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Abstract—The study of the instantaneous kinematics and statics aims at capturing the properties of
mechanisms in terms of the mapping of forces, velocities and error propagation. Dexterity measures have
been developed to quantify these properties with a view to analysis and design. Tendons and cables may
be viewed as unilateral actuators because they require tensioning for normal operation. When power
grasping is abstracted to a set of forces acting at discrete points on the surface of an object, it can be
analyzed in terms of unilateral statics. It is also used to analyze magnetic levitation resulting from forces
caused by variable reluctance magnetic circuits, as is the case of a vehicle propelled by reaction jets. For
all these cases, a new set of measures based on the unilateral statics is developed when n + 1 forces act
on a n d.o.f. mechanism and force mapping properties are studied. It is proposed to replace the ordinary
concepts of dexterity, singularity, isotropy, maximum force amplification and maximum dexterity gradient
by unilateral dexterity, unilateral singularity, unilateral isotropy, unilateral maximum force amplification
and unilateral maximum dexterity gradient, respectively. As an example of their application, the geometric
optimization of a 3 d.o.f. tendon mechanism is performed.

1. INTRODUCTION

We consider the case of a class of mechanisms which share the property that they will
work only under the condition that the driving forces are all positive. For example,
tendons can be viewed as unilateral actuators [1]; grasping forces applied to a solid
object by a set of fingers with point contacts fall under the same description [2];
in micro-manipulation, the use of variable reluctance magnetic servo levitation has
the same constraints [3]; so do jet propelled vehicles [4]. In all these cases, the
unilateral force constraints cause dexterity measures to be more complicated than
those of bi-directionally actuated mechanisms.

There are many advantages to unilaterally actuated mechanisms and, in some cases.
there is no other alternative. In the case of tendon transmissions, actuators can be
‘remotized’. The dynamics of actuated mechanisms can thus be improved, although
it sometimes leads to rather complicated designs. Many examples of the successful
application of this technique are found and many working tendon systems exist, most
notably the human hand. As biological counterparts to man-made mechanisms, such
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joints found in vertebrates and many invertebrates animals are tendon driven, giving
proof by existence that such arrangements can be quite effective. Historical examples
of cables of tendon driven mechanisms abound and their origins can be traced back
to some of the earliest known human implements: bows for example, which exploit
beautifully the phenomenon of unilateral singularity about to be discussed.

In the robotics area, mechanical hands such as the Stanford/JPL hand [1] and the
Utah/MIT dextrous hand [5] use tendons exclusively. There are also applications of
tendon transmissions in the field of force reflecting hand controllers for telemanipula-
tion because tendons provide a zero backlash high efficiency environment essential for
quality force transmission, as was explored by Vertut and colleagues [6]. Morecki and
co-workers also implemented efficient cable driven manipulators [7], so did Takase
and associates [8], and Hirose and Ma [9], citing just a few examples among many.
For micro-manipulation, the use of magnetic servo levitation has been used to provide
a friction-free and backlash-free motion control [3]. In the case of grasping, coordi-
nation algorithms have been proposed that enforce the unidirectionality of constraint
forces [10]. More recent work on the control of tendon driven mechanisms is reported
in [11, 12].

For these mechanisms to work properly, the applied forces must all remain positive.
One method to achieve this is to supply a biasing force using n + 1 acting points
when the number of degrees of freedom of the mechanism is n. The measures that
we develop apply to this case. In this category, we find, for example, the cited Stan-
ford/JPL design, as well as the six string suspended manipulator proposed in [13], in
which the gravity force vector plays the role of a biasing tendon of infinite length, so
to speak.

In order to exemplify the use of the developed measures, we study in some detail the

case of a spherical manipulator driven by four tendons and suggest the best designs
for this case.

