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The ability to extend sensory information processing beyond the nervous system1 has been 
observed throughout the animal kingdom, such as when rodents palpate objects using their 
whiskers2 or when spiders localize prey with their webs3. We investigated whether the ability to 
sense objects with tools4–9 represents an analogous information processing scheme in humans. 
Rather than mere distal links between the hand and environment10,11, we propose that tools are 
treated by the nervous system as sensory extensions of the body. Here we provide evidence from 
behavioural psychophysics, structural mechanics, and neuronal modelling in support of this 
claim. We first demonstrate that tool users can accurately sense where an object contacts a 
wooden rod with surprising accuracy, just as is possible on the skin. We next demonstrate that 
impact location is encoded by the tool’s modal response upon impact, reflecting a pre-neuronal 
stage of mechanical information processing akin to sensing with whiskers2 and webs3. Lastly, we 
used a computational model of tactile afferents12 to demonstrate that impact location can be 
rapidly re-encoded into a temporally precise spiking code. This code precisely predicts the 
behavioural of human participants, providing evidence that information encoded in motifs 
shapes localisation. Thus, we show that this remarkable sensory capability emerges from the 
functional coupling between material, biomechanical, and neural levels of information 
processing13,14. 

Historically, researchers across scientific disciplines have focused almost exclusively on motor aspects 
of tool use15,16, despite the fact that tools convey behaviourally-relevant sensory information to the 
user when contacting a surface17. Indeed, tactile signals are critical for both hand and tool use since 
they provide information about objects that is unavailable in other modalities. One familiar example, 
first discussed in the seventeenth century by René Descartes18, is a blind person’s ability to perceive 
the environment through the tip of a cane19 (Fig. 1a). Despite almost four centuries since the 
publication of Descartes’ treatise, scientists have only recently begun investigating how hand-held 
tools are used to sense properties of the environment, such as object texture6, position8, and distance4. 
Tool-mediated sensing is therefore a poorly understood facet of daily human experience. 
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Figure 1. Methods and behavioural results 
(a) Descartes’ blind man using two canes to triangulate the distance of an object. Image adapted from an illustration made 
by Descartes. (b) Hypothetical models of localisation. Left: Coloured regions correspond to where contact is felt, as 
predicted by each model. White regions are perceptually “invisible” to the user. Right: Expected patterns of results when 
modelling perception as a function of actual impact location. Unlike the other two hypotheses embodiment predicts that 
impact localisation will manifest as a linear function (blue line) for the entire body of the tool, mirroring what we observe 
for tactile localisation on a body part. (c) Three phases composed each trial, including object contact (top row) and 
localisation with the cursor (red circle; bottom row). (d) Group level affine regressions for Experiment 1 (n=10). Dashed 
lines correspond to the 95% confidence interval. The grey line corresponds to the equality line. (e) Slope for each 
participant from Experiments 1–5 (n=60). The distalisation model’s prediction (i.e., chance performance) is shown by the 
orange line. (f) Model comparisons (AIC-difference: Projected - Embodiment) for every participant in Experiments 1–5 
(n=60). The majority of comparisons favoured sensory embodiment (blue) with substantially less either favouring sensory 
projection (purple) or providing equivocal evidence (grey). (g) Experiment 6 (n=10): Participants failed to differentiate 
between distinct locations when contact was made with the rod’s non-rigid portion (purple; unpredictable dynamics). In 
contrast, localisation had a positive slope when contact was made with the rigid portion (green; predictable dynamics). (h) 
Judgments shown in g were above the equality line because participants overestimated the contribution of the rigid portion 
to the rod’s overall length (76.3% ± 4.8). Judgments overlapped with the equality line (gray) when normalised to the felt 
rigid-to-length ratio. Error bars in g and h correspond to one s.e.m. 

When using a rod to manipulate an object, do humans perceive where the object contacts its surface? 
Several distinct patterns may characterise perception during tool-mediated sensing (Fig. 1b). First, 
based upon a longstanding hypothesis (sensory distalisation)10, localisation may be confined to the tip 
of the rod regardless of the actual contact location. Alternatively, localisation may be “projected” to 
the proximal and distal regions of the rod (sensory projection), following the known deployment of 
spatial attention along a tool11. We combine multiple lines of evidence to characterise how humans 
use a tool to extend somatosensory processing. 
When measuring tactile localisation, it is common to require participants to indicate on a graphical 
representation of a limb where they were touched20. We adapted this task to the case of hand-held 
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wooden rods (see Methods; Fig. 1b, Extended Fig. 1a). Participants localised impacts (seven distinct 
locations) on a downsized graphical representation of a rod, a task that requires mapping tactile signals 
within a coordinate system that is intrinsic to the space of the tool and not the external space it occupies. 
Localisation occurred following contact with an object through either self-generated action (active 
sensing) or passive reception of impact (passive sensing). Comparing these sensing modes let us infer 
the roles of sensory and motor signals in the perception of impact location. 
In all experiments, we used affine regression to assess localisation performance. The slope reflects the 
perceived separation between landmarks and is therefore a measure of performance. Our analysis 
compared estimated slopes to random (slope: 0.25) and ‘ideal’ localisation (slope: 1). In doing so, we 
could test each hypothesis of tool-mediated sensing as only sensory embodiment predicts accurate 
localisation. We further adjudicated between sensory embodiment and projection (Fig. 1b) by 
comparing the Akaike information criterion of each model (DAIC) for each participant. 
In an initial experiment (n=10) participants used both sensing modes (order counterbalanced) 
following a five-minute familiarization phase. Active sensing produces a rich array of motor (e.g., 
efference copies) and transient sensory signals (e.g., cutaneous vibrations) that could be used to extract 
impact location. Localisation during active sensing was highly accurate (slope: 0.93±0.09; one-sample 
t-test versus random: P<0.001; Fig. 1d), reflecting near-ideal performance (versus 1: P=0.46). 
Compared to active sensing, passive sensing largely removes motor-related signals while preserving 
most of the sensory signals. Participants consistently underestimated the distances between impact 
locations (slope: 0.57±0.04), as expected when informative cues are removed21. Nevertheless, 
performance during passive sensing was still accurate (versus random: P<0.005), though substantially 
lower than in the active condition (paired t-test: P<0.005). These results clearly favour sensory 
embodiment over distalisation. 
Follow-up experiments provided a more complete picture of extended sensing (Extended Table 1). To 
demonstrate the robustness of our initial findings, we replicated them for both active (Extended 
Fig. 2a) and passive sensing (Extended Fig. 2b). In a fourth experiment, we found that participants 
localised contact on a rotated drawing with equal accuracy as when the drawing was displayed parallel 
to the rod (paired t-test: P=0.44; correlation: r=0.89; Extended Fig. 2c-e), providing further evidence 
that users internally represent the rod in tool-centred coordinates.  
Finally, we probed the importance of sensorimotor predictions for extended sensing9. In a fifth 
experiment, we found that accurate location sensing did not depend on prior experience wielding the 
rod (Extended Fig. 2f), likely because the adult nervous system has internal mechanisms for predicting 
the structural dynamics of wooden rods. To link these dynamics to impact location, however, the 
nervous system must assume that the rod is uniformly rigid (see Supplementary Data). We violated 
this assumption in a sixth experiment by requiring participants to wield a rod whose handle and first 
half was rigid (wood) and second half was non-rigid (foam; Extended Fig. 1b). Prior to the localisation 
task, users held the rod by its handle but never saw or wielded it. The structural dynamics of its wooden 
half were therefore predictable, whereas they were unpredictable for the foam half (Extended Fig. 2g). 
Accurate localisation was impossible when contact was on the foam half (Fig. 1g). In contrast, users 
accurately rescaled their localisation on the wooden half (Fig. 1g-h), demonstrating that the nervous 
system adapts its expectations about dynamics when novel tools violate the rigidity assumption. 
Our behavioural experiments converged to a similar conclusion. Almost every participant’s 
performance was above chance (Fig. 1e), ruling out the sensory distalisation model. Furthermore, 
sensory embodiment was the significantly better model than sensory projection in the vast majority of 
datasets (54/70 versus 3/70; mean DAIC: 7.62±0.76; Fig. 1f). These results are in line with the 
predictions of sensory embodiment and provide strong evidence that tools function as sensory 
extensions of the body.  
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The high accuracy observed in each experiment demonstrates that sensory embodiment is largely 
independent of sensing mode. The differences between active and passive sensing do, however, have 
implications for the information used during extended sensing. Superior performance during active 
sensing (Extended Fig. 2g) suggests that human tool-users utilize information encoded in both sensory 
and motor signals8. Nevertheless, the remarkably high accuracy during passive sensing suggests that 
sensory signals, alone, encode a substantial portion of spatial information.  
How does a tool communicate impact location to the hand? Tactile mechanoreceptors in the human 
hand22 are highly sensitive to the cutaneous vibrations23 elicited during object manipulation.  
According to the Euler-Bernoulli beam theory, a rod resonates according to well-defined modes when 
contacting an object (Supplementary Data Section 1). Crucially, the relative amplitude and phase of 
each mode depends almost exclusively on where contact occurs along the rod, relative to its length 
(Fig. 2a; Extended Fig. 3). The modal response thus encodes an invariant signal of location24, 
suggesting that rods are a highly robust means to extend somatosensory processing provided that users 
can predict key aspects of their material and geometry (Experiments 5–6). We therefore hypothesized 
that during tool-extended sensing, a rod mechanically transduces impact location into vibratory motifs 
(Fig. 2a-b) that are decoded by the somatosensory system. 

