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SUMMARY

The extent towhich a tool is an extension of its user is
a question that has fascinated writers and philoso-
phers for centuries [1]. Despite two decades of
research [2–7], it remains unknown how this could
be instantiated at the neural level. To this aim, the
present study combined behavior, electrophysiology
and neuronal modeling to characterize how the hu-
man brain could treat a tool like an extended sensory
‘‘organ.’’ As with the body, participants localize
touches on a hand-held tool with near-perfect accu-
racy [7]. This behavior is owed to the ability of the so-
matosensory system to rapidly and efficiently use the
tool as a tactile extension of the body. Using electro-
encephalography (EEG), we found that where a
hand-held tool was touched was immediately coded
in the neural dynamics of primary somatosensory
and posterior parietal cortices of healthy partici-
pants. We found similar neural responses in a pro-
prioceptively deafferented patient with spared touch
perception, suggesting that location information is
extracted from the rod’s vibrational patterns. Simula-
tions of mechanoreceptor responses [8] suggested
that the speed at which these patterns are processed
is highly efficient. A second EEG experiment showed
that touches on the tool and arm surfaces were local-
ized by similar stages of cortical processing. Multi-
variate decoding algorithms and cortical source
reconstruction provided further evidence that early
limb-based processes were repurposed to map
touch on a tool. We propose that an elementary strat-
egy the human brain uses to sense with tools is to
recruit primary somatosensory dynamics otherwise
devoted to the body.
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RESULTS AND DISCUSSION

In somatosensory perception, there is evidence in many

species that intermediaries are treated like non-neural sensory

extensions of the body [9]. For example, some spiders actively

use their web as an extended sensory ‘‘organ’’ to locate

prey [10]. Analogously, humans can use tools to sense the

properties of objects from a distance [11–13], such as when

a blind person uses a cane to probe the surrounding terrain.

This sensorimotor ability is so advanced that humans can

almost perfectly localize touch on the surface of a tool [7],

suggesting a strong parallel with tactile localization on the

body. Characterizing the neural dynamics of tool-extended

touch localization provides us with a compelling opportunity

to investigate the boundaries of somatosensory processing

and hence the question of sensory embodiment: to what

extent does the human brain treat a tool like an extended sen-

sory organ?

From a theoretical perspective [7], the sensory embodiment

of a tool predicts that—as is the case with biological sense

organs—the cerebral cortex (1) rapidly extracts location-

based information from changes in a tool’s sensory-relevant

mechanical state (e.g., vibrations) and (2) makes this informa-

tion available to the somatosensory system in an efficient

manner. The peripheral code for touch location is likely

different for skin (e.g., a place code) and tools (e.g., a tempo-

ral code) [7]. Transforming a temporal to a spatial code—a

necessary step for tool-extended localization—is a non-trivial

task for the brain. We predict that, to do so efficiently, (3)

the brain repurposes low-level processing stages dedicated

to localizing touch on the body to localize touch on a

tool. Direct evidence for sensory embodiment requires under-

standing how the structural dynamics of tools couple to the

neural dynamics of the cortex. Such evidence can be obtained

using neuroimaging methods with high temporal resolution.

To this aim, we combined electroencephalography (EEG)

and computational modeling to test the aforementioned

predictions.
e Authors. Published by Elsevier Ltd.
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Figure 1. Rapid Processing of Object Loca-

tion During Tool-Extended Sensing

(A) Participants (n = 16) performed a 2-interval

delayed match-to-sample task for touches

applied at two locations (colored arrows) on the

surface of a tool held in their right hand. This task

forced participants to discriminate where the tool

was touched (see STAR Methods).

(B) Trial structure of the delayed match-to-sample

task. For presentation purposes, only a portion of

the rod is shown. Green arrows represent where

the rod was hit.

(C) Idealized possible results for a single SEP:

repetition suppression in the amplitude of the

evoked potential (right) indicates location encod-

ing at that specific stage of somatosensory

processing.