2, STATICS OF TYPE n + 1 UNILATERALLY CONSTRAINED MECHANISMS

It is known that ‘a rigid body with n degrees of freedom can be completely constrained
by n+1 point contacts’ [14]. It is easy to show why n forces acting at discrete points
are insufficient for this task. Consider the relation relating applied forces f to an
external wrench w under conditions of static equilibrium:

w=J"f. (1)

As it is conventionally done in robotics, we call J the Jacobian matrix which maps
the velocities of the constrained body into velocities of the actuators. The relationship
holds for any structure since velocities always instantaneously map into velocities, re-
gardless of the coordinates which are selected. Because we are concerned by statics, it
is well known that following the principle of virtual works, the above transposed rela-
tionship maps forces and torques under the conditions of static equilibrium, regardless
as well of the coordinates which are selected.
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If the mechanism is not at a singular configuration the n x n Jacobian will be
invertible and thus

f=JTw, ()

where J~T is the inverse of the transpose of the Jacobian. Say for some particular
w all the applied forces are positive. If the wrench —w is applied to the constrained
body, then all the applied forces must be negative, violating the unilateral constraints:

520, i=%.,n (3)

where f = [f1, f2...., fx]". Thus n forces are not enough to control the mechanism
independently of the applied wrench. Now consider the case of n + 1 forces for the
same mechanism. Here the Jacobian is not invertible, but using the pseudo-inverse
we always have:

I=J w4 Ah, (4)

where h is a vector in the nullspace of the Jacobian and A is a free parameter. As
long as all the components of h are positive, A can be set sufficiently large to ensure
that all the applied forces are positive, regardless of w. Keeping the elements of h
greater than zero is a necessary and sufficient condition for the quasi-static stability
of the mechanism. Qualitatively the extra force is needed to supply a bias to bring
all the forces in the positive range.

In general, these additional constraints contribute to reduce the workspace of unilat-
erally actuated mechanisms when compared to their bi-directionally actuated counter-
parts. Consider, for example, the two-tendon crank system in Fig. 1(b) derived from
the piston example of Fig. 1(a). Here, the crank can be controlled through a limited
angle, whereas in the piston case, there is no limit on the control of the rotation.

It has been shown on a simple example that unilaterally actuated mechanisms have
constraints that affect statics and workspace. It is not surprising that conventional
dexterity measures are not applicable to this situation. A new dexterity measure for
this case will be proposed in the next section.

-

(a) (b) (e)

Figure 1. Crank mechanism driven by two pistons (a) and the corresponding tendon implementation
(b). The range of rotation of the tendon design is inherently limited (dashed line). At the edge of the
workspace the tendons cannot resist even the smallest torque in the indicated direction (c).
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3. UNILATERAL DEXTERITY AND OTHER CONCEPTS

of a tendon driven mechanism.

The condition number is a common measure of dexterity, but it does not apply to
unilateral actuation. This can be seen by looking at a tendon-actuated crank when it
is at the limit of its workspace (Fig. 1(c)). No amount of pulling at the tendons can

direction, as it is the case with cranks having a rolling handle (e.g. pencil sharpeners).
Obviously, this is a very poorly conditioned configuration. This dexterity measure
does not reflect this fact, as the singular value at this location is non-zero. In fact, if
pistons replaced the tendons, then this configuration would be well conditioned,

A new dexterity measure is now derived to deal with this problem. It is desirable to

have a measure with the same physical significance as the condition number, giving
an upper bound on the propagation of errors in the linear system (2) as in [15]:

18£] Isw]
S D ©)

where w is an external wrench applied to the mechanism, f is the vector of tendon
forces, and k(J) is the condition number of the Jacobian matrix calculated as

k() =24 (6)

Oy

where oy > .. >0, >0 are the singular values of the matrix J. Consider the case
of n + 1 applied forces controlling an n d.o.f. device. Starting with (4) we write:

f=15+h, ()

where f, is the vector of applied forces with minimum norm due to the external
wrench, for example achieved using the control described in [9], since, except at
singular points, J7 is assumed to have full row rank, then fe=Jtw= JITH .
As discussed in [18], the pseudo inverse J(JTJ)~! may have to be replaced by its
weighted version WJI(JITWJ)~! and 2-norms by weighted norms to insure invariance
with respects to units. However, for clarity, we will use the ordinary pseudo inverse
in the rest of this discussion since it has no bearing on the form of the results.
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Also, h is a unit vector in the nullspace of the Jacobian with all its elements positive,
and by definition orthogonal to f.. That is,

h=[h,hs...,hy1]" suchthat h; >0, i=1,....n+1. (8)
JTh =0, ©
IRl =1, (10)

h-f.=0. (11)

The vector k can be calculated from the Jacobian as:

(1 =JITNH'JT)2

P la—sa T 0 62

where z is an arbitrary vector with a non-zero nullspace component.

