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Abstract

We apply sensitivity analysis to the design and control of force transmission systems.

With this approach, the e�ect of the values of the system parameters on the response

can be investigated: transmission ratio, sensor placement, damping and allowable load

variation. It is found that feedback must be applied to reduce the sensitivity of the system

response to the load. Based on these observations, a loop shaped feedback compensator

design is proposed. Such compensators can compensate for the nonlinear behavior of the

transmissions due to friction, while exhibiting good disturbance rejection and robustness.

This is achieved without detailed knowledge of friction behavior and without measurement

nor estimation of velocity. Experimental results using a test bench are discussed.

1 Introduction

There is some freedom in the design of force transmission systems. The question arises of

how to choose certain design parameters to improve performance: transmission ratio, sensor

placement, damping, and allowable load variation. Sensitivity analysis is applied to express the

in
uence of these parameters on the system response in open and closed loop. The objectives

include precise control of force, extension of the frequency response to the widest range possible,

and reduction of friction and inertia as experienced from the load side of the transmission.

It is found in particular that the response is highly sensitive to the load variations, so a

compensator design method is proposed to reduce this sensitivity and which considers friction

as a disturbance to be rejected. This scheme, based on loop shaping, can be applied to a wide

class of systems and neither rely on a detailed knowledge of the nonlinear behavior of friction,

nor requires measurement of velocity.

Background material on sensitivity analysis can be found in (Frank, 1978) and (Wierzbicki,

1984). Sensitivity analysis provides the basic methods for studying the sensitivity of a system to
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parameter variations. Here, the system is described by a linear transfer function G = G(s; �),

where the plant response varies not only with s, but also with parameters � = [�1; : : : ; �n]
T .

These parameters can be for example initial conditions, natural frequencies, time invariant

or time variant coe�cients, etc. We will use the Bode Sensitivity Function de�ned as the

logarithmic partial derivative of G with respect to the parameter �i, de�ned as:

SG
�i
(s) ,

@lnG(s; �)
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�
�
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=
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�
�
�
�
�0
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�
�0

�0

G(s; �0)
; (1)

and G(s)(1� SG
�i
(s)) will represent the range of possible transfer functions under the variation

of parameter �i.

Sensitivity analysis has been used in several areas of engineering. It has been applied, for

example, to the stability analysis of robot control (e.g. Kazerooni, 1988), modal analysis in a

three-link articulated robot manipulator (Jen and Johnson, 1991), and in the optimal design

of robot mass parameters (Guo and Zhang, 1988).

2 Model

Figure 1 illustrates an engineering model of most force transmissions. It includes the inertia of

the motor IM , linear damping lumped into damper B, r the transmission ratio, k1 the elasticity

of the proximal section of the transmission, k2 the elasticity of the distal part, Ic the inertia of

the driven portion of the transmission, and ZH an arbitrary impedance representing the load.

The total elasticity

ke = (k1k2)=(k1 + k2); (2)

expresses the degree of \collocation" of the force measurement. When the force measurement

is taken at the output of the primary actuator, k2 � k1 so ke ' k2. Inversely, ke ' k1 when

the measurement is taken near the load.
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Figure 1: Model of the plant.

The relevant signals are F� the force produced by the actuator, Fn a disturbance force signal

representing friction in the motor, Fd another disturbance signal representing the friction in

the transmission, and one sensed signal Fm, the force measured at some intermediate location

between the actuator and the load.

The objective is to transmit a force applied to the load, consequently precise control would

require the force sensor to be placed near it. Unfortunately, sensor placement has several e�ects
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on the closed loop system response, so it must be considered carefully as will be discussed in

Section 3.

Looking at the transmission of force from the actuator to the sensor, transfer functions can

be worked out for both the actuator force and the actuator friction signal.

G(s) =
Fm

F�
= �

Fm

Fn
=
N(s)

D(s)

=
keIcs

2 + kzke

r2IMIcs4 + r2IcBs3 + (keIc+ r2IM(kz + ke))s2 + r2B(ke + kz)s+ kzke
(3)

In the above expression and in the rest of the paper, the variable load is simpli�ed to a

variable elasticity kz, which is a worst case as far as control stability is concerned. The negative

sign of the transfer function Fm=Fn accounts for the fact that F� and Fn are applied in opposite

directions.

