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ABSTRACT | Sensory feedback from touch is critical for many

tasks carried out by robots and humans, such as grasping

objects or identifying materials. Electronic skin (e-skin) is a

crucial technology for these purposes. Artificial tactile skin that

can play the roles of human skin remains a distant possibility

because of hard issues in resilience, manufacturing, mechan-

ics, sensorics, electronics, energetics, information processing,

and transport. Taken together, these issues make it difficult

to bestow robots, or prosthetic devices, with effective tactile

skins. Nonetheless, progress over the past few years in relation

with the above issues has been encouraging, and we have

achieved close to providing some of the abilities of biological

skin with the advent of deformable sensors and flexible elec-

tronics. The naive imitation of skin morphology and sensing

an impoverished set of mechanical and thermal quantities are

not sufficient. There is a need to find more efficient ways to

extract tactile information from mechanical contact than those

previously available. Renewed interest in neuromorphic tactile

skin is expected to bring some fresh ideas in this field. This
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article reviews these new developments, particularly related to

the handling of tactile data, energy autonomy, and large-area

manufacturing. The challenges in relation with these advances

for tactile sensing and haptics in robotics and prosthetics are

discussed along with potential solutions.

KEYWORDS | Energy autonomy; e-skin; flexible electronics;

neuromorphic skin; printed electronics; tactile sensing.

I. I N T R O D U C T I O N

Rapid advances in the design, manufacturing, electronics,
materials, computing, communication, and system integra-
tion have opened new areas for applications of robots and
engineered systems [1]. As a result, we no longer speak
of robots as only the industrial tools needed for repetitive
tasks such as picking and placing, or robots kept away
from people. Not that such tasks are unimportant, it is that
significant progresses have been made in these application
areas and now the focus is gradually shifting toward robots
handling real-world objects under arbitrary circumstances,
working safely alongside humans, and assisting them. This
trend will continue as we enter the era of smart factories,
industry 4.0, social robots, telesurgery, etc., where robots
are intended to work closely with a human. We are looking
at a profound evolution, where artificial intelligent (AI)
systems will be extended into robots with new embodi-
ments. In other words, as AI-like systems become pervasive
in science and daily life, and their instantiations corre-
spond to new embodiments (robotized home appliances,
drones to deliver parcels, advanced social humanoids, and
so on) and these systems will find new applications, such
as brain-controlled robots and haptic avatars (Fig. 1).
A rich sensorization will be critical to such advances
endowed with large numbers of different sensors types
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Fig. 1. Few example applications where e-skin is needed to enable immediate advances and are thus pushing the development of e-skin

(left). Various scientific dimensions of physical interactions which will be unraveled by the e-skin (middle). Few example applications where

e-skin will be needed to enable advances in the future and thus will be pulling further development of e-skin (right).

(touch, temperature, pain, electrochemical, gas sensors,
idiothetic sensing, etc.). Critical to these advances are the
ways in which electronic skin (e-skin) can be employed
to understand various dimensions of physical interaction
needed to deal with unconstrained environments and also
to achieve a safe human–robot interaction. Some of these
are discussed in Fig. 1, where current push factors as
well as future pull factors are presented in support of
the development of e-skin along with the key scientific
questions it will address.

Although vision and audition are widely studied, it is
self-evident that touch—or somatosensation—is funda-
mental to any mechanical interaction. Yet, touch has begun
to receive greater attention only recently, possibly due to
the complexity and the technological bottlenecks associ-
ated with its development of large-area e-skin. Touch is
utterly important for the development of many cognitive
functions such as the acquisition of the sense of self. First,
the sense of touch involves direct mechanical interaction
with the environment, rather than the reception of propa-
gating energy from sources and surfaces. Mechanical inter-
action greatly complicates the design of sensing techniques
that are fundamentally robust to sensing conditions and
resilient to wear and abrasion. For artificial tactile skin to
function like human skin, it needs to: 1) be impervious to

many types of mechanical loads (impacts, sharp objects,
elastic objects, multiphase materials, etc.) and surfaces
during contact (abrasive, wet, lubricated, fibrous, compos-
ite, etc.); 2) account for the distributed nature of tactile
sensing; 3) account for multiple mechanical sensing para-
meters (e.g., tensorial quantities describing strain, perma-
nent damage, etc.) as well as other forms of stimulation
(thermal and chemical); 4) respond within time scales
compatible with behavior; 5) cope with wiring complexity
and limited information transmission capacity; 6) min-
imize energy requirements for the operation of sensors
and associated electronics; 7) contend with geometrical
nonconformability; and 8) handle large amounts of data
and provide reliable ways to extracting information that
is useful for behavior. Although these challenges have
received some attention, a holistic approach, where they
are simultaneously considered, is needed. For example,
numerous tactile sensors using various transduction mech-
anisms have been reported [2]–[8]. Yet, the tactile skin is
still, today, not an integral component of robotic technol-
ogy —not as much as visual and auditory sensors are.

This article surveys the state of the field of large-area
tactile sensing in robotics and prosthetics, particularly
regarding the above issues. There have been other surveys
that discussed various types of tactile sensors and some
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of the issues related to the effective utilization of tactile
sensing [9]–[11]. The detailed discussion on already
reported aspects related to e-skin is not included in this
article. Instead, the focus of this article is to highlight
the challenges laying beyond sensor designs. This arti-
cle focuses on issues such as the hardware approaches
for e-skin to continuously interact with the environment,
the handling of large tactile data, including distributed
local processing in neurallike fashion, energy require-
ments, and the manufacturing processes for large-area
e-skin with high-performance devices. This article is orga-
nized as follows: historical research developments of
human tactile sensing and how those key understandings
are feeding into the research on artificial tactile sensing
are presented in Section II. This section is followed by a
discussion in Section III related to various strategies that
have been adopted for to meet the energy requirement of
e-skin or to develop energy-autonomous e-skin. Section IV
presents advances toward tactile data encoding and the
handling of large tactile data from distributed tactile sen-
sors for large-area e-skin, including the initial advances
toward neuromorphic tactile skin. This section is followed
by Section V, where an overview of advanced manufactur-
ing and nanostructure printing techniques for large-area
electronics and e-skin is presented. Finally, a summary
of the conclusions and future directions is presented in
Section VI.