From (7), (10) and (11):
IF1 = /I fell® + A2, (13)

From the singular value decomposition theorem we can place bounds on | f.|:

[l [lw
18 ¢y < Aol (14)
a n
Using (13) and (14) we place a lower bound on the tendon forces in terms of the
applied wrench and the maximum singular value of the Jacobian:

11> 1gen > 22 as)
a;

An upper bound on the applied forces will now be derived. Clearly A can be made
arbitrarily large, but it would be preferable to find the minimum value of A that satisfies
all the constraints. This procedure will minimize the applied forces regardless of the
external wrench. The constraints f; > 0 lead to:

121—, 1t Ty n+1. (16)

The minimum value of A that satisfies these constraints is:

lmszlx (:}{—ﬂ-) (17)

The minimum value of A that satisfies all the constraints independent of f, is given

by
A* = max(Ap) = max —Jei
Se Sei i

L i

g (18)
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The magnitude of f. can be bounded as in (14), but the direction of f. can be specified
arbitrarily. In the worst case f is largest in the direction where the nullspace vector
is smallest. Thus,

. maxg (—fe)
Ll et (A L 24 19
min; () (22
[|w]|
< s (20)

where Ay, = min; (R,) and o, is the smallest singular value. From (13) and (20) an
upper bound can be placed on the applied forces as follows:

£l < VI Fell® + A%2. (21)
Thus ‘/7
1y in + 1

I£Il < g—h—n‘ﬂwll. (22)

Similarly, if we apply a small perturbation dw to the system the resulting applied

forces are bounded by:
NI

1
8fl < — [dw]|. (23)
T hmin
From the lower bound of (15) we have
1 )
— T 24
WA Nwll @4

Combining (24) and (23) we arrive at the final result,

2
(181 hmin +-1 ||dw||
— < k(J)— ———,
7] Tkt wed =

where k(J) = o,/0, is the condition number of the Jacobian.

The quantity k(J),/hi“-n + 1 / hmin plays the same role as the condition number for
bidirectional systems. In fact this measure incorporates the condition number itself.
The maximum value of hp,, subject to constraint (8) and (10) occurs when all the

elements of h are equal to 1/4/n+ 1. Thus the local unilateral dexterity measure
UD is defined as:

(25)

KD [z (26)

min

1 hmi
\/m — T for hmin 2 0,
UD, =
0, when hApin < 0.
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This measure is normalized such that 0 < UD; < 1. It is zero when the Jacobian is
singular or when condition (8) is violated. This will be referred to as an unilateral
singularity as it has all the properties of regular singularities including large actuator
forces for small external wrenches. The ‘unilateral dexterity’ is one when the linear
system is isotropic, k(J) = 1, and when the nullspace vector is uniform in all direc-
tions, that is when h = (1//n+D[1,1,...,1]". Stated in terms of condition (9)
the columns of the Jacobian must sum to zero. This will be referred to as unilateral
isotropy.
Recall that in [13] the measure

Fi=— 27)

was introduced to quatity the maximum force amplification, as an upper bound on the
magnitude of the joint forces given an external force or moment. As a bonus, (22)
gives an upper bound on applied forces which, in itself, can be used as a dexterity
measure. To keep the measure finite, the reciprocal will be taken and it will be
scaled, thus a second dexterity measure called unilateral maximum force amplification
follows:

JhZ +1 (28)

T2 0 it for hmin =0,
UF, =
0, when hgi, < 0.

UFjand the Singular Value vs. the Crank Angle
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Figure 2. Unilateral dexterity of a tendon actuated crank as a function of the angular variable. The solid
line plots UF and the dashed line plots the singular value. In certain regions UF, is zero, and the crank
can not be moved in both directions with tendons. If pistons were used then the mechanism would always
be controllable.
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This has the same physical significance as the minimum singular value measure F
for ordinary mechanisms. UF, is zero at an ‘unilateral singularity’. Maximizing this
quantity effectively minimizes the tendon forces in a particular configuration. Using
Fi (respectively UF)) in conjunction with D) (respectively UD)) for any design analysis
or control guarantees that the manipulability measure introduced by Yoshikawa [17],
in the form of the product or geometrical mean of the singular values, does not vanish.

