution
until the specified event occurs. Event counts are sig-
naled by the trajectory generator or by the background
functions set up by the user. They are waited for by
the user’s foreground process. The macro waitas re-
peatedly evaluates its argument until it yields a non-
zero value, and then allows the program execution to
proceed.
The use of the seal and end fields in a position de-

scriptor leads to various coding combinations. For
example, let pO, pl, p2, and p3 describe the four
corners of a square. Let the manipulator move around
the square, causing synchronous processing to begin
each time the manipulator moves through pO:

for (i - 0; i < 4; ++i) {
move(p~);
move(p1);
move(p2);
move(p3);

}
waitfor(p0->end);
printf(&dquo;starting first squareBn&dquo;);
waitfor{p0->end)
printf(&dquo;starting second squareBn&dquo;);
etc...,

Consider the implementation of a grasping sequence
in three steps. First, the tool is moved to an approach
position defined by translating the final position along
the negative z-axis of the tool frame. Then, the tool is
moved to the final position. In the last step, the arm is
commanded to stop at the final position for 400 milli-
seconds and the gripper to close at the middle of this
period of time.

p->end - 0; /* reset count ~*/

dfstance(&dquo;dz&dquo;, , -10.);l~ backup 10 mm */

move(p); /* move approach */

move(p); /* move final */

setime(0, 400); /* during 400 ms */

move(p); /* stay there */

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

107

waitfor(p->end) /* wait for motion*/

waitfor(p->end) /* completion */

waitas(p->scal > .5) /* wait half time */

CLOSE /* close hand */

The following example takes advantage of the pro-
gram asynchrony with respect to the motions in order
to obtain locations stored in a database. The access
time is not predictable. The function gettr obtains
values until NO is returned. Although the response
time of gettr is random, there is no need to stop the arm:

e = gentr...
ref = gentr...
loc = newtrans(&dquo;LOC&dquo;, , hold);

p = makeposition
(&dquo;P&dquo;, , t6, e, EQ, ref, loc, TL, e);

while(gettr(loc) != NO) {
move(p);

}

The robot will wait for new data if it can execute the
motions faster than gettr can provide values. If this is
not the case, the overflow of the motion queue needs
to be prevented. The program is slightly modified to
make use of the global variable nbrequest maintained
by the system to reflect the number of nonserved re-
quests.

while (gettr(loc) != NO) {
waitas(nbrequest < MAX)
move(p);

}

Next, we would like to illustrate how motions can
be interrupted on external events. The following pro-
gram causes the arm to move to some location and to
stop at the position it occupies when the user hits <re-

turn> at the terminal. Within the same position equa-
tion, the update primitive records the location at the
time the motion is interrupted. We shall introduce
two more system variables: nextmove and completed.

The variable nextmove interrupts a motion whenever it
is set to a nonzero value, and its value is stored in the
code field of the corresponding position descriptor.
The variable completed is an event signaled whenever
the motion queue becomes empty.

update(loc, p);
move(p);
printf
(&dquo;hit <return> to stop the armBn&dquo;);
getchar();
nextmove = YES;
waitfor(completed)
if (p->code != YES)

printf(&dquo;The ar.m was in P’

when <return> was hitBn&dquo;);

3.4. SENSOR INTEGRATION

Sensors are used to modify the behavior of a robot at
run time and allow it to deal with uncertainties in
time and space. There is a wide variety of sensors and
information likely to be collected. The RCCL primi-
tives are neither concerned with particular sensors, nor
with the nature of the acquired information, nor by
the way it is processed. The primitives provide the
means for an efficient utilization of sensory informa-
tion by the robot.

3.4.1. Active Path Correction

Active path correction is obtained by synchronously
updating functionally defined transformations from
sensor readings. The next example demonstrates this
technique with a proximity sensor. The sensor, fixed
with respect to the manipulator’s last link, measures
the distance along the z-axis of the controlled frame.
The corrections are made along the same direction.
The manipulator is programmed to move close to a
surface. This type of motion is conceptually similar to
a compliant motion, because the motion along z is
determined by the geometry of the surface. A func-
tional transform is used to cause the arm velocity
along the z-axis to be proportional to the position

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

108

error. We assume that the global variable sensor is up-
dated at sample rate to reflect the sensor readings.

/* User’s process: */ ..

z = gentr...
table - gentr... ,..

disp = gentr... ,

e = gentr.... ’-
sens = newtrans(&dquo;SENS&dquo;, sensfn); ...

p1 = makeposition

’

,’
(&dquo;P1&dquo;, z, t6, e, EQ, table, TL, e);

p2 = makeposition
(&dquo;P2&dquo;, z, t6, e, EQ, table, disp, TL, e):

distance(&dquo;dz&dquo;, 10.);/* causes overshoot */

evalfn(mon);
move(p1);
move(p2);

i..