II. H I S T O R I C A L D E V E L O P M E N T S
R E L AT E D T O H U M A N S E N S E O F
T O U C H A N D A R T I F I C I A L T O U C H
S E N S I N G T E C H N O L O G I E S

Skin yields the body interface with the environment and
is the largest human organ, comprising about 15% of
the body mass [12]. It is robust enough to be damaged
by a continuous interaction with the environment and
can repair itself when damaged. The skin houses various
receptors that enable us to detect various stimuli such as
skin temperature disturbance, pain (i.e., high threshold),
skin strain and strain rate (i.e., low threshold), and rapid
skin oscillations. These receptors allow us to be sensitive
to surface asperities, texture, substance, object compliance,
slip, the presence of lubricants, and many more properties
of things we touch including noxious stimulation. Biology
often provides models for technologies and the human
skin too has also contributed to advancements in tactile
skin or e-skin [11], [13]–[18]. The timeline of some of
the key findings related to human touch sensing, which
have enabled advances in artificial tactile skin, is given
in Fig. 2. In recent years, emulating the sensory ability
of human skin has become an area of growing interest
due to its applications in the field of the prosthesis [19],
robotics [20], [21], health monitoring [22], and human–
machine interaction [22]. Although our present under-
standing of human tactile sensing is not as deep as that of
vision or audition, it has come a long way since the naming
of the five senses by Aristotle around 400 BC [23]. The

many sensory capabilities of skin posed challenges at that
time too. Aristotle wondered whether the touch was one
sense or many.

Early studies of the sense of touch (Fig. 2) showed that a
great many touch-sensitive receptors could be observed in
the skin; in the glabrous skin inside the hands and on the
soles of feet; in the hairy skin that covers most of the body;
and in various types of mucosal skin. Deep mechanosensi-
tive end-organs are found in most load-bearing soft tissues,
especially tendons and muscles, which provide the brain
with sensory information that also participates in tactile
sensations owing to the propensity of transient and persist-
ing mechanical stimuli to propagate over large distances.
Conversely, proprioception, or awareness of one’s position
in space, is, in part, mediated by the deep end-organs and
also by the receptors in the hairy skin that are stimulated
when our joints move. Sensory inputs originating from
receptors embedded in the skin typically provide informa-
tion about direct mechanical contact, such as the traction
exerted by the glabrous skin during manipulation or the
sliding movement of an object on hairy skin.

In the initial years of robotics, there were very few devel-
opments of artificial skin. Perhaps the earliest example of
e-skin realization is from the 1970s when an artificial hand
covered with skin was explored to detect grip strength,
slip, and certain properties of a held object such as texture
and hardness [24]. In the late 1980s, the use of infrared
sensors on large area of robotic arm was shown to evade
obstruction or to avoid contact [25]. Nowadays, robots
are expected to be involved in tasks requiring a physical
interaction with the environment, objects, or humans. As a
result, there is an increased focus on developing artificial
skins with tactile capabilities [26], [27] and safe physical
contact [14], [28]. Cutaneous skinlike devices have also
found applications in wearable systems as the second
skin or tattoolike skin to measure various physiological
parameters to monitor health condition [1], [29]–[31].
In all these cases, it is important to consider the sen-
sor distribution, the readout, and a suitable integration
strategy [20].

The e-skin technology development, thus far, focused
mainly on mimicking certain aspects of human skin and
have accounted for parameters such as sensor types and
density. Electrophysiology studies have identified several
types of responses to mechanical stimuli. The light inden-
tation of the glabrous skin with a pointed object elicits
a response from the receptors near the contact. Interest-
ingly, the response is most of the time transitory, that
is, stronger during the ramping periods of the indenta-
tion at the beginning and the end of the stimulus, sug-
gesting that the stimulated receptors respond to strain
rate. Less often, the response is related to the intensity
of the indentation although there is always a degree of
temporal adaptation. These responses have been associ-
ated with different anatomically identified end-organs. The
first, the most common, is called the Meissner corpuscles
tucked in cavities observed in the internal face of the
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Fig. 2. Timeline of key research developments in the field of human tactile sensing and the artificial tactile skin.

epidermis [9]. There are about 30 such receptors (25 μm
in diameter) per millimeter square in the healthy skin
of fingertips. The other type of end-organ corresponds
to what is identified as a “neurite complex.” This term
designates a structure where a nerve fiber terminates in
numerous branches. This end-organ, found at the inter-
face of the dermis and the epidermis (territory range
of 20–2000 μm), is called Merkel cell–neurite complex.
It corresponds to the slowly adapting response observed
from electrophysiology studies. A comparatively large end-
organ (200–1000 μm in diameter), called the Pacinian
corpuscle, is also observed in many types of soft tissues
throughout the body. In the hand, there is a couple of
hundred of them that are opportunistically distributed.
They show extreme sensitivity (in tens of nanometers of
membrane displacement) and a particular phase-locking
physiological response to oscillating stimuli. The fourth
type of response observed from the human hand, when
large regions of glabrous skin are pulled sideways elicit
a steady response in a comparatively small number of
nerve fibers, is thought to be due to a population of end-
organs called Ruffini endings [34]. Astonishingly, there is
no modern observation of these organs in the hand (yet,

they are observed in other connective tissues, such as liga-
ments). The hairy skin, which is histologically distinct from
glabrous skin, since it lacks the reticulated structure of
glabrous skin, does not have Meissner corpuscles. Further-
more, it has Merkel cell complexes arranged in 1000-μm
clusters called touch domes separated from each other by
several millimeters [32], [33]. This brief picture would not
be complete without mentioning the presence of the so-
called C-fibers in all skin types. These nonmyelinated nerve
fibers slowly conduct nerve impulses from the entire skin
surface to the brain. They are associated with nociception
(pain), but in recent years, these very numerous fibers have
also been shown to participate in light touch, in addition
to the fast system with the multiple receptor types just
described.

In humans, the tactile sensation has been investigated
using a unique technique called microneurography, where
a small-diameter needle electrode is inserted in a periph-
eral nerve and the activity from single nerve fibers can
be recorded [35]. This technique, not available in humans
for other sensory modalities, made it possible to correlate
peripheral nerve activity (“spiking activity”) and sensa-
tions. Yet, a fair understanding of the sense of touch is
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Fig. 3. Various components of e-skin including sensors and the

interfacing methods to read the sensory data.

still elusive because what is currently known about single
receptors is not sufficient to develop reliable integrative
models able to predict the behavioral aspects of the tactile
function.