As an example, Fig. 2 plots the singular value and UF, for the tendon—crank system
of Fig. 1. Here n = 1 so there is only one singular value, thus condition number
measures do not apply. Notice there are regions for which UF, is zero where the
crank cannot be moved in all directions by tendons. If pistons were used then these
singularities would not exist as shown by the non-zero singular value.

4. FORCE MAPPING

In this section the tendon dexterity will be interpreted in relation to the force mapping
characteristics. For ordinary mechanisms, if the joint forces exist in the unit sphere
| £Il < 1, then the external wrench maps to the ellipsoid w"(JTJ)"'w < 1. It has
principal axes in the direction of the eigenvectors of (J7J)~! and magnitudes equal
to the corresponding singular value, give or take the unit weighthing matrix we imply
in this discussion.

Since unilateral forces impose non-linear constraints, the unit sphere will no longer
map to an ellipsoid as it would be in the case of bidirectional actuators. It will map
to a truncated shape with radius ry = ||lw||. From (4), (13) and (17),

IFlIl = ISl + 2%, where fe=J(ITD) w. (29)

Call w an external wrench of unir magnitude, the magnitude of f, as a function of f
is:

Ifell(w) = /£T fe = VT (ITT)Tw = VwT (JTJ) " w
= lw|lV@BTITI) D = |lwl||| fe(@)]. (30)

Similarly, from (17):

—(JJITI) " w),
h;

Am(w) = max ( ) = [lw||Am(wW). (3D

From (29), (30) and (31):

171 = Nl I @I + 2@ = lwlV&T TH T8+ A@2.  (32)
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Setting the tendon force vector on the unit sphere || || = 1, the radius ry(J
the mapped volume is deduced from (32):

1
W(J, W) = ; ( !
AL VOT(JITI) ' + hm(W)? o3

As an illustration, consider the tendon actuated planar parallel manipulator of
Fig. 3(a). It is possible to manipulate objects within the indicated triangle. The
force mapping at various points is shown on Fig. 3(b). Directions with a large radius
with respect to the origin (‘x") are able to transmit large forces in the correspond-
ing direction. Outside the triangle there will be directions for which it is impossible
to produce forces. At the centroid of the triangle the manipulator is ‘unilaterally
isotropic’; however, the force mapping is not circular as one might expect.

Based on the analysis of the previous section,

U]?"umu?ru?fumin?m- (34)
VR, +1
Thus from (26), (6): ;
T'u min
UD g —. 33)
A/n +2 Ty max ¢

Notice that the ‘unilateral dexterity’ is not proportional to the ratio of minimum to
maximum radius but does provide a lower bound. This is a result of the simplications
of the previous section where the terms f. and A were maximized (minimized) sepa-

rately even though they are dependent. As a comparison, for bi-directional actuators
Dy = Fimin/rmax €xactly. -

Tendon Force Maplping of the Planar Positioning Manipulator
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Figure 3. Tendon actuated parallel positioning manipulator (a). The force mapping at various points
The origin of each mapping is marked with an ‘x’. Outside the indicated triangle the dexterity is 2
but there will be directions for which it is possible to produce forces and others for which it is not,

2
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Tendons

Figure 4. Tendon actuated spherical mechanism with square platform. The design parameters are Iy, Ip,
and [p. Its kinematic properties are determined by two parameters only and Ig is set to 1. 7 is the unit
vector pointing out normal to the platform. The @;’s are unit vectors pointing from the pivot to the four
tendon attach points. The central joint can be implemented as a ball and half socket.

5. APPLICATION: TENDON ACTUATED SPHERICAL MECHANISM

Several interesting n d.o.f. mechanisms can be found that are actuated by n + 1
tendons. A seven cable mechanism would be easy to construct, but will have a small
workspace, a characteristic shared by all these designs. The dexterity measure of the
previous section could be used to optimize any of the unilaterally constraining set of
n + 1 forces.