/* Background functions: */

mon()
{
if (sensor > OFFSET)

nextmove = YES;

}

sensfn(t)
TRSF_PTR t;
{
t->p.z += (sensor - OFFSET) * gain;

}

3.4.2. Force Control Example
We shall now show how the Puma manipulator has
been programmed to turn a crank in the active com-
pliance mode. The controlled frame is set to keep a
fixed relationship with the handle. This is obtained
with two functionally defined transforms, both rota-
tions about the shaft axis of equal magnitudes but of
opposite directions. Because of the transform HAN-
DLE, the rotations axes are offset by the length of the

handle. Two compliant directions, expressed in the
controlled frame, are required for this task (Paul 1981).

In the following example, the dimension of the han-
dle is supposed to be a known, but the position of the
shaft will be taught via the teach function, which is

,

also included in the library. This teach function, im-
plemented in terms of RCCL primitives, has the same
call convention and conceptually serves the same pur-
pose as the update primitive:

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

109

/* User’s process: */ ’

rotpx = newtrans(&dquo;ROTPX&dquo;, pxfn);
rotnx = newtrans(&dquo;ROTNX&dquo;, nxfn); i

handle = gentr_trsl(&dquo;HANDLE&dquo;, ...
>

.

e = gentr...
z = gentr...

get = makeposition(&dquo;GET&dquo;, ~

z, t6, e, EQ, shaft, handle, TL, e); .

turn = makeposition(&dquo;TURN&dquo;,
z, t6, e, EQ, shaft, rotpx, ~

handle, rotnx, TL, e); I
’

_

-

:
-

move(get);
teach(shaft, get);
CLOSE

comply(&dquo;fx fz&dquo;, 0., 0.);
update(handle, get);
turns = 4; /* 4 turns */

setime(200, 4000 * turns); /* 4 sec per turn */

move(turn);
waitfor(turn->end);
OPEN

’

lock(&dquo;fx fz&dquo;);
distance(&dquo;dx&dquo;, -50.);
move(get); /* depart */

/* Background function attached to the functional transforms: */

pxfn(t)
’

TRSF_PTR t;
{
rot(t, xunit, turn->scal*360*turns);

}

nxffn(t)
TRSF_PTR t;
f I

rot(t, yunit, - turn->scal*360*turns);
1

4. Conclusion

The integration of robot manipulator control within
the &dquo;C&dquo; programming language has been performed as

I
a library of functions, in the same manner as is input-
output. Manipulator task description has been sepa-
rated into two parts: a world model and motion sched-

uling. Positions descriptions are implemented in terms
1

1

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

110

of graphs representing closed kinematic chains. The
elements of these chains are homogeneous transforma-
tions that may be parameterized in terms of time, and
sensor readings. Motion requests allow the user to
specify a desired position together with force and dis-
tance modifiers. The position information gained as
motions are made may be reintegrated in the world
model by means of an update primitive.
RCCL is a powerful programming system and may

be extended as desired, since programming is in the
&dquo;C&dquo; under the Unix system. For example, one version
of the system generates off-line trajectory files suitable
for graphics display, instead of running the manipulator.
We are considering using interpreted languages,

such as Lisp, as a base to develop robot programs in
an interactive fashion and using RCCL as the underly-
ing, real-time control system. Furthermore, if special-
ized languages are needed, the software packages LEX
and YACC (Johnson 1980), available under Unix,
provide a suitable environment for rapidly creating
these languages.
The programming of robot manipulators requires a

level of language suitable to express motion algo-
rithms. We believe that languages such as Pascal and
&dquo;C&dquo; are of the appropriate level. The fact that robot
motion algorithms expressed in these languages are not
simple reflects the complexity of the algorithms rather
than the complexity of the language. Simple applica-
tion robot packages could, of course, be written in
RCCL and would have all the attributes of user friend-
liness as well as the limitations. Finally, we have found
the system useful as a research tool, since new algo-
rithms can be tested at any level of the control hierar-

chy. The system is currently being transferred to a
number of small machines and currently supports a
number of research projects.

5. Acknowledgments
’

We wish to thank the following persons who contrib-
uted to this project: Bill Fisher, Hong Zhang, Juan
Juan, and George Goble. We also wish to thank John
Lloyd, who helped us with the section on the arm
interface, and the reviewers, who commented on an
earlier draft of this paper.

Appendix

The material in this section is based on Lloyd (1985).
The VAX/Unix architecture required some modifica-
tions to be made to the standard software. These are:

- The VAX is a virtual memory machine. Seg-
ments of the program can be present either in fast
memory or paged out on secondary storage. Since
the control-level software is executed in kernel
mode at elevated priority, all the codes and data
that it references must be resident in fast memory.
A special locking mechanism and a linking proce-
dure have been developed for this purpose.

-The address translation is temporarily altered at
interrupt time to allow the control process and
the planning process to access a shared area of
memory.