The discovery and understanding of the properties of
various mechanoreceptors in human skin have contributed
to the development tactile sensors for e-skin. One of
the key messages from these studies has been that the
e-skin should have tactile sensors to detect both static
and dynamic contact events such as those that take place
during slip or contact with objects (Fig. 3) [36]. Complex
contact states involve traction distributions at the surface
of the skin that have more dramatic effects when the skin
is compliant. The mechanical state of the skin, which is
a deformable solid, requires an infinite number of coordi-
nates to be described since, macroscopically, it appears as a
3-D continuous medium. Yet, touch sensors generate scalar
outputs, suggesting a tremendous dimensionality reduc-
tion and providing the beginning of an explanation as to
why touch requires the availability of sensors with different
properties. In this regard, embedding sensors in elastic
material at different depths can provide a basis for the
sought-after variability. However, sensors arrangements so
far have rarely considered this possibility [20].

As far as the sensing mechanisms are concerned, capaci-
tive transduction has been extensively explored for static
or quasi-static events and the piezoelectric and tribo-
electric transduction for dynamic events. Capacitive sen-
sors are a popular choice due to their high sensitivity,
low power consumption, simple device architecture, and
simple readout electronics. The piezoelectric and tribo-
electric transduction mechanisms are attractive as they
could lead to self-powered sensors [4], [6], [37]. For
example, triboelectric nanogenerators (TENGs) and planar
electrostatic induction coils are utilized as a self-powered

analog smart skin [Fig. 4(k)] to detect location and contact
velocity [38]. To imitate the elasticity of human skin, touch
sensors are sometime developed together with elastomers
having microstructures [36], [39], [40]. Several review
articles have compared the touch sensors based on vari-
ous transduction mechanisms (e.g., optical, magnetic, and
ultrasonic) and recent advances related to materials and
fabrication technologies, including conformable electron-
ics [41]–[44].

Factors such as density and the number of receptors
are also important when body-wide sensitive skin is con-
sidered. There are about 45 000 mechanoreceptors dis-
tributed in human skin [35], [45]–[48] along with a
large number of thermoreceptors, and C-fiber system [45].
The resolution, density, and response time of human
skin have been emulated with different sensor archi-
tectures and readout interfaces (Fig. 3). For example,
the high-spatial resolution active matrix of field-effect
transistor (FET)-based sensors arrays on planar or flex-
ible substrates. To this end, both organic and inor-
ganic semiconductor materials-based sensors have been
explored [49], [49]–[52].

Although the distributed nature of skin poses challenges
for technology development, it also offers interesting
opportunities that are not possible with other sensory
modalities. Specifically, the skin partially wrapped around
the objects to be interacted with could make a whole
range of sensory dimensions possible [53] (Fig. 1). Recent
advances in neuroscience indeed suggest that the brain
does make use of this possibility [54]. The high dimen-
sionality inherent to touch paves the ground for rich
representations of such skin–object interactions. The sense
of touch allows access to properties of the physical world
that other senses do not allow. In robotics, utilizing this
potential would also translate to a system with a higher
capability than presently available. As discussed in the next
section, there has been the new interest in exploiting the
area of body surface to generate energy [55]–[57].

With the large number of sensors, the e-skin must also
handle a large amount of tactile data within limited avail-
able communication bandwidth. In this regard, the insights
into the ways of tactile information flow in the skin show
us some direction. The empirical correlations established
between impoverished stimuli supposed to reflect the cod-
ing properties of the individual tactile sensors are clearly
insufficient. The most interesting and useful effects of
touch arise from the integrated information from large
populations of touch sensors that are activated during
the simplest interaction with actual objects. Therefore,
the structure of skin, its morphology, micromechanical, and
tribology properties modulate the collective response of
many receptors when it comes into contact with objects.
This observation has profound implications for the devel-
opment of future large-area tactile skin. Clearly, there is
a need to delve deeply into the working of skin and the
touch sensory system to develop an effective bioinspired
artificial tactile skin. The field would benefit from the
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contributions by computational neuroscientists who will
help to understand how neural codes related to stimulus
properties, or haptic dimension, and which processing
architecture or hardware arrangements could support the
encoding and decoding of tactile information.

The science of touch has long neglected how the
mechanical skin properties intrinsically tune the skin sen-
sors signals to instead focus on the properties of individual
tactile sensors in the skin. However, this approach to study
the tactile sensing will find itself limited in explaining
how the brain is able to develop stable perception of
the environment, e.g., experience the heaviness of a cup,
despite the large variations in sensing conditions, e.g.,
whether the cup is held by the handle between two fin-
gers or rests on the palm. For the brain to interact in a
meaningful way with the environment, it is required to
learn the sensor dependencies that depend on the skin
and the structures that support it [53]. Similarly, e-skin
sensors and supporting structures should be embedded in
a deformable substrate and their mechanical properties
carefully considered.

III. E N E R G Y A U T O N O M Y O F e-S K I N

The true replication of the functionalities of human skin
requires e-skin to have a network of distributed network
of large number of sensors, actuators, and electronics
over large area, i.e., whole body of robot or prosthetic
limb. This significantly raises the energy requirements and
makes e-skin a power-hungry system. For example, about
8 W is needed to power about 1000 capacitive touch
sensors on humanoid robot “iCub” [55], [58]. The power
consumption would be much higher if human skin, having
about 45-K mechanoreceptors in 1.5-m2 body area [48], is
mimicked and if all these sensors are to remain active all
the time. The high energy requirement poses a new chal-
lenge to the application of e-skin in robotics, particularly
an unstructured environment. For example, the frequent
charging of the batteries or other energy storage devices
discourages amputees and reduces the chances of accep-
tance of the prosthetics limbs. The energy requirement
also poses a hurdle to the widespread use of e-skin in
applications such as wearable health monitoring systems.

Despite the critical need to power the large number
sensing/actuating/electronic components, the issue has
not received much attention for e-skin. A few solutions
reported in recent years are mainly related to wearable
health monitoring patches. These include wireless pow-
ered or solar-powered sensor patches with low-power
electronics [14], [57]. The low-power sensors based on
materials such as indium tin oxide (∼100 μW/cm2) [48]
and graphene (∼20 nW/cm2) [14] have alleviated the
issue to some extent. For example, with just 20 nW needed
per centimeter square, the graphene-based sensors require
3.9 μW over an area of 1.5 m2 [14], [55]. Although
such calculations do not include the power needed for
readout electronics, it is clear that the energy autonomy
of e-skin has deservedly started to receive the attention.

