
Robot Control and Computer Languages 

R P Paul and V Hayward 

School of Electrical Engineering, Purdue University, West Lafayette, IN 47906, USA 

Summary. From the earliest stages of their development, robot manipulators have been 
tied to computers by robot-control languages. These special languages have endeavoured 
to deal with the complexities of real-time control, multiple processes, the description of 
robot-manipulation tasks and the integration of sensors. In every case, these languages 
have been able to provide only partial solutions to the general problem. We propose a 
new solution to the problem by integrating the robot control into an existing high-level 
language. The robot manipulator is integrated in such a manner that conventional 
programming techniques can be used to solve the special requirements of manipulator 
control. We use the 'C' language and run the manipulator under the UNIX operating 
system. The robot manipulator is integrated into the language in the same manner as is 
input/output; that is, integration into the language is handled by a small set of functions 
included in a library. The robot program thus becomes a conventional 'C' program. 
The implementation language of the library is also written in 'C', which provides a 
'user transparent' system, allowing complete freedom in the mode of controlling the 
manipulator. 

Introduction 

The earliest work in robotics was that of Ernst1 who in 1960 interfaced a tele­
operator 'slave' arm to a small digital computer. The 'arm', equipped with touch 
and force sensors, was able to search a workspace to locate a box and a number 
of blocks which were then placed into the box. The control algorithms for this 
task were programmed in a high-level computer language. The program for the 
task consisted of many conditional statements testing sensors and requesting small 
manipulator motions. It would be hard to imagine expressing such algorithms in 
any other than a high-level computer language. This trend continued into the 
sixties, with the manipulator embedded into such languages as LISP and FORT­
RAN. Not only were sensors integrated into the manipulator control but co­
ordinate transformations between vision systems and the manipulator had also to 
be made. Once again, the data structures and control of a high-level language were 
used naturally. 

At the same time that these developments were taking place, the industrial 
robot was developed. This device was directly programmed by moving the manipu­
lator through a task and recording the task positions. While this appeared to be a 
much simpler approach to programming, it was in reality no more than the input of 
task positions. The industrial robot was in fact only a programmable positioning 
and orienting device, a very useful component in automation systems but, lacking 
all forms of task sensor input and task plan or model, it had no need for algorithms 
or for the languages in which they might be expressed. The program for an industrial 
robot was in fact hard wired and simply consisted of moving the manipulator 
from one position to the next through the taught sequence. 

A. Morecki et al. (eds.), Theory and Practice of Robots and Manipulators
© RoManSy and contributors 1985



188 R P Paul and V Hayward 

The use of high-level languages for robot manipulator control had a major 
drawback due to the lack of concurrency. A motion would be planned and then 
executed, but during execution no other processing could be performed. Any 
form of sensor interaction had to be included in the real-time program that moved 
the manipulator, a difficult task. A second difficulty was that the manipulator had 
to be brought to rest before a subequent motion could be planned. Although this 
did not appear to be a problem in the early development of robotics, it soon 
became apparent that the time lost due to the continual need to interrupt motion 
by bringing the manipulator to rest was a serious limitation. The solution found to 
the problem was to define the robot control task in terms of two concurrent pro­
cesses. One process would run in real time to control the motion of the robot; the 
other process would run in background to compute the next motion so that it 
would be ready as soon as the current motion was completed. With such a system 
it was possible to move the robot through a number of path positions without 
needing to bring it to rest at any intermediate position. Sensor integration could 
also be performed in terms of additional concurrent processes. Unfortunately, 
none of the available operating systems supported this type of concurrent process. 

Although no general solution to the operating-system problem was undertaken, 
a number of stand-alone robot-control systems were developed which provided for 
concurrency. Within these systems various feedback and control strategies were 
developed. But with the advent of these special-purpose systems the generality of 
the high-level languages was lost; gone were the data structures, input/output, 
control statements, subroutines, etc. Their lack was apparent as soon as the funda­
mental robot-control problems were solved and more ambitious tasks were under­
taken. The special-purpose languages were then extended to include many of the 
features of high-level languages and while this seemed like a reasonable approach it 
necessitated that the user become familiar with a new language. These systems were 
also fairly inefficient computationally, lacking the many man years of development 
on which some of the more standard high-level languages are based. The imple­
mentation language in these new systems was different from the user language, 
making extension difficult or impossible. 