(D–I) Representative results are shown for channel

FC1 (D–F) and channel FCz (G–I). In both, we

found a significant reduction in SEP amplitude

(D and G) when the hit was at the same location

(blue) compared to a different location (red).

(E and H) The difference waves (different–same)

clearly show rapid suppression in both channels.

Shaded areas represent the 95% confidence in-

terval.

(F and I) Individual differences for the suppression

(average between 52 and 108 ms) at both chan-

nels from experiment 1 (mean, purple dot; in-

dividuals, gray dot) and from the deafferented

participant, DC (orange dots). The suppression

observed in DC was on the high end compared to

our healthy participants.

See also Figures S1, S2, and S3 and Table S1.
The Cerebral Cortex Rapidly Processes Where a Tool
Was Touched
In an initial experiment (n = 16), participants localized touches

applied on the surface of a 1-m wooden rod (Figure 1A) while

we recorded their cortical dynamics using EEG. We designed a

delayed match-to-sample task that forced participants to

compare the location of two touches (delivered via solenoids;

Figure S1A) separated in time (Figure 1B). If the two touches

were felt to be in different locations, participants made no overt

response. If they were felt to be in the same location, participants

used a pedal with their ipsilateral left foot to report whether the

touches were close or far from their hand. Participants never

used the rod before the experiment and never received perfor-

mance feedback. As a result, participants had to rely on pre-

existing internal models of tool dynamics [14]. Regardless,

accuracy was near ceiling for all participants (mean: 96.4% ±

0.71%; range: 89.7%–99.5%), consistent with our prior

finding [7].

When a stimulus feature is repeatedly presented to a sensory

system, the responses of neural populations representing that

feature are suppressed [15]. Effects of repetition are a well-

accepted method for timestamping when specific features in a

complex input are extracted [16]. Repetition paradigms have

previously been used to characterize how sensory signals are

mapped by sensorimotor cortices [17–20]. Our experimental
paradigm allowed us to leverage these repetition suppression

effects to characterize when the brain extracted where a rod

has been touched. Specifically, the amplitude of evoked brain

responses reflecting the processing of impact location will be

reduced if the rod is hit at the same location twice in a row

compared to two distinct locations (Figure 1C).

We first characterized the cortical dynamics of tool-extended

touch localization. Touching the surface of the rod led to wide-

spread evoked responses over contralateral regions (Figures

S1 and S3), starting �24 ms after contact (Figure S1B); this

time course is consistent with the known conduction delays be-

tween upper limb nerves and primary somatosensory cortex

[21]. A nonparametric cluster-based permutation analysis identi-

fied significant location-based repetition suppression in a cluster

of sensorimotor electrodes between 48 and 108ms after contact

(p = 0.003; Figures 1D–1I, S1C, S1D, and S3; Table S1). This

cluster spanned two well-characterized processing stages pre-

viously identified for touch on the body: (1) recurrent sensory

processing within primary somatosensory (SI) and motor (MI)

cortices between 40 and 60 ms after stimulation [22], which

has been implicated in spatial processing [23, 24], and (2) feed-

forward and feedback processing between SI, MI, and posterior

parietal regions between 60 and 100ms after stimulation [25, 26],

proposed to contribute to transforming a sensory map into a

higher-level spatial representation [18, 27]. This suppression
Current Biology 29, 4276–4283, December 16, 2019 4277



Figure 2. Afferent Simulations Demonstrated Efficient Encoding of

Location During Tool-Extended Sensing

(A) We used a skin-neuron model (TouchSim) to simulate a population of 286

Pacinian corpuscles (PCs) in the hand.

(B) We simulated PC spikes (orange ticks) in response to a location-specific

vibratory motif (green curve).

(C) Given the spike timing of the PC population, we could decode location with

100% accuracy given a window size of 18 ms (gray dashed line). We took this

value to represent theminimal information needed to extract contact location if

somatosensory encoding was maximally efficient. The red arrow indicates

what we actually observed after removing the 20-ms conduction delay be-

tween the periphery and SI [21]. Shaded regions represent the range of ac-

curacy for 100 permutations.