This is also evident from recent review articles on energy-
autonomous e-skin [55] and works focusing on sensors
with energy generators [Fig. 4(a)–(d)], storage devices
[Fig. 4(e)–(g)], self-powered systems [Fig. 4(h) and (i)],
and their applications [Fig. 4(j)–(l)].

As discussed in Section II, the presence of skin over a
large area also offers new opportunity to harvest ambient
energy to develop energy-autonomous e-skin. For exam-
ple, with conformable solar cells (with reported power
density in 1–35-mW/cm2 range and power conversion
efficiency up to 46% for rigid semiconductor solid-state
device [Fig. 4(a)] [55]) present over the whole body of a
robot or prosthetic limb, it may be possible to generate suf-
ficient power to operate the e-skin as well as other devices.
However, the economic feasibility of such solutions is
currently a challenge, which possibly will be addressed by
large scale use of photovoltaic (PV) cells. In a previous
work, we demonstrated this approach for self-powered tac-
tile skin by integrating graphene-based transparent copla-
nar capacitive touch sensor (sensitivity 4.3 kPa−1 over
0.11–80-kPa range) on a PV cells [Fig. 4(h)]. The excel-
lent transparency (∼98%) of touch-sensitive layer allowed
most of the light to reach the PV cell underneath to harvest
the energy. The ultralow power (∼20 nW/cm2) needed
by the touch-sensitive layer in this work is much lower than
the power generated by commercial flexible a:Si PV cells
(power density ∼19 mW/cm2). The energy generated will
be significant if the presence of touch-sensitive layer over
an area equivalent of an adult human skin (i.e.,∼2 m2) is
considered. This surplus energy could be stored for later
use (e.g., when there is no sunlight) by integrating an
energy storage device with this e-skin and could also be uti-
lized to operate the actuators in robots or prosthesis hand.
The first demonstration of flexible supercapacitors (SCs)
integrated underneath the solar cells [Fig. 4(j)] to operate
the actuators on robotic hand was reported recently [56].
The output voltage of these SCs (∼2.25 V) is compatible
with the requirements of most of the electronics in use
today. The wireless power transfer technology will add
significant value to these new approaches, particularly in
terms power management [59]. Similar opportunities are
difficult with other sensory modalities such as vision and
audition, which, unlike skin, are centralized and present in
small areas. The demonstrations such as the one described
above are good examples of turning challenges into oppor-
tunities. With current advances in the field of PVs, such as
the development of ultraflexible PV cells [60]), favoring
the development of self-powered or energy-generating e-
skin, it will be possible to extend the benefits to other areas
such as wearable systems for health monitoring. In this
regard, recent works such as fully flexible self-powered
health monitoring patch, with chemiresistive pH sensor
powered by flexible SCs and PV cell, are worth noting [57].

The nonconventional approaches such as textile-based
battery (capacity of 13 mAh) with solar cell (at a volt-
age of 0.4 V, and under simulated AM 1.5G illumination
at 100 mW/cm2) and stretchable battery with wireless
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Fig. 4. Various energy generation/storage systems and their use for e-skin. (a) Ultrathin vertical GaAs-based solar microcell array.

Reprinted from [60], with the permission of AIP Publishing. (b) Soft-skin with 3 × 3 triboelectric energy (TENG)-based tactile sensor. Adapted

from [65]. (c) Transparent, bendable TENGs on the LED array. Reprinted with permission from [66]. Copyright 2013 American Chemical

Society. (d) Exploded view of biofuel cells-based e-skin. Reproduced with permission from Royal Society of Chemistry [67]. (e) Stretchable

batteries with serpentine interconnects. Reprinted by permission from Springer Nature [61]. Copyright 2013. (f) Flexible SC (GS-graphene

sheet; GPU-graphite polyurethane). Adapted from [56]. (g) Stretchable Li-air battery (CNT-carbon nanotube). Reproduced with permission

from Royal Society of Chemistry [63]. (h) Graphene-based transparent touch sensors on top of PV cell (PDMS-polydimethylsiloxane;

PVC-polyvinyl chloride). Adapted from [14]. (i) Schema of flexible self-charging micro-SC (MSC) power unit (PTFE-polytetrafluoroethylene;

LIG-laser-induced graphene) [64]. (j) Artificial hand with analog skin. Adapted from [38]. (k) Graphene capacitive sensor on a robotic hand.

Adapted from [14].

charging [Fig. 4(e)] [61] are other interesting alternatives,
currently being explored for wearable applications [62],
for prosthesis and robotics. The conventional Li-ion bat-
teries are not suitable for e-skin as they are not flexi-
ble or stretchable and are not lightweight. In this regard,
recent advances in the area of flexible/stretchable batteries
and flexible SCs [57], [63] [Fig. 4(e)–(g)] are promising.

Energy harvesting using mechanisms such as piezo-
electric, thermoelectric, triboelectric, and electromagnetic
could also be applied to e-skin [37], [55]. For example,
thermoelectric energy harvesters could tap the heat gener-
ated by the actuators on robots. Similarly, the piezoelectric
harvesters can tap the ambient mechanical vibrations to
power microdevice/nanodevice distributed in the e-skin.
A detailed description and comparison of many of these
energy harvesting mechanisms are given in [55]. Among

these, the triboelectric energy generators (TENGs), which
generate energy by touching, pressing, twisting, stretching,
etc., are particularly interesting for e-skin. An example of
TENG integration with microswitched capacitor (SC) for
self-powered sensor applications is shown in Fig. 4(i) [64].
Another example considers a soft skin, which can sense low
pressures (∼1.3 kPa) [Fig. 4(b)], with TENGs providing
the open-circuit voltage up to 145 V and an instanta-
neous areal power density 350 W/cm2 [65]. The single
electrode-based TENGs (power density ∼5 kW/cm2 on a
load of 100 MΩ), explored for touchpads [Fig. 3(c)], are
also suitable for robotics and human–machine interface
applications [66]. The pressure sensors requiring <1 mW
could be powered by TENGs [56]. Biofuel cells offer
another interesting direction for energy autonomy, particu-
larly for wearable systems. Such approaches are extremely
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Fig. 5. Various neuromimicking data processes.

attractive when extended to using body fluids such as
saliva, urine, sweat, etc. for the generation of energy
through electrochemical reactions. An example includes
soft, stretchable biofuel cells using sweat as electrolyte
[Fig. 4(d)] to generate 1 mW/cm2 power [67].