For illustration of the proposed measures, a tendon actuated spherical mechanism is
now studied that is analogous to the spherical mechanism discussed in [15], with the
linear actuators replaced by tendons (Fig. 4). The workspace will not be nearly as
large; however, it will be a useful device in cases where tendon actuation is essential.

The workspace is now limited by ‘unilateral singularities’ only. From simple geom-
etry the workspace given in terms of the Euler angles v, ¢ and 8, where v is a rotation
about the x-axis, ¢ is a rotation about the new y-axis, and # is a rotation about the new
z-axis, is: —45° < 6 <45% —90° < ¢ < 90°; —arctan(lp/ly) < ¥ < arctan(lp/ly).

5.1. Local dexterity

The ‘unilateral dexterity’ is used as a measure of the mechanism accuracy. Ideally
it should have an ‘unilateral isotropic’ point as the centre of the workspace. The
Jacobian at the centre of the workspace is trivially:

Ip I, =l
I h
T LS (36)
‘/112+(1f~/§—lb)2+I§ ¥ - T T
= p b

This matrix is be ‘unilaterally isotropic’ when it is proportional to an orthogonal
matrix and the columns sum to zero. This happens when I, = I,

The ‘unilateral dexterity’ of the mechanism for various cases was examined (I}, =
lp=0707, Iy =1, =1, ly =1, =5,Fig. 9, when Iy = 1). As expected there is an
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‘unilaterally isotropic’ point for ¥ = ¢ = 6 = 0, and ‘unilateral singularity’ at the
limit of the workspace. In contrast to the bidirectionally actuated counterpart which
could be made isotropic in five locations, only one isotropic point was found.

In the next section the geometrical design of this mechanism will be optimized
according to its dexterity.

5.2. Optimization of the tendon mechanism

The procedure now outlined to optimize the tendon mechanism is based on the method
described in [15]. First, a unilateral global dexterity measure UDj, is defined based
on the integral of the local ‘unilateral dexterity’:

!
UD, = fw UDy dw ~ —— > uD. 37

wowew

Then the integral is approximated by a discrete sum where w is one of N,, equally
spaced points in the quaternion unit hypersphere within the workspace W of the
mechanism. The only complicating factor is that the workspace is now a function of
the design variables and so the number N,, and the set W will be changing. Each
point must be tested to ensure that it is inside the workspace before the corresponding
dexterity is calculated.

One of the goals is to minimize the tension on the tendons, so a secondary objec-
tive function based on the integral of UF, is introduced: the unilateral global force
amplification. This can be calculated in the same fashion as measure UD,, by defining:

1 _
UFg=fWUF.dw%R’— > UR. (38)

W wew

Finally as a check on the flatness of the local ‘unilateral dexterity’, the maximum

gradient will be investigated leading to the unilateral maximum dexterity gradient.
Similar to [15], it is defined as follows:

GUD; = mvgx GUD, = mvex |V UDy]|. (39)

The dexterity was maximized using Powell’s method with the results given in Ta-
ble 1. Two maxima were found corresponding to designs that are physically realizable
with virtually identical workspaces. Figure S plots the dexterity versus the two in-
dependent lengths /, and [,. The ‘ridge’ is near the locus of ‘unilaterally isotropic’
designs.

To help select between these two maxima, the measure of tendon forces UF, was
plotted for a range of designs (Fig. 6) revealing only a single maximum (Table 2).
Unlike the case of its bidirectionally actuated counterpart, the peak of this function is
sharp and well defined. This maximum (C) is close to solution (A) of the dexterity,
hence (A) is considered the superior of the two designs. From a practical viewpoint
it is better to have [Z +12 > I} so that the mechanism platform does not intersect with
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Table 1.
Maximum values of UD,

by lp UD,

1.024091 1.100127 0.284555
0.453248 0.486915 0.284555

= >

Average Tendon Dexterity (UDg) lor the Isotropic Designs
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Figure 5. Global tendon dexterity of the parallel mechanism (left). The design lengths I, and [, range
from 0.1 to 10 on a logarithmic scale. This plot of UDj; reveals two maxima near the curve of isotropic
designs (right).