The transfer function from the disturbance friction signal due to the transmission to the

sensor is:

Fm

Fd
=
r2IMIc

D(s)
(4)

3 Analysis

3.1 E�ect of r

The e�ect of r can be found by inspection of the transfer functions (3) and (4). The factor

r2 in (3) a�ects both the inertia and the damping of the transmission as experienced from the

output because both result from a force divided by a time derivative of a displacement. This

quadratic dependency is an important consideration since the open loop bandwidth will drop

dramatically with an increase of r. Friction will increase in open loop linearly only with r under

the assumption that it is a rate independent signal.

The numerator of the disturbance transfer function (4) depends quadratically on r but does

not depend on frequency. The higher the actuator inertia is, and the higher the transmission

ratio is, the better the friction disturbance rejection is. In other terms, for a given desired output

signal and a given disturbance, an actuator with higher inertia (or a higher transmission ratio)

will demand a larger input signal, improving the signal-to-disturbance ratio.

In closed loop the apparent inertia is divided by the loop gain. The ratio r has an e�ect

on the highest achievable loop gain given a desired phase margin, since r also appears in the

denominator of the transfer function.

3.2 E�ect of ke

To understand the e�ect of the sensor placement, equation (1) is applied to compute the

sensitivity function of G respect to ke,

SG
ke
(s) =

r2IMIcs
4 + r2IcBs

3 + r2IMkzs
2 + r2Bkzs

r2IMIcs4 + r2IcBs3 + (keIc+ r2IM(kz + ke))s2 + r2B(ke + kz)s+ kzke
; (5)
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which in turns depends on k1 and k2:

SG
k1
(s) = SG

ke
(s)

k2

k1 + k2
; SG

k2
(s) = SG

ke
(s)

k1

k1 + k2
: (6)

While there is no value in analysing the plant when the values of k1 or k2 approach zero or

in�nity, it is possible to analyze sensitivity when one value is kept �xed and the other varied

as in Figure 2 where k2 is large. Using parameter values close to those of an actual prototype

(B = 4, kz = 1 � 109, r = 10, Im = 12:8 � 10�6, Ic = 0:0235176, k2 = 2:566 � 104) and

di�erent values for k1 (k1 2 f1� 103; 2:566� 104; 4:56� 106g), Figure 2 was obtained.

Two e�ects are observed: (a) the bandwidth of the system increases with k1 for a �xed k2
in the high frequency region; (b) the sensitivity to variation of k1 changes widely. (For a small

k2, the bandwidth variations would be limited to the low frequency region and the sensitivity

would always be low.) All cases are summarized in the table 1. When one of the parameters

is small the sensitivity of the plant respect to that parameter is small, if its value is large then

the the system is not sensitive to that parameter.

k1 k2 Sensitivity

small small

� very sensitive to small

changes in k1 or k2
i.e. SG

k1
! 1 and SG

k2
! 1

small large

� very sensitive to small

changes in k1 i.e. S
G

k1
! 1

� not sensitive to

changes in k2 i.e. S
G

k2
! 0

large small

� very sensitive to small

changes in k2 i.e. S
G

k2
! 1

� not sensitive to

changes in k1 i.e. S
G

k1
! 0

large large

� not sensitive to

changes in k1 or k2
i.e. SG

k1
! 0 and SG

k2
! 0

Table 1: Comparison of the sensitivity function for di�erent values of k1 and k2

In practice, sti�ness is always limited by functional considerations, so the designer must

choose where to place the sensor (choosing between line 2 and 3 of Table 1). Figure 2.a

shows that a soft transmission with a sti� end portion (k1 � k2) is very sensitive in the high

frequencies to slight changes in k1, while a sti� transmission with a soft end-portion, not only

increases the bandwidth of the response but also decreases the sensitivity to very small values,

as on Figure 2.c. Therefore, as mentioned before, precise control is in con
ict with bandwidth

and robustness. It can be concluded that ke expressing the degree of collocation of the force

sensor has a major in
uence on the ability for a transmission to be force-controlled.