-A particular problem associated with running
functions in kernel mode on VAX systems is that
run-time, hardware-detected errors will result in a
system crash. Because it is assumed that the oper-
ating system is largely bug free, any errors that do
occur should result in system crash. A modifica-
tion was made so that while the user functions are

executing, a flag is raised indicating their presence
to the kernel. Hardware errors occuring at this
time are hence recognized as belonging to the
control program, and instead of causing a crash,
they result in a Unix error signal being sent to the
control program.

REFERENCES

Fisher, D. W. 1981. The modification of a robotic manipu-
lator and digital controller to incorporate both force and
position control. Master’s thesis, Purdue University, De-
partment of Electrical Engineering.

Hayward, V. 1983a. Robot real time user’s manual. TR-EE
83-42. West Lafayette, Ind.: Purdue University, Depart-
ment of Electrical Engineering.

Hayward, V. 1983b. RCCL Version 1.0 User’s Manual.
TR-EE 83-46. West Lafayette, Ind.: Purdue University,
Department of Electrical Engineering.

Johnson, C. S. 1980 (Aug.). Language development tools
with the Unix operating system. Computer, pp. 16-21.

Kernighan, B. W., and Ritchie, D. M., "The C Programming
Language," Prentice-Hall, 1980.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

111

Kosman, D. 1986. Adapting a high-level robot control envi-
ronment for an industrial robot. M.Eng. thesis, McGill
University, Department of Electrical Engineering.

Latombe, J. C., and Mayer, E. 1981 (Tokyo). LM: A high-
level language for controlling assembly robots. Proc 11th
Int. Symp. Indust. Robots.

Lloyd, J. 1985. Implementation of a robot control develop-
ment environment. M.Eng. thesis, McGill University,
Department of Electrical Engineering.

Lozano-Perez, T. 1983. Robot programming. Proc. IEEE
71(7), pp. 821-841.

Luh, J. Y. S., Fisher, W. D., and Paul, R. P. 1983. Joint
torque control by direct feedback for industrial robots.
IEEE Trans. Autom. Contr. AC-28 (2).

Mujtaba, S., and Goldman, R. 1981. AL user’s manual.
AIM-344, Stanford, Calif.: Stanford University Artificial
Intelligence Laboratory.

Nitzan, D., and Rosen, C. A. 1976. Programmable industrial
automation. IEEE Trans. Comp. C-25 (12) pp. 1259-70.

Paul, R. P. 1977 (Mar.). WAVE: A model based language
for manipulator control. Indust. Robot 4(1):10-17.

Paul, R. P. 1979. Manipulator path control. IEEE Trans.
Sys., Man, Cyber. SMC-9 (11):702-711.

Paul, R. P., and Shimano, B. 1976 (San Francisco). Compli-
ance and control. Proc. Joint Conf. Autom. Contr., pp.
679-699.

Paul, R. Robot Manipulators: Mathematics, Programming,
and Control. MIT Press, 1981.

Raibert, M. H., and Craig, J. J. 1981. Hybrid position/force
control of manipulators. Trans. ASME J. Dyn. Sys.,
Meas., Contr. 103:126-133.

Renaud, M. 1981 (Oct., Tokyo). Geometric and kinematic
models of a robot manipulator: calculation of the Jacobian
matrix and its inverse. Proc. 11th Int. Symp. Indust.
Robots, pp. 757-763.

Salisbury, J. K. 1980 (Albuquerque, N. Mex.). Active stiff-
ness control of a manipulator in Cartesian coordinates.
Proc. 19th Conf. Decision and Contr. 1:95 -100.

Schwan K., et al. 1985 (St. Louis, Mo.). GEM: operating
system primitives for robots and real-time control systems.
IEEE Int. Conf Robotics and Automation, pp. 807-813.

Shimano, B. E., Geshke, C. C., and Spalding, C. H. 1983.
VAL-II: a robot programming language and control sys-
tem. 1983 ISRR, Bretton Woods, N.H.

Takase, K., Paul, R. P., and Berg, E. J. 1979 (Chicago). A
structured approach to robot programming and teaching.
IEEE COMPSAC. pp. 273-278.

Taylor, R. H. 1983. An integrated robot system architecture.
Report RC-9824. Yorktown Heights, N.Y.: IBM Research
Center. pp. 57-63.

Taylor, R. H., Summers, P., and Meyers, J. 1982. AML: a
manufacturing language. Int. J. Robotics Res. 1(3).

Zhang, H. 1983. Determination of the simplified dynamics
of the Puma manipulator. Tech. Rep. West Lafayette,
Ind.: Purdue University, Department of Electrical Engi-
neering.

 © 1986 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at MCGILL UNIVERSITY LIBRARIES on July 9, 2007 http://ijr.sagepub.comDownloaded from

http://ijr.sagepub.com