The approach we take here is to identify the robot as an input/output device 
and to integrate it directly with an existing high-level language. Concurrency is 
provided within the operating system. An optimizing compiler is available for both 
the user and as implementation language. There are no special data types as the 
entire system is represented in terms of standard language features. We have in­
cluded the manipulator into the 'C' programming language in the form of a library, 
RCCL - the Robot 'c' Control Library.· 

Overview 

Manipulator-task description 

The location of an object is described by its position and orientation with respect 
to some reference co-ordinate frame. In the following, the word 'location' will 
implicitly mean 'position and orientation'. Tasks are described in terms of locations 
to be reached in space to grasp, displace or exert forces on objects located in the 
robot workspace. Tasks are also described by the sequence and the type of motions 
necessary to carry out the work. Location descriptions require special data structures 



Robot Control and Computer Languages 189 

and sequential operations of a robot also require special primitives. Both can, 
however, be implemented with the tools provided by high-level languages, namely, 
data structures, functions and structured flow of control. 

Structured location description 
ReeL handles what is referred to as structured location description. 2 The basic 
construct is the homogeneous transformation which is a mathematical construct 
describing the location of co-ordinate frames. A homogeneous transformation can 
be interpreted either as the description of the location of a co-ordinate frame with 
respect to another or as a transformation performed on the first co-ordinate frame. 
Homogenous transformations are a very general tool. 3 However, in manipulation 
we will restrict them to orthogonal transformations, built in terms of a 3 x 3 
rotation matrix constructed with three orthogonal vectors n, 0 and a, and a position 
vector p. 

Relative locations of objects can be described with transformation products. 
For example, let OB], a transformation, describe the location of an object relative 
to a reference co-ordinate frame. Let HOLE represent the location of a hole with 
respect to the frame OB]. The matrix product OB] HOLE, which is also a homo­
geneous transformation, describes the location of the hole relative to the reference 
co-ordinate frame. One important property of orthogonal homogeneous transform­
ations is that the inverse transformation can be obtained very simply. 

One dedicated transformation T6, represents the location of the end of the 
manipulator with respect to the reference co-ordinate frame located at the base 
of the manipulator. A given manipulator location can be specified in base co­
ordinates by writing 

T6 =POS 

However, such a description is usually insufficient. For instance, one might need to 
express that a tool is attached to the end of the manipulator which must reach the 
location POS. This is achieved by writing 

T6 TOOL =POS 

A more complete description of a motion to a goal location might be written as 

REF T6 TOOL = CONV OB] PG 

Where REF is the location of the manipulator with respect to the reference co­
ordinate frame; T6 describes the location of the end of the manipulator with 
respect to the reference co-ordinate frame attached to the shoulder or to the base 
of the manipulator; TOOL expresses the location of a tool attached to the end of 
the manipulator; CONV represents a conveyor belt, defined as a co-ordinate frame 
moving with respect to the reference co-ordinate frame; OB] is the location of the 
object to be grasped lying on the conveyor belt; PG is the required location of the 
tool, relative to OB], where the object is to be grasped. 

Location equations are solved for T6 to obtain the desired location of the end 
of the manipulator with respect to the reference co-ordinate frame 

T6 = REJT1 CONV OB] PG TOOL-1 

One ReeL system call directly constructs location equations in terms of dynamic 
data structures. The locations can be modified at the level of the move statement in 
terms of small translations and rotations described with respect to the tool frame. 



190 R P Paul and V Hayward 

This provides a convenient shorthand for specifying approach and deproach lo­
cations, or for specifying motions which purposely overshoot the described location 
when the manipulator is to perform guarded motions.4 

Motion description 
A task is made up of a number of path segments between successive locations. 
There are many ways to generate trajectories for a manipulator. S 16 RCCL provides 
two types of motions. The fiest, called joint mode, consists of computing the set of 
joint values for each path segment end and generating all intermediate values by 
linear interpolation. The second type, which we will call Cartesian mode, requires 
the system to solve a modified location equation at each sample interval and to 
compute the corresponding joint co-ordinates. The location equation is internally 
modified in such a way that one frame, called the tool frame, moves along straight 
lines and rotates around a fixed axis. These motion types are discussed elsewhere. 3 n 