See also Figure S1.
was too quick to reflect signals related to motor preparation/in-

hibition, which generally occur �140 ms after touch [28].

Location-based Repetition Suppression Is Driven by
Vibratory Signals
We previously suggested that, during tool-extended sensing,

where a rod is touched is encoded pre-neuronally by patterns

of vibration (i.e., vibratory motifs; Figures S1E and S1F).

When transiently contacting an object, specific resonant

modes (100–1,000 Hz for long wooden rods) are selectively

excited, giving rise to vibratory motifs that unequivocally

encode touch location [7]. These rapid oscillations are superim-

posed onto a slowly evolving rigid motion that places a load

on the participant’s fingers and wrist. Given that the

somatosensory system is sensitive to both slow-varying loads

(via proprioception) and rapid vibrations imposed to the hand

(via touch), these two signals are difficult to disentangle

experimentally.
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To adjudicate between the contribution of each aspect of the

mechanical signal, we repeated experiment 1 with a deaffer-

ented participant (DC) who lost proprioception in her right upper

limb (33%accuracy in clinical testing) following the resection of a

tumor near the right medulla oblongata [29]. Importantly, light

touch was largely spared in her right limb (100% accuracy). DC

completed the EEG experiment while holding a rod in her deaf-

ferented hand and intact left hand (separate blocks). Her behav-

ioral performance was good for both the intact (72%) and

deafferented (77%) limbs. Crucially, her neural dynamics ex-

hibited the observed repetition suppression for both limbs,

with a magnitude comparable to that of the healthy participants

(Figures 1F, 1I, and S2). Though not excluding possible contribu-

tions from slow varying rigid motion (when available), this result

strongly suggests that the observed suppression was largely

driven by information encoded by vibrations.

Processing of Vibratory Motifs Is Temporally Efficient
We used a biologically plausible skin-neuron model [8] to quan-

tify how efficiently the brain extracts touch location on a tool. Ac-

cording to principles of efficient coding, sensory cortices

attempt to rapidly and sparsely represent the spatiotemporal

statistics of the natural environment with minimal information

loss [30]. DC’s results suggest that the brain uses vibratory mo-

tifs to extract contact location on a rod. It has been hypothesized

that the spiking patterns of Pacinian afferents encode object-to-

object contact during tool use [31], a claim that we found model-

based evidence for [7]. This temporal code must be decoded

in somatosensory processing regions, perhaps as early as the

cuneate nucleus [32].

We derived an estimate of ‘‘maximal efficiency’’ by quantifying

the time course of location encoding in a simulated population of

Pacinian afferents in the hand (Figures 2A and 2B). Support-vec-

tor machine (SVM) classification revealed a temporal code that

was unambiguous about contact location within 20 ms (Fig-

ure 2C). This code was efficient, corresponding to 4.6 ± 1.7

spikes per afferent. Taking into account the known conduction

delays between first-order afferents and SI [21], this finding—

along with our prior study [7]—suggests that location encoding

within 35–40 ms would reflect an efficient representational

scheme. The early suppression observed in experiment 1 (Fig-

ures 1D–1I) is consistent with this estimate. This suggests that

somatosensory cortex views these temporal spike patterns as

meaningful tactile features, allowing humans to efficiently use a

rod as an extended sensor.

Rapid Processing of Contact Location on the Arm
To identify when touch location on the body is processed, we

conducted a second EEG experiment with ten participants

from experiment 1. In this experiment, touch was applied at

two locations on the ventral surface of the forearm (Figure 3A).

We found significant repetition suppression effects correspond-

ing to a cluster extending 44–144 ms after contact (p = 0.005;

Figures 3B and 3C; Table S2). Suppression within this time win-

dow was found in almost all ten participants (Figure 3D) and

spanned the two processing stages observed in experiment 1.