This ke-dependence has been noticed by many researchers while implementing force control

on a manipulator (Eppinger and Seering, 1987): a sti� force sensor clamped at the wrist and
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Figure 2: Plots for the transfer function, sensitivity function, and G(s)(1�SG
k1
(s)) with respect to k1. Notation:

Sensitivity function S
G

k1
(s) ���, Transfer Function G(s)|, G(s)(1+S

G

k1
(s)) ��� ���, G(s)(1�S

G

k1
(s)) ���,

a) k1=1:0� 103, b) k1=2:6� 104, c) k1=4:6� 106

separated from the actuator by a soft transmission will make the control di�cult, and if at

all possible, the response will either be highly sensitive to the load variations (hence the hard

contact bouncing so often discussed) or e�ective only in the very lowest range of the frequency

domain. A force sensor located near the actuator and separated from the load by the structural

elasticity of the manipulator has exactly the opposite property: the sensitivity to the load is

low (so a single tuning will work for a wide range of loads but disturbance rejection is less good

so it cannot be precise) and the response range is wide.

A parallel can be drawn between the e�ect of a gear ratio for position control and the

e�ect of ke in force control. A high gear ratio makes the position control insensitive to load

variations and other disturbances (so it is easy to control), while a direct drive robot will be

maximally sensitive to the same factors (so it can be accurate and the disturbance rejection

can be good but is hard to control). Therefore, the collocation factor ke plays for force control

a role analogous to r for position control.

3.3 E�ect of B

This e�ect of damping B on the properties of the transmission are now studied. Consider SG
B

given by

SG
B
(s) =

�Br2s(Ics
2 + (ke + kz))

r2IMIcs4 + r2IcBs3 + (keIc+ r2IM(kz + ke))s2 + r2B(ke + kz)s + kzke
(7)

The sensitivity curves for the nominal plant parameter values are similar to the curves produced

by SG
k1
, so they are not reproduced here. The variations of B a�ect the bandwidth of G(s) in

the same way the variations of k1 a�ect it, in fact: SG
B
= SG

k1
(�Br2s).

However, limB!0 S
G

k1
= 0 and limB!1 SG

k1
= 0. For a soft transmission with a sti� end

portion, the plant response is mostly a�ected in the vicinity of the cut-o� frequency (where

half of the input signal is dissipated). Damping should be low. If it is high, small changes will

5

ASME J. of Dynamics Systems, Meas. and Contr. 120(2):241--249. 1998.



have large e�ects on the plant's response, possibly unpredictably destabilizing the closed loop

response.

3.4 E�ect of kz

We now consider the e�ect of load changes on the response.

SG
kz
(s) =

kz(k
2
e
r2IMs

2 + k2
e
r2Bs)

r2IMI2c s
6 + r2I2

c
Bs5 + (keIc(keIc + r2IM(ke + 2kz)))s4 + r2BkeIc(ke+

+2kz)s3 + kzke(2Icke + r2IM(kz + ke))s2 + r2Bkzke(ke + kz)s+ k2
z
k2
e

(8)
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Figure 3: Transfer function, sensitivity function, and G(s)(1� S
G

kz
(s)) with respect to kz .

Notation: Sensitivity function S(s) ���, Transfer Function G(s)|, G(s)(1+S
G

kz
(s)) ������, G(s)(1�S

G

kz
(s))

���, a) kz=0.01, b) kz=1:0� 109

Sti�ness values cannot be chosen to be zero or in�nity since they would lead to an absence

of transmission. Sensitivity is studied for very large and very small values.

Figure 3 shows that the sensitivity to this parameter is very high for small values, while it

vanishes at high values. The sensitivity has a resonant shape with the peak in the vicinity of

the plant's �rst natural resonance. In (3), the independent term, both in the numerator and

the denominator, depends on kz, so if kz is small, the plant will have two zeros and one pole.

This means that the response is essentially unknown when the load is soft so the transmission

is unable to apply precise forces to the load in that case.

3.5 E�ect of Feedback

Feedback has an e�ect on the sensitivity to B and to kz. These parameters are not freely chosen
in the design of transmission: kz is unknown, and B should be set as low as technology allows.
In contrast, r and ke are free design parameters which a�ect what can be done by feedback.
In order to investigate the e�ect of feedback on sensitivity, a proportional controller of gain K
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Figure 4: Feedback connection of the plan G(s) and the controller C(s).

is analyzed because of its simplicity (See Figure 4, where C(s) = K). The closed loop transfer

function T (s) = KG(s)

1+KG(s)
, from Fd (desired force) to Fm (measured force), is:

T (s) =
(keIcs

2 + kzke)K

r2IMIcs
4 + r2IcBs

3 + (keIc(1 +K) + r2IM (kz + ke))s2 + r2B(ke + kz)s+ kzke(1 +K)
(9)

For a closed loop transfer function, where � is some parameter under study, ST
�
= ST

G
SG
�
.