When the manipulator is to move while exerting forces or torques on objects, 
the manipulator must be controlled in such a way that forces and torques are 
controlled directly in place of locations. The manipulator is then said to be con­
trolled in a comply mode. Several methodsS- 11 are proposed for such control. 
RCCL implements a variation of Shimano's joint matching method. 12 RCCL pro­
vides for compliance specifications in the tool co-ordinate frame which is defined 
in the location equation. Compliance is specified in terms of forces along, and 
torques around, the principal axes of the tool frame. The manipulator loses one 
degree of freedom for each direction along or around which it is complying, in 
force or torque respectively. The trajectory is then constrained by the geometrical 
features of the objects in contact. A more complete discussion of this subject can 
be found in reference 13. 

Sensor integration; updatable world representation 

One of the main goals of RCCL is to facilitate the integration of sensors.14 Sensors 
are used to modify the behaviour of the manipulator according to information 
acquired from the manipulator or from its environment. Sensor information can be 
classified in many different ways: according to the data type necessary to represent 
it, booleans, scalars, vectors, arrays, tensors, etc; by meaning, touch, limit, distance, 
location, temperature, vibration, force, etc; by the order of magnitude of the 
acquisition time, whether minutes, seconds, milliseconds or microseconds; by 
accuracy and so on. Considering this variety, the RCCL approach is deliberately 
to ignore, when possible, the type of in~ormation we may have to deal with but, on 
the other hand, to provide means for an efficient utilization of this information. 

Modifying locations 
End of segment locations can be modified according to information acquired at run 
time. This is achieved by changing the value of transformations within location 
equations. Transformations likely to be modified at run time must be declared as 
such (hold transforms). The system makes a copy of the transformation at the 
time the corresponding move request is issued and enters it in the motion queue. 
It is therefore possible to use the same transformation to describe a co-ordinate 
frame whose value is different from one path segment to another. Use of a copy 
of the transformation makes it possible to change the value at an arbitrary instant 
even if the corresponding location equation is currently being evaluated. A typical 



Robot Control and Computer Languages 191 

use of this kind of transformation is the description of an object location that is 
variable and obtained from sensor readings at discrete time intervals. 

User interaction and slow sensors like computer vision require the use of hold 
transformations. Location data can be acquired ahead of time in a completely 
asynchronous manner. 

Modifying trajectories 
Fast sensors can provide for direct synchronous sensory feedback. This corresponds 
to the class of functionally defined transformations. In this case, a transformation is 
attached to a function that will be evaluated each sample time. The purpose of the 
function is to calculate the value of the transformation as a function of sensor 
readings. The location equation in the Structured location description section 
makes use of such a functionally defined transform to describe a location with 
respect to a conveyor belt. If the motion is performed in Cartesian mode, the 
tracking is perfectly accurate, since the location equation is evaluated at sample 
time intervals. When the motion is performed in joint mode, the system estimates 
the expected location at the end of the segment by linear extrapolation. If the 
functionally defined transform is computed as a function of time, we can obtain 
mathematically described motions (circles, ellipses, etc). 

The transitions to or from path segments involving moving co-ordinate frames 
must deal with unpredictable velocity changes. Smooth transitions are obtained 
by adding a modifying third-order polynomial trajectory during the transition 
time. We have seen that the manipulator is stopped by repeating a move to the same 
location. When the location involves moving co-ordinate frames, the stop will be 
relative to those moving co-ordinate frames. If a stop in absolute co-ordinates is 
required, a move to a fixed location must be performed before specifying the stop. 
The system internally maintains a location equation which always reflects the 
current location of the manipulator. It is therefore possible to have the manipu­
lator stop at an arbitrary instant at the location it currently occupies. Functionally 
described transformations can be used anywhere in a location equation. Trajec­
tories can be modified with respect to any co-ordinate frame which provides 
unlimited applications. 

Internal sensing 
Internal information is acquired from the manipulator itself. Two particularly 
useful kinds of information are internally maintained in RCCL: location and force. 

Location. For any motion terminated on a condition, the world model may have 
to be updated to account for the actual location where the manipulator stopped. 
The system is then asked to update a transformation in a location equation. The 
equation is solved for the requested transformation by using the actual value of T6 
when the path segment ends. This new location information might be very useful 
in any subsequent motion related to this location. For example, consider the case 
of a manipulator picking up an object which it had previously placed on a surface 
whose height is only approximately known. The manipulator is able to retrieve 
the object immediately if the final location of the object has been updated. 