This timing is in line with previous studies that have identified

location-based suppression following touch on the body,

including the arm [18].



Figure 3. Similar Processing of Touch Location on the Arm and Tool

(A) Participants performed the exact paradigm as experiment 1 (Figures 1A–1C) with the exception that the stimulated surface was the arm.

(B) Aswith the first experiment, we found a significant reduction in SEP amplitude (between 52 and 144ms) when the hit was in the same location on the arm (blue)

compared to a different location (red).

(C) The time course of this suppression is more evident in the difference wave. Shaded areas represent the 95% confidence interval.

(D) We found suppression in the majority of participants (8 out of 10).

(E) Scalp topographies at early (52 ms) and late (80 ms) time points for touch on the tool (top row) and arm (bottom). To illustrate the general similarity between

surfaces, we have collapsed scalp topographies across both the same and different conditions.

(F) Cross-surface multivariate decoding of suppression for each participant (n = 10) and at several time points (�40 to 120 ms). Decoding is expressed as the

difference in the Mahalanobis distance between matching and non-matching trial conditions (i.e., same location versus different location). For sensorimotor

channels (purple), we observed a significant cluster (p < 0.001; red line) of positive similarity between suppression on the tool and arm starting at 52 ms and

continuing throughout our trial window. No significance was found for temporal channels (green). Shaded areas represent ±1 SEM for decoding across par-

ticipants.

(G) Hierarchical clustering grouped neural responses by trial condition and not by surface touched.

(H) SVM classification accuracy for both early and late time points were significantly greater than chance (dashed gray line).

(I) Confusion matrix for classifier trained on the early time point (52 ms). Numbers correspond to the percentage of time the classifier chose that trial type.

(J) For ease of interpretation, we deconstructed the confusion matrix (early time point) into all categories of classifications. This includes accurate classification

(condition+; surface+) and the three types of misclassifications. The majority of misclassifications were based on shared trial condition, not shared surface.

See also Figures S3 and S4 and Table S2.
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Figure 4. Neural Correlates of Touch Location on a Tool and Fore-

arm

(A and B) Suppression shortly after contact (52 ms) on the rod (A) and arm (B)

was confined to primary somatosensory and motor cortices.

(C and D) Activity 80 ms after contact on the rod (C) and arm (D) then spread to

nearly identical regions in the posterior parietal cortex.

See also Figure S4.
Despite differences in the structure of the earliest somatosen-

sory evoked potentials (SEPs) following touch on the rod and tool

(Figure S3), the suppression observed across experiments was

not significantly different (p > 0.2). The similarity between sur-

faces was also evident when inspecting the scalp topographies

for both surfaces (Figure 3E), suggestive of similar neural dy-

namics. When interpreting these results, it is crucial to recall

that the peripheral neural codes carrying information about

where a rod or arm is touched are likely different: our modeling

results suggest that where a rod is touched is represented by a

spike-timing code (Figure 2) [7], whereas where the arm is

touched is assumed to be represented by a place code [33].

Therefore, though not all early cortical responses are identical

between touch on the arm and tool, the observed temporal over-

lap of suppression between surfaces suggests that the somato-

sensory cortex resolves these basic coding differences relatively

early.

Similar Neural Dynamics Reflect the Processing of
Touch Location on a Tool and Arm
We used multivariate analyses to better test the hypothesis that

the brain uses similar processing stages for localizing touch on

the arm and tool. First, using a representational decoding

approach [34], we investigated whether the suppression

observed in the arm dataset could predict the suppression

observed in the tool dataset. We found statistically significant

cross-surface decoding from cortical activity over sensorimotor

channels starting within 52 ms of touch on either surface (p <

0.001; Figure 3F); decoding was not possible from channels

over temporal cortex. Furthermore, hierarchical clustering

grouped neural responses by trial condition (i.e., same, different

location) and not touched surface (Figure 3G).