 
Figure 2. Vibratory motifs emerge rapidly during extended location sensing 
(a) The amplitude of the first through fourth resonant modes as a function of impact location (see Supplementary Data). 
Impact at each location along the rod produces a unique combination of modal amplitudes, which we term vibratory motifs. 
(b) Hypothetical feature space of motifs constructed from the modes shown in a.  The geometry of this space is, 
theoretically, identical for all uniform rods used by humans. Impact at any location (circles) from the handle (H) to tip (T) 
produces a motif that is situated in a unique position within the feature space. The coloured dots correspond to the impact 
locations used in our experiment. (c) Vibrations on the tool (green) and index finger (purple) were measured simultaneously 
following impacts at seven distinct locations (L1–L7). (d) Motifs from EA’s dataset for L1 and L3. Similar patterns were 
observed for LO and AY. (e) The accumulation of location information within motifs was rapid for each participant and 
when all datasets were combined (orange), demonstrating that each participant’s motifs share location-specifying features. 
All cases rivalled what was observed for vibrations when the tool was fully clamped (brown; see pilot experiment in 
Supplementary Data Section 3), suggesting that the information encoded by motifs is strengthened by the biomechanical 
properties of the hand. 

We recorded vibrations on the handle of a rod and the index finger of three human participants while 
they performed either passive (participants LO and AY) or active (participant EA) extended sensing 
(Fig. 2c; Extended Fig. 1c). Behavioural results for each participant were within the range observed 
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previously (Extended Fig. 2i). Impact at each location produced distinct vibratory motifs (Fig. 2d) that 
were highly consistent across trials (Extended Fig. 4). Support vector classification found that the 
location-specific pattern of each motif emerged extremely rapidly, with classification accuracy 
reaching 90% within ~8 ms post-impact (Fig. 2e). High classification accuracy was also found for 
patterns of a motif’s phase-locked temporal encoding (Extended Fig. 5a-c), a subspace of the modal 
response whose analysis is computationally efficient and neurophysiologically plausible 
(Supplementary Data Section 2). Similar results were found for cutaneous vibrations (Extended 
Fig. 6). Vibratory motifs are therefore an informationally rich signal that is likely exploited during 
tool-extended sensing.  
What message does a tool send to its user’s brain? Our findings thus far provide evidence that a rod’s 
modal response reflects the initial transduction of information about impact location. This finding is 
comparable to object localisation during whisking by rats, where it has been suggested that information 
is initially processed pre-neuronally by the mechanics of the whiskers2. If vibratory motifs are to guide 
behaviour, mechanoreceptors in the hand must transduce them into neural response patterns that 
preserve the location-specifying information, a large portion of which is carried by a motif’s phase-
locked encoding (Extended Fig. 5). Pacinian mechanoreceptors are good candidates for this 
transformation given their broad frequency tuning25, temporally precise spiking26, and phase-locked 
response properties27. They have been proposed to play an important role in encoding vibrations 
transmitted through hand-held objects5. We leveraged a biologically plausible skin-neuron model of 
the hand (TouchSim)12 to simulate how impact location may be re-encoded by mechanoreceptors 
during extended sensing.  
We simulated the spiking responses of a population of forty-two Pacinian mechanoreceptors (Fig. 3a) 
to the mechanical vibrations described above. Simulated spikes showed a temporally precise phase-
locked relationship with the motifs (Fig. 3b; Extended Fig. 5a-b). The population response started 
6.2±0.8 ms post-impact, suggesting that pre-neuronal and neuronal representations of object location 
co-evolve in time. Importantly, substantial location information emerged in the population’s response 
within ~25 ms (Fig. 3c) and was dependent upon the millisecond precision of spiking (Fig. 3c, inset; 
Extended Fig. 7). This time course is in line with the responses of mechanoreceptors during object 
manipulation with the hand28, suggesting that the nervous system can extract sensory information from 
a tool with a similar speed as the body itself. Pacinian mechanoreceptors may therefore reduce the 
dimensionality of motifs while preserving information about impact location (see Supplementary Data 
Section 2).  
Each participant’s trial-by-trial judgments were predicted surprisingly well from the corresponding 
simulated population spiking pattern (multivariate regression with forty predictors: all R2>0.8; all 
predictive-R2>0.6; Fig. 3d; Extended Table 2), which provided significantly better fits than firing rate 
(Extended Fig. 8). Similar results were found when motifs were instead used as predictor variables 
(Fig. 3e; Extended Fig. 5d). Furthermore, both spike-timing and motifs accurately predicted the trial-
by-trial directional errors (all R2>0.75; all predictive-R2>0.55), further underscoring their importance 
for behaviour. 
In conclusion, we have provided behavioural, mechanical, and computational evidence that humans 
utilise tools as sensory extensions of the body. Our results suggest that the human nervous system 
contains finely tuned mechanisms for decoding vibratory motifs, including sensorimotor internal 
models that can anticipate the structural dynamics of rods9,29. Object localisation with a rod therefore 
represents an important human model of extended sensing1, where information processing is 
distributed across the mechanical response of the tool, the biomechanics of the extremities, and the 
neural circuits of the sensory-motor system13. Morphological and neural changes in the hand during 
human evolution30 may reflect selection pressure to maximize the functional coupling and embodiment 
of tools16. 
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Figure 3. Impact location is encoded in the spike-timing of tactile mechanoreceptors in the hand 
(a) The distribution of forty-two simulated Pacinian mechanoreceptors in the middle phalanx of the 
index finger. This image has been produced using TouchSim12. (b) Mechanical vibration (first 150 ms 
post-impact) on a randomly chosen trial from LO’s dataset. Vibrations led to temporally precise 
response patterns across the individual afferents (orange raster plot) and the population response (top). 
(c) We could accurately decode impact location from the population spike-timing. (Inset) The 
classification error rate increased dramatically for kernel widths greater than four milliseconds. (d-e) 
Model fits for each participant’s behaviour as a function of the number of predictors (140 data points 
per test): (d) Spikes and (e) Motifs. Solid lines correspond to R2 and dashed lines correspond to 
predictive-R2. 
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Methods 
Participants 
Sixty-three participants in total completed our behavioural experiments: Ten in Experiment 1 (9 right-
handed, 4 males, 27.2±3.1 years of age), ten in Experiment 2 (10 right-handed, 5 males, 27.8±2.6 years 
of age), ten in Experiment 3 (9 right-handed, 4 males, 26.5±2.5 years of age), twenty in Experiment 4 
(all right-handed, 12 males, 22.6±2.1 years of age), and ten in Experiment 5 (9 right-handed, 7 males, 
29.1±2.7 years of age); these same ten participants also completed Experiment 6 (order 
counterbalanced). A further three right-handed participants completed a more in-depth psychophysical 
experiment: LO (female; 24 years of age), AY (female; 25 years of age), and EA (male; 20 years of 
age). All participants had normal or corrected-to-normal vision and no history of neurological 
impairment. Every participant gave informed consent to participate in the experiment. The study was 
approved by the ethics committee (CPP SUD EST IV, Lyon, France).   