The management and efficient utilization of available
energy is another challenge that requires attention for
effective use of e-skin. For example, while lifting a heavy
sandbag, a humanoid robot will require sensory feed-
back from sensors on hands and front part of the body.
In such case, there is no need for the sensors from body
areas not in contact with bag to be energized. There
are several such robotic tasks where feedback from all
touch sensors is not needed and, therefore, it is sensible
to plan dynamically the sensory area to be energized
[20], [28]. Various energy management strategies and AI
techniques that are being explored in areas such as zero
power Internet of Things (IoT) could also be adopted for
energy-efficient e-skin. AI techniques are already being
explored for effective power distribution and operation
[68], [69]. Similarly, energy management can be achieved
with power-optimized system implementations, supported
by advanced technologies such as wireless power transfer
and batteryless operations. The attractive designs used for
system-on-chip, with peak active power consumption of
∼3 mW [70]—an order of magnitude lower than com-
pared with Bluetooth- or Zigbee-enabled sensor nodes,
could also be useful for e-skin. With recent advances
in flexible electronics, a few wireless powering solutions
based on flexible printed circuit boards (FPCBs) have
been reported [71]. Although these approaches are in
early stage and seamless integration is far from the sight,
they could offer promising solutions for energy or power
management.

IV. S K I N W I T H N E U R O N A L L I K E
C O M P U T I N G

The efficient ways of transferring a large amount of tactile
data and deriving inferences have been another major
challenge for effective use of e-skin in robotics. Simi-
lar issues faced in vision and auditory sensing led to
emulating the spiking neural and neuromorphic mecha-
nisms [72] to bridge the efficiency gap between artificial
systems and their biological counterparts [73]. Similar
approaches for tactile perception have started to receive
attention only recently. Various algorithms explored for

processing of tactile information include support vector
machine (SVM), linear discriminant analysis (LDA),
k-nearest neighbors (kNNs), spiking neural network
(SNN), extreme learning machine (ELM), and Bayesian
analysis [74]. A classification of various neuromimicking
data processes is given in Fig. 5. These efforts have led
to the development of sensory systems that have been
used in a variety of software-based NNs for tactile recog-
nition tasks, including texture, shape, and object recog-
nition [75]–[79]. Due to the lack of large-scale parallel
processing, the software-programmed NNs are slower and
less energy-efficient [75], [80], thereby making it neces-
sary to have hardware-implemented neuromorphic tactile
data processing along with NNs like algorithms. Further-
more, touch is fundamentally different from vision, and
therefore, the commonly used techniques, which were
developed for vision sensing, are not always suitable for
handling of the tactile data [1]. For example, the neuronal
network-derived preprocessing can also be obtained with-
out spiking, and in this regard, the neuroscience knowl-
edge is important to know how to design the interface
in terms of network structure and learning rules, and
how to design the subsequent decoding in an intelligent
robotic system “attached” to the e-skin. As far as the
hardware implementations of neurallike tactile sensing are
concerned, these are mainly limited to the development
of sensors. For example, flexible organic semiconductor-
based devices have been developed to mimic the slow
adapting mechanoreceptors [81]. The intensity of mechan-
ical stimuli in these devices is reflected through the fre-
quency of digital signals.

The signal transfer in the nervous system is essentially
aiming to maximize the fidelity with the time-continuous
voltage signal of the sensor (or the neuron inside the
brain), but the spike generation mechanism takes that
signal as a probability density function and converts it
into spikes (and “discretizes” or “binarizes” the signal).
Hence, in the spike generation step, we inevitably lose
fidelity [82]. However, in biology, it is not possible to trans-
mit time-continuous signals because the biological cabling
system (axons) cannot support the long-distance transfer
of information due to electrical constraints. Hence, biology
made the tradeoff of losing signal quality while solving the
critical signal transfer issue. In engineered systems, one
could probably get around this problem of signal transfer
and instead transmit the time-continuous voltage signal
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Fig. 6. (a) Conventional sensor readout and transmission.

(b) Spike-domain sensing-processing learning-communication based

on neuromorphic sensors and artificial intelligence.

(e.g., using a single cable for each sensor). This saves a lot
of computational power and processing effort compared to
spike-based solutions, which require an additional module
to generate spikes. However, in practice, such schemes are
impractical as the large number of cables will add to the
weight and complexity of e-skin. For this reason, the tac-
tile information, in the tactile-sensitive systems reported
thus far, is largely transmitted serially (Fig. 3), even if
this comes at the expense of readout latency and high
energy requirements. For example, “always-on” device-
type approach [Fig. 6(a)] can be extremely inefficient,
as standard digital architectures over large area e-skin will
consume power—in order to run clocks, mixers, and ana-
log/digital (A/D) converters—irrespective of the relevance
of the information being recorded and processed. Above
issues with current engineered systems could possibly be
resolved, just like in biology, by converting the signal into
spikes, before it is transferred [Fig. 6(b)]. These spikes
could be event-driven, e.g., occurring only when a change
is detected at the output of a neuromorphic touch sensor.
This means that energy is consumed only in the pres-
ence of relevant information. The neuromimetic architec-
tures such as asynchronous output representation systems,
which carry the timing information similar to spikes in the
nervous systems, could possibly enable the simultaneous
transmission of tactile information while maintaining low
readout latencies [83]. This was demonstrated recently
with an array of 240 sensors, by transmitting events at
a constant latency of 1 ms while maintaining an ultra-
high temporal precision of <60 ns, thus resolving fine
spatiotemporal features necessary for rapid tactile percep-
tion [84].

In the brain, tactile information is extensively pre-
processed before it reaches the neocortex [54], [85], which
could also be implemented in e-skin in order to reduce the
amount of data that need to be transmitted. The biologi-
cal solution: a distributed local processing of tactile data
with partial processing close to the sensing elements and
sending of smaller amounts of processed data to higher
perceptual levels, could be advantageous as an engineered
solution as well. Although biomimetic solutions often focus
on generating spiking signals (which is, in fact, a limitation

of the biological system), engineered solutions to transfer
of sensor information from an e-skin may be that each
individual sensor generates a scalar value depending on
the load experienced locally, an early processing system
could then collect information from the population of
sensors and achieve a reduction of the bandwidth needed
to transmit a compressed information.