We trained an SVM to distinguish between all four trial types,

grouped by both surface and trial condition. Significant
4280 Current Biology 29, 4276–4283, December 16, 2019
classification accuracy (>25%) was found for both early

(52 ms; accuracy: 44.8% ± 2.1%; one-sample t test: p < 0.001)

and late (80 ms; accuracy: 49.5% ± 2.1%; one-sample t test:

p < 0.001) neural responses (Figure 3H). We then characterized

the types of misclassifications in the confusion matrix at both

time points (Figures 3I and S4A–S4C). The SVM was more likely

to identify the correct trial condition than the correct surface (Fig-

ure 3J; both p < 0.05). In sum, these results reveal the rapid

emergence of statistically similar repetition suppression in the

somatosensory system following touch on the arm and tool.

Similar Cortical Sources Localize Touch on a Tool and
Arm
Finally, we compared the cortical sources for localizing touch on

each surface. For the tool (Figure 4A) and the arm alike (Fig-

ure 4B), the earliest stages of shared suppression (52 ms) were

localized in the hand and arm regions of SI andMI (p < 0.05; false

discovery rate [FDR] corrected), respectively. The suppression in

SI during tool sensing may reflect the efficient detection of a

location-specific tactile feature (i.e., vibratory motifs). Alterna-

tively, given the results of ourmultivariate analyses, the observed

suppression may reflect a point in time when SI has already ex-

tracted touch location from motifs. This would suggest that SI

can resolve differences in peripheral neural codes and represent

touch location on both the body and tool using a common

format.

After primary sensorimotor regions, the processing of touch

location for the tool (Figure 4C) and arm (Figure 4D) spread

throughout the posterior parietal cortex (PPC). These regions

construct higher level spatial representations [35, 36] and

even represent hands and tools within a shared coordinate

system [37, 38]. They thus play an important role in tool use

[2, 39]. The current results suggest that the PPC is involved in

deriving a spatial code for where a tool was touched. A direct

comparison of both surfaces at this processing stage found

several shared sources in SI, MI, and PPC (Figure S4D), consis-

tent with our scalp-level multivariate analyses (Figures 3 and

S4A–S4C).

General Discussion and Implications
Identifying the spatial boundaries of a cognitive system requires

characterizing how neural activity couples the body with external

objects during thinking, acting, and perceiving [40]. For humans,

tool use is a textbook example of an extended body [2–7]

because it marks a step in human evolution when our ancestors

could act on their environments in ways otherwise impossible.

We show that tools are fundamental to human behavior in a pre-

viously underappreciated way: they expand the somatosensory

boundaries of our body at the neural level. Hence, rather than

stopping at the skin, our results suggest that somatosensory

processing extends beyond the nervous system to include the

tools we use.

We propose that an elementary strategy the human brain uses

to sense with tools consists in sharing similar primary sensory

dynamics devoted to the body. This allows a tool to be used

as an extended, non-neural sense organ that can efficiently

probe the user’s surroundings. This finding challenges the

long-held view that portrays SI as a layered structure of low-level

feature detectors. Instead, our finding suggests that SI dynamics



instantiate high-level sensorimotor models of an organism [41,

42], including biological and extended parts.

Is the ability to sense with a tool merely a human case of de-

tecting substrate vibrations? Indeed, it is well known that many

species take advantage of information transported by material

substrates [9]. Though some processing aspects of extended

sensing may apply to objects that cannot be manipulated, there

are several reasons for viewing tool-extended sensing as a

unique case. The dexterity and tactile sensitivity of the human

hand, along with its corresponding neural machinery [43], likely

evolved because they aided in the manipulation of tools [44].

Sensitivity to vibrations during tool use is largely attributed to Pa-

cinian mechanoreceptors, which are critical for fine object

manipulation [31]. Our results may thus reflect neural processes

that developed for sensing with tools.