Apparatus and impact localisation task 
The setup for each behavioural experiment (Extended Fig. 1a) was as follows: Participants were either 
seated comfortably in a cushioned chair (Experiments 1–4, and 7) or standing in a comfortable posture 
(Experiments 5 and 6). Their right arm was placed in a padded arm rest and hidden from view with a 
long occluding board. An LCD screen (47 x 30 cm) lay backside down nine cm from the edge of the 
table and in the length-wise orientation (centred on the participant’s midline). This orientation allowed 
us to display a long computer drawing of the tool that was viewed by the participants during the task 
(see below).  
Several types of wooden rods were used in the experiments. Their details are as follows: In 
Experiments 1–3 and 7, the wooden rod (Byron & Byron; Model: tiara draw rod) had a 10-cm handle 
and an 83-cm body (0.6 cm radius). In Experiment 4 the wooden rod had a 12-cm handle and a 60-cm 
body (0.75 cm radius). In Experiment 5 the wooden rod had a 12-cm handle and an 83-cm body 
(0.75 cm radius) that was insulated from handle-to-tip with a lightweight foam covering. In 
Experiment 6, we used a hybrid tool that was ~half rigid and ~half non-rigid. The rigid portion of the 
rod was wood with 12-cm handle and a 38-cm body (0.75 cm radius). As before, the rod was insulated 
with a lightweight foam material that covered both the wooden portion and extended a further 45-cm, 
thus forming a non-rigid portion. The dynamics of each half were therefore very different, with only 
the rigid portion being predictable to the participant, given that it was the only portion they were 
exposed to prior to wielding (see below). The rod was held in the participant’s right (Experiments 1–
4 and 7) or dominant hand (Experiments 5–6) and was always fully blocked from view by the 
occluding board.  
The task in each experiment was to localise where an object contacted the surface of the tool by 
pointing to the corresponding location on the graphical representation of the tool. This drawing was 
scaled to 40% of the rod’s actual dimensions; it began 14.5 cm from the edge of the table and was 
raised 4 cm above the table surface. A red cursor (0.2 cm radius) was placed 10 cm to its right. The 
drawing was displayed in parallel with the actual rod in all experiments except Experiment 4. In this 
experiment, the drawing of the rod was rotated 90-degrees counter-clockwise on half of the trials 
(randomly interleaved with the parallel drawings). This manipulation allowed us to more rigorously 
characterise how the rod is internally represented. If localisation performance is independent of 
drawing orientation, that would provide strong evidence that the rod is represented in a tool-centred 
coordinate system. Indeed, debriefing interviews after the experiment found that most participants 
found both orientations as equally challenging. While it cannot be completely ruled out that localising 
on the rotated drawing was done using explicit mental rotation, it is unlikely since that the majority of 
participants reported that the task required little effort or attention to switch between response modes 
(i.e., upright and rotated). 
In most experiments (1–3 and 5–7) there were seven distinct impact locations (i.e., landmarks), ranging 
from 13 to 73 cm from the handle (by steps of 10 cm). In Experiment 4 there were six distinct 
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landmarks, ranging from 10 to 60 cm from the handle (by steps of 10 cm). This information was never 
given to participants. There were 10 trials per landmark in the first six experiments (70 trials total) and 
20 trials per landmark in the final experiment (140 trials total). The specific landmark for each trial 
was chosen pseudo-randomly.  
The object used to contact the rod in the first six experiments was a wooden block (3 cm width) with 
a tightly wrapped wool padding (~3.5 cm contact area) to minimize the sound of impact. The objects 
used in the final experiment were a narrow plastic stick (0.2 cm width) for two participants (LO and 
AY) and a wooden block (3 cm width) for one participant (EA). To further minimize auditory cues 
during the task, pink noise was played over headphones. Pilot studies confirmed that residual auditory 
cues were minimal and uninformative about impact location. 
Our experiments tested two distinct types of sensing impact location: Active sensing (Experiments 1, 
2, and 4–7) and passive sensing (Experiments 1, 3, and 7). During active sensing, the participant 
wielded the tool into contact with the object. They were instructed to briefly tap the object a single 
time and not rest the tool on it, meaning that active wielding required both self-generated active and 
reactive movements. During passive sensing, the experimenter manually moved the object into contact 
with the tool, transferring mechanical energy into the tool’s body that was passively received by the 
participant. The only tool movements in this sensing mode were passively reactive. In Experiment 1, 
where each participant sensed both actively and passively, each sensing mode occurred in distinct 
blocks (order counterbalanced across participants).  
Experiments 1–4 and 7 began with a sensorimotor familiarization session. During this session, 
participants were told to explore how the tool felt to contact a surface (padded edge) at different 
locations on the tool. Emphasis was placed on the vibratory aspect of the contact. Participants had full 
auditory and visual feedback throughout this familiarization session, which was self-paced and lasted 
for five minutes. Next, these participants were given a brief practice session (seven trials) with the 
localisation task to familiarize themselves with the trial structure (see below). The actual localisation 
task commenced following this practice session.  
In contrast, there was no sensorimotor familiarization or practice sessions in Experiments 5 and 6. 
Instead, participants were handed the rod only after the experiment was ready to commence, beginning 
the actual localisation task roughly two minutes after they were given the rod. At no time did they ever 
see or hear the rod. Only somatosensory feedback about the rod’s material and geometry was available. 
This allowed us to test whether specific familiarity with the rod was necessary for accurate localisation, 
or whether participants could use general knowledge about the dynamics of rods to sense impact 
location (see Supplementary Data).  
The trial structure in each experiment was as follows: In the ‘Pre-contact phase’, participants sat with 
their left hand on a trackball, their trunk centred on the drawing of the tool, and their right hand holding 
the tool situated behind the occluding board. A red cursor (circle, 0.2 cm radius) was placed 10 cm to 
the right of the tool drawing. A ‘go’ cue (tap on the right shoulder) indicated start of the ‘Contact 
phase’. They therefore had to either move the tool into contact with the object (active sensing; 
Experiments 1, 2, and 4–7) or wait passively to sense the impact (passive sensing; Experiments 1, 3, 
and 7), which occurred approximately one second following the ‘go’ cue. In the final phase of the 
trial—the ‘Localisation phase’—participants made their judgment about impact location. This was 
done by moving the cursor onto the graphical representation of the tool corresponding to the impact 
location and clicking the mouse. The drawing then briefly disappeared for 500 ms before reappearing 
in the same position, indicating the beginning of the next trial. Participants never received feedback 
about their performance or the correct impact location. 
Participants used a “hybrid” rod in Experiment 6 (see above for details). At the end of the experiment, 
participants used a tape measurer to report the felt length of the rigid and non-rigid portion separately. 
A debriefing interview following the experiment found that participants were confident in the length 
and material of the wood portion. Given that only somatosensory information about the material from 
the handle was available to participants in Experiment 6, as far as they knew the rod was only made 
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of wood—post-experiment interviews showed that this was indeed the belief of every participant at 
the beginning of the experiment.  They were therefore unsure of what the non-rigid portion of the rod 
was made of and used a purely cognitive strategy to infer that contact on its surface must be farther 
than the tip of the wood portion.  

Vibration recording apparatus and experiments 
We hypothesised that information about impact location would be encoded by the modal response of 
the rod when contacted. Vibrations were recorded using miniature tri-axis analogue accelerometers 
(Analog Devices; Model ADXL335). These devices have low mass (40.0 mg), wide frequency 
bandwidth (0–1,600 Hz in X and Y; 0–550 Hz in Z), and high dynamic range (−3.6 to 3.6 g). The 
signals were digitized with a 14-bit resolution and sampled at a frequency of 2.5 kHz over a five-
second window using a data acquisition device (National Instruments; Model USB-6009). Recording 
was restricted to the Z-axis as this contained the bulk of the impact response. Adhesive tape was used 
to keep the accelerometers in place on the surface of interest. For participants LO and AY, a single 
accelerometer was attached to the handle of the tool and one to the middle phalanx of the index finger 
(D2m; dorsal surface) and vibrations were recorded from each surface simultaneously. For participant 
EA, we decided to focus exclusively on mechanical vibrations. Therefore, a single accelerometer was 
attached to the base of the tool shaft. All data was recorded and processed using Matlab 2016b (The 
MathWorks).  
Vibration Experiment: Tool held in the hand 
The goal of this experiment was to investigate whether location information was encoded in 
mechanical vibrations during tool sensing (Extended Fig. 1c). Vibrations were recorded while 
participants passively (LO and AY) or actively (EA) sensed impact location. The behavioural task was 
identical to the behavioural experiments with the exception that there were twenty trials per each of 
the seven locations. In the passive sensing condition, each participant was trained to hold the tool as 
still as possible and with a similar grip force across trials. Great care was taken by the experimenter to 
ensure that this object contacted the tool with a similar force across trials. Recordings made directly 
from the tool occurred at its base and approximately two centimetres proximal from the beginning of 
the handle. The index finger was placed directly behind this accelerometer. In the active sensing 
condition, EA was trained to hold the tool with a stable grip force when resting and to contact the 
object with as similar of force as possible across all trials. Vibrations were recorded from a single 
accelerometer placed at the base of the tool shaft one cm distal to the handle. We set a minimum ten-
second interval between each trial to ensure that all vibrations had fully dampened.  
Signal processing 
We used the following steps to process the vibrations recorded on each trial of every experiment: First, 
we converted the signal from voltage into a unit of acceleration, g=9.81 m/s2. Second, we filtered the 
signal using a zero-phase FIR filter with a bandpass between 100–600 Hz. This specific bandpass was 
chosen because it isolated the second through fourth modes (Fig. 2a-b), it served to remove most of 
the motor components from the accelerometer readings, and pilot studies indicated that it best captured 
location information. Third, we aligned the onset of vibrations to the time-point zero and cut the signal 
with a window of -100 to 300 ms post-impact. Fourth, we used mean-subtraction to remove the 
baseline from the signal. 