Since SG
�
was computed for B and kz we only need to compute ST

G
. Setting C(s) = K leads

to ST
G
= 1=(1 +KG). To reduce the sensitivity with respect to parameter B or kz we need to

minimize ST
G
by setting K to some optimum value. Since the denominator of ST

G
is the same

as T (s), a value for K must be found that will also not only preserve stability but achieve a

desired stability margin.

The choice of K only a�ects sensitivity with respect to B beyond the cut-o� frequency of

the closed loop system. For kz sensibility, Figure 5 shows that for a small value, the single gain

feedback controller neither improves the response, nor sensitivity. It is therefore concluded that

more elaborate controllers must be considered.
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Figure 5: Plots for the transfer function T(s) and sensitivity function S
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(s) respect to kz.

a)kz = 0:01, and b)kz = 109 for a constant controller with values 1, 10, 100. Notation: K = 1|, K = 10���,

K = 100� � � � � �

We consider the next level in complexity which could be a lead compensator of the form

C(s) = (s+ z)=(s+ p). It is found that the sensitivity function becomes:

ST
G
(s) =

(s+ p)D(s)

(s+ p)D(s) + (s+ z)N(s)
(10)
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Any change in p or z will a�ect sensitivity in the same order as a simple gain K with the

disadvantage of complicating the tuning.

In the absence of further information about the exact nature of the plant, the simple gain

controller K should be preferred over a complex controller. This simple controller will improve

the response, and decrease the sensitivity to high kz's, while its tuning is particularly simple.

It will only involve raising the value of K under the worse stability conditions (smallest needed

kz) until the closed loop stability is compromised, while observing the response in the time

domain, for example.

The loopshaping control design technique will be shown in the next section to result in a

controller capable of a large reduction in the kz sensitivity, even for small values because it will

result in a sti�ening of the plant, making it less sensitive to load variations, as well as in the

cancellation of its resonant characteristic.

4 Controller Design on a Case Study

We now design a controller for a tendon transmission. A tendon transmission has by nature a

signi�cant amount of elasticity and therefore is subject to the previous analysis. The objectives

are to improve the extent and the precision of the response, to reduce the apparent friction of

the transmission when it is back driven, to reduce its apparent inertia, and to reduce sensitivity

to load variations.

4.1 Tendon Transmission

The purpose of the tendon drive is to transmit mechanical signals from a remote location, so

that the actuators can be mechanically grounded and large amounts of power can be transmitted

by small amounts of material.

τF

m(F   )

Position 

Sensor

Tendon

Load

Sensor

Force

Actuators

Amplififer

Figure 6: Transmission structure.

The transmission is of type 2N (Jacobsen et al., 1989), with two actuators per channel, as

illustrated in Figure 6. Each motor is driven by a half-wave signal. This type of transmission

minimizes the average tension since only one tendon is stressed when force is transmitted.

Seen as noise on the force signal, friction will grow with the intensity of the transmitted force.

The mechanical signal-to-noise ratio is roughly constant across its dynamics range instead of

decreasing with the signal intensity as in a conventional transmission.
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A current ampli�er inverts by feedback the electrical transfer function (roughly an RL

circuit) of the actuators and insures that current, and therefore torque, tracks precisely the

input control signal across a bandwidth much larger than the mechanical bandwidth of the

drive. Displacement and force are measured directly on the tendon path via optical sensors

developed in our laboratory.

4.2 Approximate Model

The input-output behavior (from F� to Fm) of the tendon transmission exhibits a complex

hysteretic-like behavior. See Figure 7 for a input-output phase plot measured at low frequency.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

Reference Force (N)

R
e

s
p

o
n

s
e

  
F

o
rc

e
 (

N
)

Frequency=1HzFrequency = 1Hz

Reference force

R
es

po
ns

e 
Fo

rc
e

Figure 7: Hysteretic behavior of the plant.