Average Tendon Forces (UFg) for the Isotropic Designs
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Figure 6. UFy versus the design variables. When plot against f, and [, a single maximum is revealed
(left). The ‘ridge’ lies near the curve of isotropic designs (right),
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Table 2.
Maximum value of UF,

Iy l p UF,
C 1.163289 1.297686 0.368784

Regions of high dextenty

o — ' -
[ J
A5 o,
22 - /984’6 of max UFQ:
Bl ' .
[ ] / --------- * 99% of max UDg -
o . ki . ———
lom-l 100 10!
Lp

Figure 7. Design choice (A) falls within the 98th percentile of UF,. Maximum (B) is clearly unaccept-
able.

the attachment point of the tendons when it is near the boundary of the workspace. In
this respect, design (A) is once again superior as it leads to the simplest construction
of a compact and dextrous mechanism. As shown in Fig. 7 design (A) falls within
the 98th percentile of UF, and is therefore acceptable in terms of both measures.

The final stage of this analysis is to check the flatness of the ‘unilateral dexterity’
based on its maximum gradient. Figure 8(a) shows GUDy over a range of the design
variables. The gradient is largest for the isotropic designs, and increases as [, = I, —
1/4/2. Notice that the poorest designs with respect to dexterity are those with the
flattest and hence smallest gradient. The goal is not to minimize the gradient measure,
but to use it to help select between competing alternatives.

Table 3 lists GUDg for the optimized designs showing that (C) has the smallest
response. By examining Fig. 8(b) it is evident that none of these choices has smooth
dexterity. According to Fig. 8(b) it would appear that a large value of I, results in
a smooth dexterity function. Two isotropic cases are compared in Fig. 9, one with
h=Il= 1/+/2, and the other with Iy = I, = 5. The isotropic point at the centre of
the workspace has the largest gradient, but it does not change significantly between
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Table 3.

Value of GUDy for three
design choices

Design GUD,

A 29.740265
B 28.983616
C 27.327013

Maximum gradient (GUDg) for the Isotropic Designs
36 - T
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15
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Figure 8. Gradient of the tendon dexterity. Plot of GUD; over a range of designs (a). The ridge of
largest gradient coincides with the extended isotropic designs (b). The gradient is largest in the vicinity
of lp = Iy = 0.707.

Figure9. Comparison of the tendon dexterity for two isotropic cases: Iy = I, = 0.707 (a) and Iy, = [, = 5
(b), when ¢ = 0. Both graphs appear very similar.

the two designs. Also, there are no spikes generated as Iy, [, — 1/+/2, a problem that
affected the linearly actuated spherical mechanism [15]. Therefore the gradient of
the dexterity has little bearing on the optimization of this particular tendon-actuated
mechanism.
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5.3. Control of internal forces

Internal wrenches refer to the forces and moments experienced at the unactuated
joints and supporting structures of the mechanism. From (4) it is apparent that only
the forces which map onto the nullspace of the Jacobian can be specified.

For the case of the parallel mechanism it would be useful to have some control over
the forces present at the spherical joint. If the spherical joint is constructed from a
ball and a socket then stability would result if the force in the normal direction to
the mechanism platform is always positive. This normal force, denoted Jn, 1s a linear
combination of the tendon forces.

fi=g'f, (40)
where g=1[a,-A 4y A Gi-A as-A]". Thus from 4)
fr=9"J*n+Ag"h. (41)

A necessary and sufficient condition to make this force positive is g"h > 0. Since
all the components of h are known to be positive, then a sufficient condition is that
all the components of g be positive as well. This implies @, - # > 0, or expressed in
terms of Euler angles,

-90° < ¢ < 90°, (42)
—arctan (Ip/lp) < ¥ < arctan (Ip/1y). (43)

These are in fact the boundaries of the workspace with respect to ¢ and ¥ of the
tendon manipulator; hence, the normal force on the ball joint is always controllable
within the workspace of the mechanism.

6. SUMMARY AND CONCLUSION

The statics of unilaterally driven mechanisms have been studied and it was found that
dexterity measures such as the condition number of the Jacobian matrix cannot apply
to this case. Equivalent measures have been developed and applied to the geometric
optimization of a 3 d.o.f. tendon driven spherical mechanism taken as an example.

This theory needs to be extended to more general cases, for example to the case of
networks of tendons as proposed by Barbieri and Bergamasco because of its relevance
to biomechanics and advanced manipulator design [19].
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