Skin-neuron model 
We used a biologically plausible computational skin-neuron model12 (TouchSim) to simulate putative 
mechanoreceptor responses in the hand during tool-mediated sensing. Matlab code to implement the 
model is freely available online (http://bensmaialab.org/download/). The reader should refer to the 
original article for an in-depth treatment of the methods. Briefly, TouchSim simulates the spiking 
response and the spatial distribution of three different types of tactile afferents in the volar region of 
the hand: slow-adapting type one, rapidly adapting, and Pacinian. The responses for each afferent type 
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to a given stimulus are determined in two sequential stages: First, both the local deformation of the 
skin (static component) and the propagation of surface waves across the hand (dynamic component) 
are estimated. Second, this spatiotemporal pattern of stresses is used as input into afferent-specific 
integrate-and-fire models to determine the spiking response to the given stimulus. The model 
parameters of each afferent were derived from spiking data obtained in monkeys. The simulated 
responses of afferents closely match the known spiking responses (both millisecond precise spike-
timing and rate) of actual afferents to various classes of stimuli (e.g., vibrations, edges, textured 
surfaces).   
We modelled the responses of a population of Pacinian afferents to the mechanical vibrations measured 
in the vibration experiment. The population was composed of forty-two realistically distributed 
afferents in D2m; we confined our population to D2m as this was adjacent to where vibrations were 
measured from the handle. The response profile of each afferent was binned with a one-millisecond 
resolution, allowing us to investigate its spike-timing with high temporal precision. To more 
realistically simulate afferents, the temporal profile of their responses included stochastic noise and 
considered known mechanical and spiking delays. Population-level spiking was created by summing 
the spiking of each individual afferent. The rate code for each afferent was calculated as its firing-rate 
over time. 
The mechanical vibration dataset for each participant (LO, AY, and EA) was used as input for the 
model. Double integration with the trapezoidal method was used to convert acceleration (m/s2) into 
displacement (µm). A zero-phase FIR filter with a high-pass at 80 Hz removed any accumulation of 
low-frequency error in the signal during this process. The time window of each vibration was restricted 
to 0 to 150 ms post-impact. The modelled stimulus area had a radius of 7 mm and an indentation of 2 
mm and was centred on D2m. This size roughly approximates the actual stimulus area when grasping 
a tool. Virtually identical results were found for a stimulus area with a radius of 3 mm (data not shown).  
Data analysis 
Behavioural analysis 
To assess a participant’s ability to localise impact location on a tool, the mean localisation judgement 
for each of the landmarks was fit with a least-squares affine regression. The decision to fit our data 
with a linear model was made prior to collecting data and was because non-linear models did not 
provide better fits in pilot experiments. The judged impact location on the drawing was converted from 
pixels into ‘centimetres’, i.e., tool space, and was modelled as a function of actual impact location. 
The slope of the regression was used as our main measure of localisation ability, although identical 
results are found when analysing the intercept.   
To first assess whether the slope was greater than expected by chance (as is predicted by the sensory 
distalisation model), we created a bootstrapped distribution of the slopes of regressions fit to simulated 
datasets of random guesses (100,000 simulations). The upper 95% confidence interval of this 
distribution (i.e., 5000th highest ranked element) was a slope of 0.25; A one-sample t-test was used to 
compare the actual slopes to this value. Next, to assess whether performance was ‘near ideal’, we used 
a one-sample t-test to compare the actual slopes to 1 (i.e., the equality line) and the actual intercepts 
to 0. Paired t-tests were used in Experiments 1 and 4 to compare performance in the within-subject 
conditions. All statistical tests were two-sided. 
We further fit every participant’s data (first five experiments) with the predicted pattern of results from 
the sensory projection model (Fig. 1b, right inset). For Experiment 4, this was modelled as a proximal 
judgment of 10 cm for contact at the first three landmarks (actual location: 10, 20, and 30 cm) and a 
distal judgment of 60 cm for contact at the last three landmarks (actual location: 40, 50, and 60 cm).  
For all other experiments, this was modelled as a proximal judgment of 13 cm for contact at the first 
three landmarks (actual location: 13, 23, and 33 cm) and a distal judgment of 73 cm for contact at the 
last four landmarks (actual location: 43, 53, 63, and 73 cm). Akaike information criterion (AIC) was 
used to compare the fit of the sensory projection model with that of the sensory embodiment model 
(i.e., the equality line in a linear regression; Fig. 1b, right inset). The model with the lower AIC score 
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provides a better fit to the data. A significance cut off for the difference between fits (DAIC) was set 
to 3.22, which means that the better model is five times more likely to explain the pattern of judgments 
than the worse model.  
In Experiment 6, we sought to determine whether participants accurately rescaled their internal map 
of the rod to their estimated rigid to non-rigid ratio. All participants except one reported that the rod 
had both a rigid and non-rigid part and all participants over-estimated the actual contribution of the 
rigid portion to the rod’s overall length (0.76 ± 0.05). We hypothesised that a rescaling of this map 
would manifest itself as an over-estimation (i.e., above the equality line) of where on the drawing they 
localised impacts on the rigid portion. Each participant’s proportion estimate was used to normalise 
their localisation judgments to compare the actual and ideal pattern of rescaling. 
Analysis of vibrations 
We first investigated whether impact at distinct locations on a tool led to highly reproducible vibration 
patterns, termed vibratory motifs. We measured the cross-correlation between every possible unique 
pairwise comparison for vibrations (time window: 0–100 ms) within each location (190 per location, 
1330 in total). This was done separately for each surface and for each participant. The distribution of 
values was characterized by taking the median cross-correlation value and the interquartile range. 
We next classified impact location from vibratory motifs using a support vector machine31 (SVM) with 
a radial basis kernel. Our classification scheme used 5-fold cross validation. Thus, we trained the 
classifier on four subsamples of the data (i.e., 80% of the trials) and tested classifier performance on 
the leftover subsample (i.e., the remaining 20% of the trials). Each fold had an equal number of items 
per impact location. The hyperparameters of the SVM, C and g, were tuned using grid search; tuning 
occurred separately for each of the five classification iterations. We specifically sought to characterize 
when a location-specific pattern emerged in the rod’s modal response. The features for classification 
were therefore subsets of the modal response across multiple temporal window sizes (2 to 60 ms, in 
steps of 2 ms). Classification was performed using the e1071 package32 and its interface with 
LIBSVM33. This was implemented with R version 3.2.3.34. Chance classification (i.e., random 
guessing) was ~14%. 
Analysis of afferent responses 
Impact location was classified from the summed millisecond-precise spiking of the entire PC 
population (0–100 ms post-impact). As before, we used an SVM (5-fold cross validation) for 
classification with hyperparameters that were tuned using grid search. The features for classification 
were subsets of the spiking response across multiple time window sizes (5 to 100 ms, by steps of 5 ms). 
These results can be thought of as providing a theoretical lower bound for the accumulation of location 
information in the nervous system. Chance classification was ~14%. 
The coding of tactile information by the somatosensory system is often dependent upon the millisecond 
precise spiking of its first-order neurons26,35-37. To investigate whether impact location coding was 
dependent upon millisecond precision, we convolved the population-level spiking response on each 
trial with a Gaussian kernel at six distinct widths (1, 2, 4, 8, 16, and 32 ms). We then used an SVM to 
classify impact location from the first 50 ms of its response. This process was repeated for each of the 
six kernel widths and for each participant’s dataset separately. 
We further investigated whether trial-by-trial localisation can be modelled as a function of the 
corresponding putative spiking response of the PC population (0–150 ms post-impact) using 
multivariate regression. We initially focused exclusively on the spike-timing of the PC population 
(1 ms resolution). The FWDselect38 package in R was used to select a range of time-points (ten to fifty 
predictor variables) that provided the best model fit as determined with Akaike information criterion 
(AIC; 5-fold cross validation). R2 and root-mean squared error were used to assess the fit of the final 
model. Leave-one-out cross-validation was then used to assess the model’s predictive power. The 
value for every trial was estimated with separate regression fit to the remaining 139 trials. We then 
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calculated a predictive-R2 from the relationship between estimated and actual behaviour. This 
procedure was done separately for each participant.  
We next attempted to compare the ability of a spike-timing code and a rate code to model each 
participant’s behaviour. We repeated the methods described above to model the trial-by-trial 
localisation as a function of the firing rate of each of the forty-two afferents. This was done for each 
participant separately. We compared the performance of the rate code and a spiking model (forty-two 
predictors) using AIC. 

Data and code availability 
All data has been archived at the Open Science Framework (https://osf.io/283cq/). Analysis code will 
be made available upon request to the corresponding authors, L.E.M. and/or A.F. 