Such a system may be viewed as the combination of sub-systems, which once combined cre-

ate an apparently complicated behavior. It includes a linear sub-system representing elasticity,

damping and inertia of its mechanical components which combine to form a low pass �lter. The

empirical transfer function of the system, obtained with a sti� load is well de�ned and does

not change with time. It includes a resonant characteristics that can be precisely identi�ed for

a given input amplitude, but which shifts from 15 Hz to 35 Hz depending on the amplitude of

the input, due to nonlinearities, as shown on Figure 8.

It was veri�ed that nonlinear sti�ening of the material used to make the tendons was not

signi�cant. The cause for a nonlinear response is friction. Friction has been extensively studied

and various models have been proposed. The reader is referred to the extensive survey by

Armstrong-H�elouvry et al. (1994) for a summary.

We adopt the simplest representation of friction: the \breakaway" model. With this model,

the system is viewed to transmit torque (or force), while motion is not considered. The input

torque is transmitted to an output torque minus a torque lost in dissipation. When the input

torque is under a threshold (under the breakaway level), no torque is transmitted to the output

so the friction balances exactly the input torque. This results in an input-output force-force

friction model represented as a dead-band as shown on Figure 9, which is a single valued

relationship. The cascade of a linear �lter with a nonlinear single valued relationship results in

a so-called Weiner model.
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Figure 9: Plant representation: Wiener model (Wiener, 1958)

Such a cascade will create a hysteretic-like behavior. Considering a slow ramping input:

while in the deadband, no signal is observed at the output; this has the e�ect of shifting

the response on the right. When the input reverses, the system enters the deadband again,

shifting the response to the left, and so on, forming a hysteresis-like loop with the input-output

relationship forking at each reversal of the input.

In order to verify that the transfer function actually decomposes in the needed fashion, a

linear model ĜL(s) of the plant is identi�ed (using conventional identi�cation methods) and

the same input is presented to the plant and to the model. The phase plot of the output of the

plant is traced against the output of the model using a set-up illustrated on Figure 10. The

optimal model ĜL(s) (Equation (11)) will minimize the area of the phase plot at all frequencies

and amplitudes. See Figure 11 for the experimental result.

input output

^
L

LG

G

PHASE PLOT

LINEAR PART NON LINEAR PART

PLANT

EXPERIMENTAL
APPROXIMATION

Figure 10: Block diagram representation of the input-output phase plot
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Ĝ(s) =
35530:57

s2 + 56:54s+ 35530:57
(11)
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Figure 11: Experimental input-output phase plots taken with input frequencies a) 0.2 Hz., and b) 1 Hz.

4.3 Controller Synthesis

The primary objective of the controller is to extend the frequency response to the widest range

possible. One way to achieve this is to sti�en the transmission by compensation with the

following expected consequences.

� Sti�ening should have the e�ect of reducing the hysteretic-like behavior of the plant.

� Arbitrary controllers having dynamics, for example a PD, a PI, or any other �lter, are

liable to create complex behaviors including instabilities, limit cycles, or even chaotic

patterns (Towsend and Salisbury, 1987, Armstrong-H�elouvry et al., 1994). A sti�ening

controller should minimize these e�ects.

� The increase of the closed-loop sti�ness of the transmission should result in a reduction

of the sensitivity to the load.

A loop shaped controller is based on an approximate inversion of the plant in order to achieve

a desired response. For a well chosen response, it will result in sti�ening the transmission in

the largest frequency range the plant can achieve.

Two controllers are designed and experimented with: a proportional controller for reference

and comparison, and a loop shaped controller.

4.3.1 Proportional Controller

The tuning involves choosing a phase margin and selecting the highest gain possible. The

experimental closed loop Bode plot is shown in Figure 12. As predicted, it has a marked resonant

characteristic. An e�ective apparent friction reduction is achieved. The usable frequency range,

which was 40 Hz open loop, is slightly improved. It is robust and noise free.
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Figure 12: Closed loop Bode plot of the force response with a proportional controller.