Devices such as neural nanowire FET (υ-NWFET)
(Fig. 7), which imitate the working of the biological neuron
[Fig. 7(a)] in a simplified manner, can be an excellent
building block for such hardware NNs (HNNs) [48]. The
structure of υ-NWFET is a variant of a neuron MOSFET
with NWs providing the functional channel region
[86]–[88]. The floating gate of υ-NWFET, which modulates
the channel current, is capacitively coupled to several
gates. The overlap width of the individual gates over
the floating gate determines the initial synaptic weight
of the neural input on which further schemes of plas-
ticity operate. This imitates the synaptic summation of
weighted inputs in the cell body (soma) of the biolog-
ical neuron or the artificial neuron [Fig. 7(a)–(c)]. The
activation function is performed at the circuit level [48].
It may be noted that the biological neural systems also
have plasticity, i.e., the ability to strengthen or weaken
the synaptic weights over time. In fact, this plasticity
is central to the dimensionality reduction performed by
the early processing stages in the brain, i.e., before the
information reaches the neocortex [89]. The υ-NWFETs-
based circuits could also exhibit similar plastic behav-
ior, as discussed in [48]. Other hardware neuromorphic
architecture implementations reported in the literature are
based on devices such as memristor [90], spin logic [91],
[92], memristor [93], neuron MOSFET [88], [94], ana-
log circuit-based neurons [95], field-programmable gate
array (FPGA) [75], and software-programmed NNs [96].
Although none of these have been used for tactile skin,
they could possibly offer solutions. These technologies
have advantages and challenges in terms of complex-
ity, scalability, speed, reliability, repeatability, cost, non-
bendability, power consumption, etc., which limit their
use in the emulation of biological systems. For exam-
ple, the memistor, a three-terminal electrochemical cell
element, achieved limited success because of scalability
issues [90]. Similarly, the spintronic neurons are energy
efficient [91] but realizing a practical large-scale neuro-
morphic architectures and readout is challenging. Recently,
two-terminal memristive devices have gained attention
as the state of their internal resistance could indicate
the history of the voltage across and/or current through
them [97]–[99]. The memristive approach is promising
in terms of low-energy, high-density memories and neu-
romorphic computing [100], but as memristors are two-
terminal devices, it may not be possible to simultaneously
execute the signal transmission (computation or reading
phase) and learning functions (writing phase). A potential
solution is to use memristors with υ-NWFET-based circuits
as basic building block in one transistor—one memristor
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Fig. 7. (a) Illustration of biological neuron. (b) Symbol of υ-NWFET. (c) Block diagram of an artificial neuron with specific weights.

(d) Scheme of υ-NWFET. (e) Fabricated υ-NWFET. (f) Output characteristics of υ-NWFET. Adapted with permission from [48].

(1T-1M)-type structure (discussed in the following
section). The biological neural system is highly computa-
tionally efficient (eight to nine order more efficient than
current digital circuits) [101]. Possibly, they could be emu-
lated with 1T-1M-type devices and neuromorphic circuits
to develop an efficient, compact, and fault-tolerant e-skin
system, which can reliably interpret the noisy sensory
signals to provide feedback to robots.

On the information processing level, e-skin could also
use biological principle to efficiently use information from
various embedded sensors. Any haptic interaction involves
a very large number of widespread skin sensors whose
signals have a relationship that is intrinsically modulated
by the contact with the environment and the skin mechan-
ics. Combined with predictive actions and proprioceptive
signals, the brain is able to generate highly enriched per-
cepts of the interactions that we make, which yields an
essential part of the brain’s development of the concept
of contingencies and a rich and stimulating understanding
of the physical world. Developing such a predictive coding
approach for robotic systems equipped with haptic sensing
may provide them stable representations of their environ-
ment, as humans have.

V. A D VA N C E S I N M A N U FA C T U R I N G
T E C H N I Q U E S F O R e-S K I N

The CMOS has been the workhorse technology for
advances in several areas, including bioinspired artificial
organs such as hearing aids and high-resolution vision
imagers [102], [103]. The e-skin is not untouched by

CMOS technology as several touch sensors such as piezo-
electric oxide semiconductor FETs (POSFET) have been
developed using this technology [104]–[107]. Largely
implemented using single-crystal silicon (Si) wafers,
the CMOS technology is continuing to serve the electronic
industry through reliable manufacturing processes and sta-
ble devices, circuits, and systems. However, when it comes
to large area soft e-skin, the brittle and nonflexible nature
of Si, the cost-prohibitive fabrication (particularly for large
area coverage), and the high-temperature fabrication steps
(incompatibility with plastic substrates) pose hurdles.
Some of these issues have been managed through inter-
esting preprocessing/postprocessing methods. For exam-
ple, various methods for obtaining flexible ultrathin chips
(UTCs) (with tens of micrometer or even lower thickness)
have been reported [108], [109]. Although issues such
as handling of UTCs and heat dissipation remain to be
resolved [110], the possibility of having chips bending
to a radius of curvature down to 1.4 mm is encourag-
ing as they could be integrated into flexible electronic
system [108], fulfilling various challenging requirements
related to sensor interface, data processing, and efficient
driving. Alternative methods to overcome the issue of
nonbendability, such as integrating the planar off-the-
shelf electronics on FPCBs. The FPCB-based approach is
akin to having mechanically integrated but otherwise dis-
tinct and stiff subcircuit islands of off-the-shelf electronic
devices, connected to one another by metal interconnects.
Although these alternative solutions offer limited flexibil-
ity or conformability, they have been successfully used to
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Fig. 8. Top-down and bottom-up synthesis of NWs. (a) 3-D illustration of top-down process. Adapted with permission from [133]. Copyright

2018 American Chemical Society. (b) SEM images of NWs obtained using this approach. Adapted with permission from [133]. Copyright 2018

American Chemical Society. (c) Bottom-up synthesis of NWs. (d) SEM images of NWs obtained using this approach. Adapted with permission

from [162].

develop large-area robotic skin [1], [111]. Researchers
are also exploring innovative strategies (some are com-
patible with standard CMOS processes) to realize the
high-performance flexible electronic systems, which can
be used in soft e-skin. These include large-area uniform
nanomaterial synthesis, their transferring or printing onto
a flexible substrate, and further realization of electronic
devices, circuits, and system. To this end, a wide range of
materials has been explored including quasi-1-D NWs and
nanotubes, quasi-2-D materials, and organic semiconduc-
tors [112]–[119]. Here, inorganic Si NW is taken as an
example to generally explain the progress and challenges.
The choice of Si NWs is motivated by the promise they
hold for the development of high-performance flexible
electronics. The progress related to other materials can be
found in several reviews on flexible electronics [11], [41],
[43], [120], [121].