Force. Joint torques are also obtained from the manipulator state. The complete 
determination of the forces and torques exerted on an object, based on the joint 
torques, leads to lengthy computations;lS RCCL, however, provides a mechanism 



192 R P Paul and V Hayward 

that compares the actual forces and torques against expected values. This inform­
ation may be used to cause a path-segment termination when some specified limit 
is reached. The subsequent path segment will usually contain compliance specific­
ations. 

RCCL implementation 

When a manipulator is under RCCL control, four processes are running concurrent­
ly. At the lower level, a servoprocess controls the location or the torque of each 
manipulator joint. The setpoint process, running at interrupt level, computes the 
Cartesian trajectories and determines the corresponding joint parameters. A real­
time communication channel swaps information between the servoprocess and the 
setpoint process. The user process running under time sharing is the user program 
and makes the RCCL system calls. The setpoint process communicates with the 
user process via a motion-request queue containing all the necessary information. 

Conclusion 

The main goal of this project was to show that manipulator control could be 
developed in a more general context than within the framework of a stand-alone 
robot controller with its own language. The current RCCL implementation does not 
yet offer the convenience of dedicated robot controllers because it requires a 
large machine. However, as microprocessor-based computers become more powerful 
and can run operating systems like UNIX, the RCCL approach exhibits many 
advantages over conventional robot-controller designs. The conclusion we draw is 
that robot control can be viewed as an addition to an already existing, tested and 
standardized system, rather than the design from scratch of a system which 
provides only for robot control. 

This material is based on work supported by the National Science Foundation under the grant 
no MEA-8119884. Any opinions, findings, conclusions or recommendations expressed in this 
publication are those of the authors and do not necessarily reflect the views of the National 
Science Foundation. This work is also supported by a grant from the CNRS project ARA 
(Automatique et Robotique Avancee), France. Richard Paul receives support as the Ransburg 
Professor of Robotics. Facilities to perform this research are provided by the Purdue University 
CIDMAC Project. 

References 

[1) Ernst H A A (1961) A computer operated mechanical hand. ScD Thesis, Massachusetts 
Institute of Technology, Massachusetts 

(2) Paul R P Manipulator Language Workshop On The Research Needed to Advance The State 
Of Knowledge In Robotics, 15-17 April 1980 (organized by J Birk & R Kelley, supported 
by NSF) 

(3) Paul R P (1981) Robot Manipulators: Mathematics, Programming and Control MIT Press, 
Massachusetts 

(4) Will P M & Grossman D D (1975) An experimental system for computer conttolled 
mechanical assembly. IEEE Trans. Computers C-24 9, 879-888 

(5) Derby S (1983) Simulating motion elements of general-purpose robot arms. Int. J. 
Robotic Res. 2 (1) 



Robot Control and Computer Languages 193 

[6] Castain R H & Paul R P (1982) Polynomial robotic trajectories: a new approach, TR-EE 
82-37, December 

[7] Hayward V & Paul R P Robot Manipulator Control Using the C Language Under UNIX 
IEEE Workshop on Languages for Automation, Chicago, November, 1983 

[8] Inoue H (1974) Force Feedback In Precise Assembly Tasks, MIT Artificial Intelligence 
Laboratory, Memo 308, August 

[9] Raiberg M H & Craig J J (1981) Hybrid position/force control of manipulators. J. 
Energy Resources Technol. 103, June 

[10] Salisbury J K. Active stiffness control of a manipulator. In Cartesian Coordinates 19th 
IEEE Conf. on Decision and Control, December 1980, Albuquerque, New Mexico 
(1983) 

[11] Geschke C C (1983) A system for programming and controlling sensor-based robot 
manipulators. IEEE Trans, Pattern Matching and Machine Intelligence, PAMI-S (1). 

[12] Shimano B E (1978) The kinematic design and force control of computer controlled 
manipulators, PhD Dissertation, Memo AIM-313, Stanford University, California 

[13] Mason M T (1979) Compliance and force control for computer controlled manipu­
lators, MIT TR-S1S, April 

[14] Rosen C A & Nitzan D (1977) Use of sensors in programmable automation. Computer 
Magazine, December 

[15] Paul R P Computational Requirements of Third Generation Manipulators 