4.3.2 Loop Shaped Controller

Loopshaping is applied to design a feedforward controller (Doyle et al., 1992). The idea is

to choose a loop transfer function L(s) so that we can achieve a robust performance, good

robustness with T (s) small at high frequencies, and disturbance rejection at low frequencies

making ST
G
small, which is not possible to achieve just by modifying the system parameters as

we have shown in Section 3. The condition to design a controller with robust performance are

to have an internally stable plant and to enforce the following inequality:

jjjW1Sj+ jW2T jjj1 < 1 (12)

W1 is a weighting function used to determine internal stability by enforcing nominal per-

formance such that jjW1Sjj1 < �, where � is the maximum amplitude of the error signal

over the whole frequency range. W2 is another weighting function to enforce robust stability,

jjW2T jj1 < 1. T is the closed loop transfer function and S the sensitivity function ST
G
. L(s)

can then be determined using a graphical method.

The controller C(s) is obtained from C(s) = L(s)

P (s)
, with P (s) = Ĝ(s). The controller has to

be proper and internal stability of the plant has to be ensured. This method is suitable for our

purpose since the plant G(s) is stable and minimum phase, as can be seen in Figure 8, and has

all its poles and zeros in the right half plane.

Referring to Figure 10, the objective is to cancel the low pass dynamics of the plant in order

to achieve sti�ening, so that the feedback will only see a univalued input output relationship

in the frequency range the plant can achieve. This concept is represented in Figure 13. Given

a model Ĝ, the ideal controller is simply Ĝ�1
L
(s); however, since the plant is low pass, it would

not have a proper transfer function and would not be realizable. We must therefore settle for

an approximate inverse in the desired frequency range and poles are added to achieve this.

We chose L(s) to behave as a second order system of the form:

L(s) =
!2
n

s2 + 2�!ns+ !2
n

(13)

with a natural frequency !n = 40Hz, and � = 0:5. This is a good response in open loop and is

what we can expect for this plant. Physically, the plant cannot achieve more than a few Hertz
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beyond its original natural frequency, for this reason we did not place the response of L(s)

further than 40Hz. Moreover, in closed loop the bandwidth will increase. As we demonstrated

experimentally, we can achieve almost the same bandwidth for an L(s) with !n = 40Hz than

for !n = 80Hz: The di�erence is that the closed loop response has dithering behavior when we

used a higher !n. This happens because the noise that appears after 40 Hz is ampli�ed, and

because we were breaking the condition needed to achieve a robust performance as speci�ed by

the loopshaping technique.
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Figure 14: Closed loop Bode plot using C(s) =
L(s)

P (s)
.

The controller was designed using an approximation to the plant obtained with a large

input amplitude, when nonlinear disturbance is minimized. It is nevertheless e�ective for

all amplitudes. The experimental response of the system in closed loop using the controller

described above is presented in Figure 14. No matter which amplitude is applied to the input

of the closed loop system, the result is always almost the same. The range of uncertainty in

amplitude (Figure 8), which was due to friction was quite large, but this range has been reduced

to a negligible level. The bandwidth of the system which was never better than 20 Hz (for a

phase shift of -180o) is now extended to 150 Hz.

Finally, we can inspect the input-output phase plot of the closed loop system and compare

it to the original open loop behavior, for two di�erent frequencies and amplitudes as in Figure

15. The deadband presented in open loop as well as the hysteresis-like behavior is corrected

to give a linear behavior. The small area that appears in the closed loop signal is due to some

phase shift between the input and the output and is not due to hysteresis. We have been able

to improve the system response and compensate for nonlinearities, not just for some frequencies

and amplitudes but for a wide range of them.
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Figure 15: Comparison of open and closed loop. a) Small amplitude with F=0.2 Hz., and b) Large amplitude

with F=1 Hz.

5 Conclusion

A model for force transmission systems was presented. A sensitivity analysis was carried out

to understand how the parameters a�ect the behavior of the system. It was found that for the

value of r, a tradeo� between friction rejection, inertia reduction and saturation in the actuator

has to be achieved. ke (the force dividing factor) was found to be an expression of the degree

of collocation of the force sensor along the transmission. Sensitivity analysis enable us to show

the e�ects of collocation on a transmission ability to transmit forces. The e�ect of a variable

load kz can be reduced only by a feedback controller. The proportional controller is the only

one which can reduce the sensitivity function ST
G
, without any complicated tuning.

The criteria to choose an appropriate approximation of the plant was presented. The �nal

design of the controller for this plant was done using the loopshaping technique. This controller,

because of its robustness and disturbance rejection, compensates for the nonlinearities that

appeared in open loop and also reduces the uncertainty range of the response.
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