A. Material Synthesis

To realize an electronic system interfacing large num-
bers of sensors, the controlled material synthesis over
a large area is the first and most fundamental chal-
lenge to overcome. With regard to Si NWs synthesis,
the two distinct approaches are top-down [Fig. 8(a)]
and bottom-up [Fig. 8(b)] [122]. Various methods
using bottom-up approach include vapor–liquid–solid
growth, oxide-assisted growth, and solution-based growth
[122]–[126]. The bottom-up methods have the poten-
tial to go beyond the limits and functionality of today’s
top-down technology. For example, there is the pos-
sibility of developing heterostructures such as Ge/Si
core/shell NWs, which have high mobility and result in
transparent contacts [127]. However, despite sustained
efforts during the past 2 decades, the synthesis of NWs

with controllable and uniform diameter, doping concen-
tration, and good alignment is not easy with bottom-up
approach [128]–[131].

In the top-down or subtractive approach, NWs (with
mean diameter down to 4 nm), with good control over
geometry, crystallinity, and doping levels are obtained by
dimensional reduction of bulk materials (e.g., Si wafer)
by a combination of lithographic and etching steps [132].
Within the top-down route, the two approaches are:
1) realizing “horizontal” Si-NWs (i.e., parallel to the
wafer surface) and then following the transfer or stamp
printing [Fig. 9(a)] and 2) top-down method to realize
“vertical” Si-NWs (i.e., perpendicular to the wafer sur-
face) and then directional printing onto flexible substrates
[Fig. 9(d)]. Metal-assisted chemical etching (MACE) is
generally used for obtaining vertical Si-NWs with a con-
trolled diameter [Fig. 8(a)] [133]. The controlled dop-
ing is essential for obtaining ohmic junction in electronic
devices and innovative devices such as junctionless FETs
(JLFETs) [134], [135]. This can be attained by ion implan-
tation or other methods.

B. Materials Printing and Device Fabrications

1) Transfer Printing: The transfer printing or stamp
printing [Fig. 9(a)] was primarily explored to overcome
the manufacturing problems in traditional microfabrica-
tion process such as material and solvent incompatibility
and the thermal budget limitations in flexible and organic
electronics. In this technique, the processing steps that
require high temperatures are first carried out on Si wafer,
which can withstand these temperatures and then the
nanostructures such as NWs are picked and transferred to
soft substrates, where further low-temperature fabrication
steps are carried out [136]–[140]. Thin films, devices, and

2026 PROCEEDINGS OF THE IEEE | Vol. 107, No. 10, October 2019



Dahiya et al.: Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs

Fig. 9. Concept and examples for transfer printing and contact printing. (a) Schema of the transfer printing. Adapted with permission from

[142]. (b) Si wires on flexible polyimide using transfer printing. Adapted with permission from [142]. (c) Photograph of “tattoo skin.”

Adapted with permission from [30]. Copyright 2011, The American Association for the Advancement of Science. (d) Schema illustrating the

contact printing process. Adapted with permission from [122]. Copyright 2018, Cambridge University Press. (e) Ultraviolet photodetector

fabricated by contact printing. Adapted with permission from [162]. (f) Flexible, NW-based active-matrix circuitry as artificial skin. Adapted

with permission from [166]. Copyright 2010, Springer Nature.

even UTCs [Fig. 9(b) and (c)] have been transferred on
flexible substrates using this approach [108], [141]–[146].
For e-skin, the controllable and reproducible transfer of
nanostructures, from the donor to the receiver substrate,
is needed over large area, and hence, the precise con-
trol of the interface property is necessary. To this end,
techniques such as surface functionalization, surface mor-
phology modification, and peeling velocity control are
helpful [141], [147]. Using this approach, the multistep
stamp printing has been successfully demonstrated with
feature resolution down to nanoscale [148].

The transferred Si NWs that are then used to
develop the devices by carrying our further fabrication
steps such as metallization. The approach has been
used to develop Si-NW-based FETs, with planar [149]
or gate-all-around architectures [150]. By adapting
some of the steps used for mature Si-based electron-
ics, the transfer printing approach makes it easier to
achieve uniform and high-performance devices over large
areas. Furthermore, with innovative device architec-
tures, it is possible to develop novel NW-based sen-
sors [151], [152] and neuromorphic devices [48]. The
transfer printing approach has also been used for nonsil-
icon material such as carbon-based low-dimensional mate-
rial [graphene and carbon nanotube (CNT)] [153]–[155],
transition metal dichalcogenide monolayer (MoS2, WS2,
etc.) [156]–[158], and organics [159]. The transfer print-
ing of multiple types of materials opens interesting avenues
for hybrid integrated systems, which is an ideal testbed
for e-skin [30], [148], [160]. The details related to these
advances can be found elsewhere in focused reviews and

books [11], [41], [43], [120]–[122]. However, it should
be noted that the transfer printing method is essentially
a batch-to-batch process, which is less attractive for the
large-area manufacturing as the time needed to transfer
the nanostructures is relatively large in comparison with
roll-to-roll (R2R)-type printing. For this reason, alternative
methods such as contact printing have also been explored.

2) Contact Printing and Roll-to-Roll Printing: Contact
printing refers to a process where donor substrate, with
vertically grown 1-D nanostructures, is pressed against the
receiver, whose sliding along a direction leads to transfer
of nanostructures [Fig. 9(d)]. Unlike, transfer or stamp
printing this method does not involve any transfer/carrier
substrates such as an elastomeric stamp. The advantage of
contact printing is that the as-printed NWs are allocated
onto the receiver substrate in an aligned manner both for
the transfer on the rigid and flexible substrates. Such align-
ment is enabled by the shearing force generated during
sliding [161] and is favorable for the fabrication of large-
area device array with uniform performance. Further study
indicates that with controlled surface functionalization
(e.g., with −NH2-terminated monolayers) and optimum
pressure between donor and receiver substrates, the NW
printed with this method has shown excellent density and
alignment [162], [163], demonstrating the great potential
of contact printing approach for large-area manufactur-
ing [Fig. 9(e) and (f)].