12 Saal, H. P., Delhaye, B. P., Rayhaun, B. C. & Bensmaia, S. J. Simulating tactile signals from the whole hand with 
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Extended Data 

 
Extended Table 1. Behavioural results 
*n=10; **n=20; Statistical tests were two-sided. Summary values are presented as mean ± s.e.m. 

 
 
 
 
 
 
 

Exp. Condition Slope Intercept R2 t-Test Type Comparison t P 
1* Active .93±.09 -2.20±2.01 .94±.02 One-sample Slope vs. 0.25 7.82 <.001 

Slope vs. 1 0.77 .46 
Intercept vs. 0 1.09 .33 

Passive .57±.04 14.18±3.3 .85±.02 One-sample Slope vs. 0.25 7.08 <.001 
Slope vs. 1 9.75 <.001 
Intercept vs. 0 4.30 .002 

Paired Slope 5.43 <.001 

Intercept 4.63 .001 

2* Active .94±.04 -1.13±2.72 .93±.01 One-sample Slope vs. 0.25 16.04 <.001 
Slope vs. 1 1.48 .17 
Intercept vs. 0 0.41 .69 

3* Passive .77±.1 9.11±3.76 .87±.04 One-sample Slope vs. 0.25 5.22 <.001 
Slope vs. 1 2.34 .04 
Intercept vs. 0 2.43 .04 

4** Parallel .95±.04 0.08±1.72 .91±.01 One-sample Slope vs. 0.25 16.08 <.001 
Slope vs. 1 1.08 .29 
Intercept vs. 0 0.04 .97 

Rotated .94±.05 -0.39±1.78 .92±.01 One-sample Slope vs. 0.25 14.04 <.001 
Slope vs. 1 1.32 .20 
Intercept vs. 0 0.22 .83 

Paired Slope 0.88 .44 
Intercept 0.53 .61 

5* Active 1.13±.05 -4.30±3.38 .95±.01 One-sample Slope vs. 0.25 19.40 <.001 
Slope vs. 1 2.84 .02 
Intercept vs. 0 1.27 .24 
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Extended Table 2. Multivariate models with forty-two predictor variables 
%140 data points per regression; p-R2=predictive-R2; RMSE=root-mean squared error; *44 degrees of 
freedom per model. **Significantly better model 

 

Extended Figure 1. Setup for the behavioural and vibration experiments 
(a) The experimental setup for all behavioural experiments (see Methods for details). The object shown 
below the rod was used in the first three behavioural experiments. (b) The “hybrid” tool used in 
Experiment 6, which was half rigid (wood and insulation) and half non-rigid (insulation only). The 
foam is displayed as being open for presentation purposes only. The dimensions of the rod have also 
been altered for presentation purposes. See Methods for more details. (c) Setup for the vibration 
experiment, where accelerometers were attached to the handle and the participant’s index finger. 

Participant% Sensing  Features F42,97 R2 p-R2 RMSE AIC* 

LO Passive Spike timing 11.04 0.83 0.65 7.20 1038.07** 
  Rate 1.70 0.42 -0.22 13.13 1206.25 
  Motifs 22.52 0.91 0.83 4.72  
        

AY Passive Spike timing 10.02 0.82 0.65 8.17 1073.46** 
  Rate 1.62 0.45 -0.20 14.05 1225.16 
  Motifs 17.9 0.89 0.77 6.38  
        

EA Active Spike timing 20.37 0.90 0.79 8.14 1072.55** 
  Rate 1.73 0.37 -0.23 20.21 1327.09 
  Motifs 26.85 0.92 0.85 7.18  
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Extended Figure 2. Results of behavioural experiments 
(a-f) Group-level affine regression for Experiment 2–5. Experiments 1, 2, 3, and 5 had an n of 10 and 
Experiment 4 had an n of 20. Coloured dashed lines around the model fits correspond to its 95% 
confidence interval. The grey line corresponds to the equality line. (c) Experiment 4: Pearson’s 
correlation between the regression slopes for when the drawing was displayed in parallel with the 
actual rod and rotated 90-degrees counter-clockwise. (g) Left: Slope for every dataset from 
Experiments 1–5 (n=60). The distalisation model’s prediction (i.e., chance performance) is shown by 
the orange line. Right:  Average slope with 95% confidence intervals. (h) Experiment 6: Contact at 
identical locations on a wood (green) and foam (purple) tool leads to drastically different vibration 
patterns. In the case of the hybrid tool, participants could only feel the wooden portion of the rod with 
their hand, making the vibration pattern from the foam portion of the rod unexpected and therefore 
uninformative. (i) Localisation for each participant in the vibration experiment was within range of 
behaviour observed in the other six experiments.  
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Extended Figure 3. Modal responses of a rod under different initial and boundary conditions 
(a) Independent of the material of a rod, the modal frequencies in the free case alias to the next highest 
modes in the clamped case. In the plot, this can be clearly seen for a simulated rod with a circular 
cross-section (length: 83 cm; cross-section radius: 0.8 cm) that was made of one of a diverse set of 
materials of varying elasticities and densities. The grey line corresponds to the equality line between 
the frequencies of each limit case. (b) Mode shapes for the first four modes in the free case. (c) Modes 
shapes for the first five modes in the clamped case. Modes with similar shapes as the free case are 
matched by colour. (d-e) Simulated displacement, velocity, and acceleration following impact on a 
free rod at l*=0.33 (d) and 0.5 (e). The zero crossings of velocity and acceleration are presented as tick 
marks above the relevant curves. The weights are taken from the mode shapes. (f-g) Same for the 
clamped case, but minus the ‘whipping’ first mode. This is justified since all other mode shapes and 
frequencies are shared between cases. Strikingly, there is a high degree of similarity between the modal 
responses in each case for impacts at identical locations. Furthermore, it can be noticed in all panels 
that the sequences of zero crossings tend to repeat themselves owing to the special distribution of 
modal frequencies reflected in the phase differences. After a few periods of the low frequency modes 
these sequences can generally be easily discriminated. Thus, an effective feature space could be simply 
a relatively small number of time intervals between extrema in a suitably filtered signal. 
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Extended Figure 4. Trial-by-trial vibrations for each participant were highly consistent 
When held in the hand, vibrations following impact at each location on the tool were highly consistent 
for each participant: (a) LO, (b) AY, and (c) EA. The upper left plot in each panel corresponds to the 
histogram of each within-location Pearson’s correlation (0–100 ms post-impact, corresponding to 250 
data points per test). The shift in the distribution towards high correlations for each participant (LO: 
median r=0.58, IQR=0.19; AY: median r=0.73, IQR=0.16; EA: median r=0.79, IQR=0.23) provides 
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evidence for the emergence of vibratory motifs during passive and active sensing. The traces 
correspond to the motifs for each location (Landmark 1 [blue] to Landmark 7 [red], from left to right). 
The grey traces correspond to each individual impact and the colour traces correspond to the mean 
trace (0-100 ms post-impact; colour-coded by location). 

 
Extended Figure 5. The dimensionality of motifs can be reduced to their zero crossings 
(a-b) The motif (black; acceleration), zero crossing in velocity (blue), and spikes (orange) of a 
representative trial from (a) EA and (b) LO’s datasets. We observe a precise temporal relationship 
between zero crossings in velocity (blue) and the spikes of a Pacinian mechanoreceptor simulated with 
TouchSim (orange). (c) We observed high classification accuracy when decoding impact location from 
a motif’s pattern of zero crossings in acceleration for each dataset (chance=~14%). (d) We could 
accurately model each participant’s trial-by-trial behaviour given the temporal pattern of zero crossing 
in the corresponding motif’s acceleration (140 data points per test). We plot the goodness of fit as a 
function of the number of predictors used in the model. Solid lines correspond to the R2 and dashed 
lines correspond to the predictive-R2. 
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Extended Figure 6. Results for skin recordings 
We found similar spectral content between the mechanical (tool) and cutaneous (D2m) vibrations for 
both (a) LO and (b) AY. Both participants showed similar peaks in the power spectrum for the 
vibrations (0–200 ms post-impact) on the tool (black line) and skin (grey line). Further, the trial-by-
trial correlations between the spectral content of the wood and skin vibrations (histograms on the right) 
were high for both LO and AY. (c) Histograms of all within-location comparisons for participants LO 
(left; median r=0.65, IQR=0.21) and AY (right; median r=0.41, IQR=0.17); Pearson’s correlation on 
the first 100 ms post-impact, corresponding to 250 data points per test. (d) The observed speed that 
location information accumulated within the vibrations on the skin was extremely rapid for each 
participant, mirroring what was observed when the tool was clamped with a bench vice (green line; 
see the experiment in the Supplementary Data Section 3).   
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Extended Figure 7. The effect of temporal smoothing on population spiking 
Population-level spiking (-15 to 215 ms post-impact) of the simulated afferents for randomly chosen 
trials from four different locations: Landmark 1 (blue; trial #12), Landmark 2 (purple; trial #39), 
Landmark 4 (green; trial #68), and Landmark 6 (brown; trial #114). To reduce the temporal resolution 
of spiking, we smoothed the response with Gaussian kernels at six different widths. The resulting 
traces were then used to investigate whether impact location coding was dependent on millisecond-
resolution spike-timing (see Fig. 4d). Only trials from EA’s dataset are shown in this figure, but nearly 
identical patterns of results were found for both LO and AY. 
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Extended Figure 8. Model fits for each participant. 
The trial-by-trial population spike-timing of the putative afferents (left plots) precisely predicted the 
behaviour of each participant: (a) LO, (b) AY, and (c) EA. When the population rate code (centre 
plots) was used as features, the model did not provide a precise fit to the behaviour (see Data Table 1 
and Extended Table 2). Vibratory motifs (right plots) also predicted behaviour with high precision. 
The grey line in all plots represents the equality line between actual and predicted behaviour, not the 
actual regression line. 