From the fabrication standpoint, a notable feature of
both transfer and contact printing methodologies is that
they dissociate semiconductor growth process from device
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Fig. 10. Various types of roll printing methods. (a) Differential roll printing to transfer the aligned NWs. (b) Concept of roll transfer

printing technology. (c) Vision of an R2R production for NW-based functional circuits on large-area flexible electronics, including e-skin.

(d) Scheme for printed e-skin using this method, showing printed NWs transistors-based sensors and circuits in the backplane.

substrate. The advantage of doing so is the indepen-
dence of these methods from traditional requirements
for epitaxy and thermal budget, which allows the devel-
opment of thin-film transistors (TFTs) at temperatures
compatible with plastic substrates and that too without
sacrificing the ability to incorporate high-quality single-
crystal semiconductor building blocks. This opens avenues
for advanced approaches such as NW synthesis on rolls
to develop R2R manufacturing process. The synthesis of
NW forests on tubes of glass, quartz, and stainless steel
using bottom-up has been demonstrated in the past [164].
One could see new commercial opportunities in doing
so, for example, commercializing NW rolls just as the

Si wafers today. By using such rolls in differential roll-
printing [164] and roll transfer-printing [165] settings,
the contact printing approach can be extended to an
R2R-type printing, as shown in Fig 10(a). In fact, with
cylindrical stamps [Fig. 10(b)], it may also be possible to
have R2R transfer or stamp printing, although this has not
been attempted so far. The vision for a full R2R process
for IT-1M structures shown in Fig. 10(c) could be the
building block for neuromorphic architectures, including
neuromorphic e-skin discussed in the previous section.
These methodologies take advantage of various tools in
use for standard Si-based electronics, which is attractive
for large-scale manufacturing of high-performance flexible
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electronics. This also aligns with the electronic indus-
try roadmap toward merged conventional microfabrica-
tion/nanofabrication and printing technologies. Overall,
the above techniques show a great potential for cost-
effective manufacturing of nanomaterials-based electronic
systems, which can be further used to develop the
high-performance large-area e-skin [166]. These could
offer an alternative to the flexible backplane electron-
ics, which has been explored in the past with materi-
als such as organic TFTs active-matrix [49]. The organic
semiconductors have favorable features such as low-
temperature solution processing and inherent bendability,
but their carrier mobility is much lower than Si-based
device [167].

The advances in multimaterial additive manufactur-
ing such as the development of 3-D PCBs could also
offer new avenues for introducing e-skin like features in
prosthesis and robotics [168]. For instance, such manu-
facturing processes could be employed to develop pros-
thesis with directly integrated or embedded touch sen-
sors, thereby enabling robust limbs that are also free
from wear and tear issues. The ability to simultaneously
print multiple materials in 3-D (e.g., plastic and metal)
will also address the traditional robotic e-skin issue of
routing of wiring. Furthermore, this approach offers an
interesting solution for the packaging of soft devices.
Another important development for the soft e-skin is the
use of intrinsically flexible/stretchable sensors or sensors
connected with stretchable interconnects with different
geometries [169]–[171] or intrinsically stretchable mate-
rials [172]–[177]. The higher flexibility or stretchabil-
ity enabled by these approaches could lead to improved
conformability of e-skin. Such techniques are generally
relevant to other flexible electronic applications too.

VI. D I S C U S S I O N A N D C O N C L U S I O N

Electronic skin is important for tactile feedback, needed
for the safe interaction with the environment and the
execution of complex manipulation tasks by robots for
social interaction, assistance, and to facilitate surgery.
In spite of rapid progress in terms of sensors, significant
hurdles lie for the realization of large-area e-skin. Some
of the challenges related to hardware development and
potential solutions are discussed in this article. These
include energy autonomy, transmission and processing of
large data, including neuronallike approaches, and the
manufacturing processes for obtaining high-performance
soft e-skin, including recent advances in the field of flexible
and printed electronics. This article also introduced recent

neuroscientific advances that indicate that the sense of
touch also relies on highly dynamic interactions between
the partially wrappable skin and the objects it interacts
with. This enables the generation of much higher dimen-
sional information than available through any of the other
human senses like vision and audition and is a main reason
why the sense of touch is distinct. High dimensionality also
implies a substantially richer information, which enables
much richer representations of the objects we interact
with and thereby a higher versatility of interaction, but
also higher demands on engineered solutions that strive to
copy the properties of the biological sense of touch. This
demands the design of large-area compliant e-skin that
can endure continuous contact with the environment and
local shear forces while being able to reliably encode
these forces at a high resolution through a distributed set
of sensors. The solution would pave the ground for the
next-generation hyperintelligent engineered systems and
robots.

The e-skin development currently focusses on the appli-
cation in rigid body robotics. However, robotics is evolving
fast, and new generations of robots are expected to softer
and compliant. The soft robots currently do not have much
of sensory feedback, which is inevitably needed for precise
control during manipulative movements and interactions.
The challenges will lie in realizing the soft e-skin system
with transduction sites of different bandwidths, dynamic
range, resolution, sensitivity, and mechanical characteris-
tics, using materials, and neural models that can take into
account different adaptation characteristics of skin recep-
tors. Possibly, the circuits interfacing the huge amounts
of distributed sensors will also need to be looked into
as the constraints on power consumption, spatial and
time resolution, and compatibility with flexible and soft
materials make the circuit design no less challenging. The
solutions discussed in this article are expected to help
tackle some of these challenges, and more effort may be
needed as the new design and fabrication-related issues
will possibly emerge. Although the discussion in this article
is in context with large area e-skin, many of the pre-
sented challenges and solutions are also relevant to other
applications such as health monitoring, flexible haptic
displays, and wearable systems. Infact, e-skin (or second
skin) is already being explored in health monitoring. The
discussion about neuronal spiking like transmission of
signal in e-skin is expected to stimulate new thoughts
in the above application areas as they will face similar
challenges when a number of sensors are significantly
high. �
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