 
 



Supplementary Data to Sensing with tools extends somatosensory processing beyond the body
by L. E. Miller, L. Montroni, E. Koun, R. Salemme, V. Hayward, and A. Farnè

THE goal of our study was to investigate whether humans can sense the location of an impact
on a tool. Six behavioural experiments provided strong evidence that humans are highly ac-

curate at this task when using hand-held wooden rods. This striking result raises the question
of the sensing mechanism that might be employed by the participants in the absence of a sheet
of mechanoreceptors on a tool considered as a sensory extension of the body. We explored this
question in the second part of the main text, leveraging ideas from structural mechanics and com-
putational neuroscience. In essence, the participants solved an inverse problem. They mapped a
rod’s mechanical response to the location of an impact. These supplementary data are intended to
clarify the underpinnings of this inverse problem and how the nervous system might solve it.

Inverse problems generally refer to the determination of the causes (e.g., impact location) from a
set of observations (e.g., vibrations on the hand). Mathematically, inverse problems are posed in
terms of a ’forward’ model that predicts observations from parameters, and ’inverse’ problems are
solved when one finds the parameters from observations [39]. When the object under study is a
dynamic system, such as a vibrating rod, inverse problems can take the form of the determination
of the initial and/or boundary conditions of one or several differential equations.

We argued in the main text that the determination of the location of an impact on a hand-held
rod given observed vibrations is akin to the determination of initial conditions, given an impulse
response and a set of prior assumptions. It is important that the impact location be encoded in
the vibratory signal in a manner that is largely invariant to such factors as the rod’s material,
its geometry, and the manner in which it is held. Here, we expand this proposal by going into
greater theoretical detail than was possible there. The inverse problem considered here differs
from problems typical in engineering where the source of excitation (i.e., the contacting object) is
generally assumed to be known [40].

Section 1 of these Supplementary Data describes how contact location is encoded into the vibra-
tory response of a rod. In Section 2 we develop a model of how contact location can be efficiently
decoded by a process that could be supported by early stage neural computations. In Section 3,
we describe the results of a pilot study that lent empirical support to these models.

1 Impact Location Encoding
1.1 The Euler-Bernouilli Beam

The vibrations of a straight, slender rod can be modelled by the solutions of a differential equa-
tion that is classically derived from the Euler-Lagrange minimisation principle of least action. This
equation is found by considering the distribution of transverse kinetic energy and bending poten-
tial energy along a rod of length, L. If x ∈ [0, L] designates the location along the rod and if only
small deflections from the resting position, u(x, t), are considered, this equation is the basis of the
so-called the Euler-Bernouilli beam theory [41],

∂2

∂x2

(
E(x)I(x)

∂2u(x, t)

∂x2

)
︸ ︷︷ ︸

from bending energy

+

(
µ(x)

∂2u(x, t)

∂t2

)
︸ ︷︷ ︸

from kinetic energy

= q(x, t). (1)

The quantities E(x) and µ(x) represent the mechanical properties of the rod. The quantity E(x) is
the elastic modulus of the material from which the rod is made. The elastic modulus captures the
rod’s material resistance to deformation. The quantity µ(x) is the rod’s mass per unit of length,
which depends on the rod’s material and on its geometry. The quantity I(x), called the second



moment of area, depends on the shape of the cross section. In general, these quantities depend
on the location, x, along the rod. The quantity q(x, t) presents the action of external objects at
particular places on the rod and at particular times. It is hard to find the solutions of this equation
in the general case.

However, if the rod is homogeneous and uniform (as was the case in Experiments 1-5) then E, I ,
and µ are constants. If, in addition, the rod is left free to oscillate, then the equation becomes an
unforced ordinary differential equation. For ease of writing, the dependency of the displacement
u on location and time can be implied in the foregoing and a damping term is added to model the
fact that in most materials energy dissipates. Thus, (1) becomes,

EI
∂4u

∂x4
+ µ

∂2u

∂t2
+ λ

∂u

∂t
= 0. (2)

A differential equation that depends on time cannot be solved without the specification of initial
conditions, that is of the state, u(x, 0), of the modelled object when t = 0. When it also depends
on space, boundary conditions must specify how the state of the object and a sufficient number of
derivatives should be treated at the boundary of the domain inside which the equation applies.

1.2 Canonical boundary conditions

Imagine a uniformly rigid rod that is clamped (i.e., held stationary) at one end and free to oscillate
at the other. At the clamped end, the deflection is zero at x = 0, that is, ∀t, u(0, t) = 0, and the rod
remains tangent to the clamp, (∂u/∂x)(0, t) = 0. At the free end, the rod does not bend since there
is no moment applied, so the curvature and the change of curvature are zero, (∂2u/∂x2)(L, t) = 0
and (∂3u/∂x3)(L, t) = 0, which gives the four needed boundary conditions. A rod is said to be
free when the free-end boundary conditions applies at x = 0 and at x = L, which also gives four
boundary conditions.

A rod held in the hand can neither be modelled as perfectly clamped nor completely free. It
would therefore be hazardous to attempt to model its effect using the aforementioned boundary
conditions. The governing equation would need to be augmented with additional terms that
take into the account the complex structural and mechanical properties of the hand’s soft tissues,
muscles, and bone structure. However, as highlighted in the foregoing, the solutions of (2) have
similarities with boundary conditions as different as the clamped rod or the free rod. These cases
may be viewed at the limit cases of a tight and a loose grip hand, giving boundary conditions that
are ”in between”.

1.3 Modes

The solutions of (2) can be shown to have the form,

u(x, t) =

∞∑
n=1

an(t)wn(x). (3)

Solutions thus decompose into an infinite sum of countable, discrete components. These com-
ponents, called ”modes”, have the physical interpretation of the “standing waves” that give to
physical systems in bounded domains, mechanical or otherwise, the propensity to oscillate at spe-
cific frequencies. In other words, the solutions of the unforced equation (2) exist only for certain
frequencies called natural frequencies, ωn, n = 1, . . . ,∞. For small displacements, the modes are
harmonic and thus their amplitudes have the form,

an(t) = An sin(ωnt+ φn) e
− 1

2
λ
µ
t
. (4)

Modal solutions can in certain cases be truncated to a few terms, which is true for rods and other
types of objects, such as strings and plates. Most slender rods tend to be underdamped, meaning
that the modes do not decay too fast in time. We can take φn = 0,∀n for the case of the unforced
rod with an impulsive initial condition.



1.3.1 Modal Frequencies

The specific values of the natural frequencies depend on the geometry and on the material prop-
erties of the rod. If n is the mode number, the natural frequencies are,

ωn = β2n

√
EI

µ
, where βn = ηn

π

L
, (5)

The ηn are constants close to unity or a few multiples of unity. They are specific to each boundary
condition and inversely proportional to the rod length, L. The modal frequencies thus depend in
the same way on the rod length so their ratios are length-invariant. The specific frequencies of each
mode are predictable if and only if the geometry and the material of the rod are known, features
that the human haptic system is specifically tuned towards detecting. It would be unsurprising
if the nervous system was able to immediately predict the modal frequencies for a rod without
prior experience wielding it. This prediction was indeed supported by the results of our fifth
experiment.

The application of the boundary conditions of the free rod or of the clamped rod amounts to
solving, cosh(βnL) cos(βnL) = 1 or −1, respectively, for the solutions to exist. The roots of these
equations gives possible values for the βn and hence for the ηn. For a free rod, the ηn are 1.5, 2.5,
3.5, 4.5, . . . ; for a clamped rod, they are 0.6, 1.49, 2.5, 3.5, 4.5, . . . . Clamping a rod rigidly at one end
shifts the modal frequencies downward compared to a free rod. The influence of the boundary
conditions is great in the low frequencies only (i.e., the lowest mode), but diminishes rapidly with
increasing mode order.

We surmise that a human grip provides a boundary condition somewhere between these limit
cases. Tightening a grip shifts the modal frequencies downward and promotes the occurrence of
a low frequency ”whipping mode” that does not exist in the free case. Mode 1 of the free case
aliases to mode 2 of the clamped case, mode 2 to mode 3, and so on. Apart from the whipping
mode, the natural frequencies, however, are indistinguishable between cases (Extended Fig. 3a).
This is a critical point, because the grip strength of the tool user will likely change from moment-
to-moment during tool-extended sensing. Thus, given that the frequencies of the higher modes
are invariant to grip strength, the user will continually be ”in tune” with the rod. As we will see
in the next section, the encoding of impact location is also grip strength-invariant.

1.3.2 Mode Shapes

We now attend to the mode shapes, wn(t), in (3). It is these components that contains the impact
location information. They have the form,

wn = C1 cosh(βnx) + C2 sinh(βnx)︸ ︷︷ ︸
non periodic part

+C3 cos(βnx) + C4 sin(βnx)︸ ︷︷ ︸
periodic part

. (6)

For the free rod and for the clamped rod, these mode shapes can be factored into simpler forms,

free rod: wn = C free
[
(sinβnx+ sinhβnx)−Dfree

n (cosβnx+ coshβnx)
]
, (7)

clamped rod: wn = Cclamp
[
(coshβnx− cosβnx) +Dclamp

n (sinβnx− sinhβnx)
]
. (8)

The factors C free and Cclamp are scaling factors that can be taken to be equal to one since the initial
amplitude of each mode depend solely on the initial conditions. The factors Dfree

n and Dclamp
n ,

however, are functions of the boundary conditions. For the canonical cases at hand,

Dfree
n =

sin ηnπ − sinh ηnπ

cos ηnπ − cosh ηnπ
, and Dclamp

n =
cos ηnπ + cosh ηnπ

sin ηnπ + sinh ηnπ
. (9)



Calculations done, the Dfree
n and the Dclamp

n turn out to all be close to one, except for Dclamp
1 which

is 0.734. We plot in Extended Figure 3b-c the dimensionless mode shapes, w̄n(l), as a function of
the dimensionless location l = x/L. As can be seen in these plots, like the modal frequencies, the
shape of mode 1 of the free case is nearly identical to the shape of mode 2 of the clamped case,
mode 2 to mode 3, and so on. Mode 1 of a clamped rod, the so-called ’whipping mode’, does not
have a counterpart in the vibrations of a free rod. Its natural frequency is low and is unlikely to
be strongly excited in hand-held rod. It is therefore not taken into account in the analysis.

The mode shapes are notoriously sensitive to deviations from the assumptions of uniformity out-
lined in Section 1.1 , particularly as far as the mass distribution is concerned and less so from
smooth variations of the cross section [41]. Mode shapes will be predictable to a tool user as long
as the assumption of uniformity is not violated. This observation explains the results of the sixth
experiment where, unbeknownst to the participants, we violated the uniformity assumption (see
Methods and main text). The first half of the rod, the rigid portion, fulfilled the uniformity as-
sumption and was usable as a sensor. The non-rigid portion, on the other hand, violated this
assumption. Given that the predictable and unpredictable portions of the rod had very different
modal responses (Extended Fig. 2h), it was impossible for users to sense impact location on the
non-rigid portion.

1.4 Response to an Impact

The complex time domain response that we observe when we strike a rod arise from the pecu-
liar distribution of modal frequencies that, unlike with strings, are not in integer multiples of a
fundamental frequency. Like with strings, however, the different modes are selectively excited
according the location of the excitation. For example, if an impact occurs at a location where the
value of a mode shape is zero (see Extended Fig. 3b-c), called a ’node’, this mode is not excited. If
it is at an ’antinode’ the excitation is maximum.

An impact is modelled by forcing an initial condition on velocity at one location, l∗. The condition,
(∂u/∂t)(l∗, 0) = v0, corresponds to the impulsive acceleration of an ideal inelastic collision at l∗. To
model how the impact energy distributes among the different modes, consider that an impacted
rod continues to vibrate subsequently to the impact where each mode oscillates with a decaying
amplitude, initially of values An. From (4), the magnitude of the velocity of a particular mode at
time 0 is Anωn. Thus, the total kinetic energy stored by mode n at time 0 is,

Hn(0) = 1
2µLA

2
nω

2
n

∫ 1

0
w̄2
n(ζ)dζ . (10)

The integral factor represents the contribution of a particular mode shape to the total vibration en-
ergy. Because these integrals evaluate to values close to one for all modes and for the two bound-
ary conditions cases, the initial energy of a particular mode depends on its natural frequency and
initial amplitude, but not on its shape. Call H̄n(t) the energy of mode n of a rod of unit length and
unit mass density, ∀n,

H̄n(0) ' 1
2A

2
nω

2
n, since Hn(0) ' 1

2A
2
nLµω

2
n , (11)

which is like the energy of a vibrating mass impulsed at time 0. The modal superposition (3) is
truncated at some rank, although this step is not strictly necessary to keep the total energy finite.
Touch being insensitive to frequencies higher than 1,000 Hz, we can select a truncation of rank,
N , accordingly. An impact could well excite many higher modes, which could be heard, but only
a few will drive the somatosensory system. Just after an impact at location, l∗, the total kinetic
energy of a dimensionless rod is the sum of kinetic energy of each mode, H̄n, weighted by the
square of the value of the mode shapes at that location,

H̄(0) '
N∑

n=1

w̄2
n(l∗)H̄n(0) = 1

2

N∑
n=1

w̄2
n(l∗)A2

nω
2
n . (12)



Thus, we find that the modal amplitudes decay proportionally to the modal frequencies. Upon
impact, each mode receives an initial velocity that is weighted by the value of the mode shape at
the place of the impact and initial modal amplitudes are weighted the same way. The sign must
be kept to preserve the total momentum.

1.5 Summary and Discussion

We can summarise the preceding discussion by the following observations.

1. Rods vibrate as a superposition of discrete modes, each of which is the product of a spatial
component, called a mode shape, and a temporal component, which is a decaying harmonic
oscillation at a natural frequency. The mode shapes and the natural frequencies depend on
the boundary conditions.

2. The frequencies of each mode are not the multiples of a fundamental. For a given free rod,
the frequencies are proportional to 1.52, 2.52, 3.52, 4.52, . . . For the same rod clamped, the
frequencies are proportional to 0.62, 1.492, 2.52, 3.52, 4.52, . . . Clamping a rod adds a low
frequency ’whipping’ mode that is absent in the free case. However, the frequency of the
first mode in the free case aliases the second mode in the clamped case, the second aliases
the third, and so on (Extended Fig. 3a).

3. The influence of a hand grip on the modes can be thought of as somewhere in between
the free and clamped cases. Given this, we can observe that a grip will ’tune’ the modal
frequencies of the first mode yet have little-to-no impact on higher modes.

4. The specific modal frequencies do however depend on how rods are made (Extended Fig. 3a),
namely their material (i.e., elastic modulus and density), length, and cross-section shape, but
not their ratios.

5. The amplitude of excitation of each mode depends on the relative location of a strike along
the length of the rod (i.e., its mode shape). For equal initial excitations, the vibratory am-
plitude of each mode is inversely proportional to its frequency. Mode shapes have nodes
where displacement is zero, which divide the length of the rod into coarse regions vibrating
at different frequencies after an impact. The modes of the free rod are symmetrical about the
centre, a symmetry that is broken for the clamped rod (Extended Fig. 3b-c).

6. When rods are underdamped, the spatial organisation of the vibrations is completely inde-
pendent of how rods are made. Furthermore, mode shapes for a given condition (i.e., free or
clamped) are invariant to grip strength, with the exception of the first mode. The shape of
mode 1 of a free rod resembles mode 2 of a clamped rod, and so on.

Different conditions of mode excitation are shown in Extended Figure 3d-g to demonstrate the
diversity of the temporal responses that can result from different boundary conditions and ini-
tial conditions. Extended Figure 3d and 3e shows the modal response of a free rod that has been
contacted at l∗ = 0.33 and 0.50, respectively. The plots show the vibration’s displacement (upper
panel) and its first two derivatives, velocity (middle panel) and acceleration (lower panel). Identi-
cal plots for the clamped case can be seen in Extended Figure 3f and 3g. Notice that in all cases the
modal response is almost completely independent of whether the rod is free or clamped. Further,
because differentiation emphasises the high frequencies, velocity and acceleration patterns (i.e.,
strain and strain rate) tend to be less influenced by the boundary condition than displacement
patterns all the while preserving sensitivity on the location of impact (see results in the main text;
Fig. 2). The tick marks above the plots of velocity and acceleration correspond to the point in time
that they cross zero (i.e., zero crossing), a signal that could reduce the dimensionality of the motifs
while preserving information about impact location (see Section 2).

The mode frequencies and shapes in the free case are aliased by the next highest mode in the
clamped case (Extended Fig. 3a-c). The influence of grip strength on the modal response is some-
where in between these two limit cases. While grip strength will change over time during sensing,



this is unlikely to have a large influence on the velocity and acceleration of motifs. This point is
underscored by our classification analysis (see main text) that combined the vibrations recorded
from every participant, each of whom likely held the rod somewhat differently. Despite this, clas-
sification accuracy remained very high (Fig. 2e). Vibratory motifs therefore form a location-specific
feature space (Fig. 2b) whose geometry is invariant across the material and structural properties
of uniform rods and the boundary conditions set by the user’s control policies.

Grip strength will, however, influences the decay rate of each mode. To explore grip behaviour
during sensing, we recorded grip strength during the active and passive conditions. During ac-
tive sensing, participants relaxed their grip when bringing the rod into contact with the object,
a strategy that caused the vibrations to last longer. This is not a strategy used during passive
sensing, because the participants could not anticipate when the impact occurred and therefore
could not modulate their grip. This observation contributes to explain why location sensing was
significantly more accurate during active sensing (Extended Fig. 2g).

2 Decoding the Location of Impact
2.1 Brief Recall of The Somatosensation of Vibrations

Having reviewed how impact location is encoded in the vibratory response of a rod, the question
now is how it might be decoded by the nervous system. In vibrations, the displacement, the veloc-
ity, or the acceleration responses are different representations of the same signal. Whether they or
any other derivative of the signal is used for analysis is a matter of convenience and of availability
of appropriate sensors. In mammalian touch, certain sensor populations seem to be more sensitive
to the strain and others to the strain rate of the tissues in which they are embedded [42, 43]. Se-
lective sensitivity, however, depends on numerous factors, chief among them are the time scale of
the evolution of strain and its magnitude, but sensitivity depends weakly on frequency. It would
hazardous to assign a single sensor population to the task of providing the raw sensory input that
enables observers to decode the impact location on a rod from its vibratory response.

Nevertheless, there exists a receptor population, known as Pacinian corpuscules, that is well
suited for this task [44, 45]. Indeed, it is the location-specific responses of this population that we
modelled using the TouchSim simulation package. In mammals the signals of different sensors are
integrated as early as in second-order neurones and propagate through at least five neuronal lay-
ers before they can guide behaviour [46]. It is therefore worthwhile to consider the computational
aspects of the decoding task from a broad perspective.

2.2 Computational Considerations

The primary aim of sensory information neural encoding is the reduction of tremendous dimen-
sionality inherent to the raw physics of the world. A time-honoured signal processing approach
that is favoured by engineers is frequency, and more recently, time-frequency analysis. The obvi-
ous advantage of these analyses is the dimensionality reduction they afford. A signal of infinite
dimensionality can be reduced to a small number of components, provided that the signal has
statistical properties that change slowly with time (or space), such as structural vibrations. While
it is believed that the auditory system deploys a type of time-frequency analysis (i.e., ’gamma-
tones’) when processing sounds [47], a similar computational process does not seem to have any
counterpart in the somatosensory system. Even if the somatosensory system can be coaxed into
performing crude spectral discrimination, it seems ill-equipped to performing the fine decoding
of impact location on a rod in the frequency or in the time-frequency domain, even if some mea-
sure of it could be called upon to enhance performance. Time domain analysis is a more suitable
candidate and is more in line with known physiological, neuroanatomical, and behavioural data.
It is for this reason that we focused on the time domain signals in our study.



2.3 Time Domain Decoding

In the time domain, the waveforms adopt different shapes as the order of differentiation increases
since the high frequency modes become emphasised, see Extended Figure 3d-g. The simplest but
perhaps the least computationally efficient approach taken by the nervous system would be to
analyse the raw time domain signals. Such an approach ought not to be discarded completely
since the mode shapes (Extended Fig. 3b-c) vary smoothly (in the mathematical sense of ’differ-
entiability’) with the location of impact. Thus, two impact locations which are neighbours on the
rod also give rise of signals that are also neighbours in a feature space based on raw waveforms.
Indeed, our experiment focused exclusively on accelerations signals in the time domain, demon-
strating that they robustly encode impact location. While nothing in principle would preclude the
realisation of such an approach by the nervous system, a computational process needed to extract
impact location directly from the waveform has to contend with the infinite dimensionality of the
raw signal space, although it is possible that the nervous system may use some criterion to discre-
tise the signals. It is therefore enticing to consider more computationally efficient approaches to
the decoding problem.

Other than by amplitude, information in a signal can be encoded by phase. The phase of an
oscillatory signal is simply the argument of the sinusoidal functions that compose the complete
signal. As per (4) there is one phase per mode considered, the ωnt, n = 1, · · · , N . Thus, it is
tempting to consider a feature space that is based on the phase differences between modes, since,
like amplitudes, the phases differences encodes impact location. A naive approach to the compu-
tational process, then, would entail phase-accurate disentanglement of the different modes. The
first step in such an analysis would resemble a short-term, phase sensitive spectral analysis, a
process whose difficulty makes it unlikely to be implemented by the somatosensory system.

2.4 Extrema in Signals Encode Phase Interferences Between Modes

A more economical approach is to consider how the modes lead to the constructive and destruc-
tive interferences that determine the different waveforms. A well-known proxy for the occurrence
of interferences in vibrations is the sequence of extrema in the signal. The somatosensory system
might instead analyse the direct consequences of the phase interferences between modes. Here, the
issue of selecting the appropriate derivative of the signal cannot be avoided. Given the known
physiology of mechanoreceptors, it is reasonable to assume that the central nervous system re-
ceives information closely related to the occurrence of extrema of strain or of strain rate, which
is equivalent to considering the zero-crossings of velocity and acceleration, respectively. Since
the location-specific distribution of modal frequencies is reflected in the motif’s phase differences
(Extended Fig. 3d-g), analysing the timing of zero crossings would be a computationally efficient
method for decoding impact location. This is reflected by phase-locking to the peaks of the next
lowest derivative (i.e., displacement) (Extended Fig. 5a-b).

To assess the plausibility of this coding scheme, we re-analysed our data using the temporal pat-
terns of zero crossings in the vibratory motifs. We found that the responses of the simulated
Pacinian mechanoreceptors were almost perfectly phase-locked to the zero crossings of the ve-
locity (i.e., peaks of displacement; Extended Fig. 5a-b). This remarkable result suggests that
information-preserving dimensionality reduction occurs at the initial stages of somatosensory
processing in the nervous system. We further found that (i) impact location could be accurately
decoded from the temporal patterns of zero crossings of acceleration alone (Extended Fig. 5c); and
(ii) that this pattern precisely predicted participant’s trial-by-trial behaviour (Extended Fig. 5d).
Thus, decoding impact location from the extrema in the time domain signal of a motif is not only a
computationally efficient method of dimensionality reduction, but it is also physiologically plau-
sible. Where and how this analysis is implemented in the nervous system [46] is a question the
warrants future investigation.



3 Initial pilot study

As was discussed in Section 1, the time course of the displacements of all the points on the object
is highly dependent upon the initial conditions, on the boundary conditions, and on the loca-
tion of impact. As a pilot experiment to initially address the question of the informativeness of
the vibratory response to impact, we probed the wooden rod’s structural dynamics while it was
clamped in place with a bench vice. The body of the rod was impacted at four evenly-spaced
locations (13 to 43 cm) using a spring-loaded device. Vibrations were recorded (Analog Devices;
Model ADXL335) from the handle (2.5 cm from the beginning of the handle) and the index finger
(identical location) in separate datasets. Another accelerometer was attached to either the han-
dle of the tool or the middle phalanx of the index finger from one of the authors (L.E.M.) as it
pressed against the handle. For each surface, we recorded thirty trials per impact location (order
randomized). All signal processing and data analyses were identical to those reported in the main
article.

Multiple impacts at the same location producing consistent vibratory motifs both on the handle
(median r=0.81, IQR=0.15) and on the index finger (median r=0.96, IQR=0.05). This result pro-
vided the initial hints for the existence of vibratory motifs. We then used support vector classifica-
tion to characterise how location-specific information accumulated within these motifs over time
(temporal window sizes: 2 to 100 ms, by steps of 2 ms). Classification accuracy for mechanical
vibrations on the handle increased rapidly, reaching 90% accuracy within 28 ms (Fig. 2e). Re-
markably, classification accuracy for cutaneous vibrations reached 90% almost five times faster
(6 ms post-impact). It is interesting to note that this decoding speed is almost identical to what
we observed in the experiment reported in the main article (see results and Fig. 2e), suggesting
that the biomechanical properties of the hand actually enhance the location information encoded
in motifs.
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