Unlike other instances of sensitivity to substrate vibrations,

sensingwith tools is a process that ismost effective during active

manipulation. When a blind person uses a cane to sense the

environment, they adapt how the cane is gripped and swept

against surfaces to optimize sensory feedback (e.g., vibrations),

a strategy referred to as information self-structuring [45]. In our

prior study, we found that fine-grained accuracy was signifi-

cantly better during fully active compared to partially passive

sensing [7]. Though the present study utilized a partially passive

sensing mode (owing to experimental constraints), participants

often reported selecting a grip that made it easier to discriminate

between close and far hits (see also [7]). Thus, tool-extended

sensing is an active process and not a passive pick-up of

information.

The boundaries of somatosensory processing are a key theo-

retical question that has practical, real-world implications. A

growingmovement in bioengineering attempts to design ‘‘biomi-

metic’’ prosthetic limbs that provide somatosensory feedback to

users, with limited—yet encouraging—success [46]. For a pros-

thetic device to provide rich perceptual interaction with the

world, its wearer must be able to perceive and act upon tactile

events across its entire surface. Tactile feedback is typically pro-

vided via invasive procedures, such as peripheral nerve stimula-

tion [47] and intracortical microstimulation [48]. The present

results suggest that a complementary, non-invasive means to

restore sensory feedback would be to design prostheses that

possess well-designed structural dynamics in response to inter-

actions with touching objects. Optimized transmission of these

vibratory dynamics could leverage the identified sensorimotor

mechanisms for mapping touch on a tool to aid in the use of a

prosthetic device as an extended sensor.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Experimental Setup

B Delayed match-to-sample paradigm

B Clinical testing and details for participant DC
B Electroencephalographic (EEG) recording parameters

B Preprocessing of the EEG data

B Vibration recordings

B Skin-neuron model

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Cluster-based analysis of EEG signals

B Multivariate pattern decoding of EEG signals

B Source reconstruction

B Support vector classification of simulated spikes

d DATA AND CODE AVAILABILITY
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2019.10.043.
ACKNOWLEDGMENTS

We thank Fr�ed�eric Volland for his help constructing the experimental setup.

This work was supported by an Fondation pour la Recherche Medicale Post-

doctoral Fellowship SPF20160936329 to L.E.M., from ANR-16-CE28-0015

Developmental Tool Mastery to A.F. and V.H., from ANR BLIND_TOUCH

2019CE37 to A.F. and L.E.M., by a Leverhulme Trust Visiting Professorship

Grant to V.H., and from IHUCeSaMeANR-10-IBHU-0003, Defi Auton Sublima,

and the James S. McDonnell Scholar Award to A.F. All work was performed

within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Uni-

versit�e de Lyon.
AUTHOR CONTRIBUTIONS

L.E.M., V.H., and A.F. conceived of the experimental idea. L.E.M. and A.F. de-

signed the EEG experiments. L.E.M., C.F., and V.R. collected and analyzed the

EEG data. L.E.M. designed and analyzed the neuronal modeling experiment.

J.L. and S.B. performed the assessments for participant DC. E.K. and R.S.

built the solenoid setup. L.E.M., N.B., V.H., and A.F. wrote the paper. All au-

thors approved of the final submission.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 22, 2019

Revised: September 30, 2019

Accepted: October 21, 2019

Published: December 5, 2019

REFERENCES

1. Clark, A. (2008). Supersizing theMind: Embodiment, Action, and Cognitive

Extension (Oxford University Press).

2. Iriki, A., Tanaka, M., and Iwamura, Y. (1996). Coding of modified body

schema during tool use by macaque postcentral neurones. Neuroreport

7, 2325–2330.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

EEG experiments 1-2 and TouchSim simulations Open Science Framework https://osf.io/c4qmr/

Software and Algorithms

MATLAB 2017b The MathWorks RRID:SCR_001622

EEGLab Toolbox [49] https://sccn.ucsd.edu/eeglab; RRID:SCR_007292

Brainstorm Toolbox [50] https://neuroimage.usc.edu/brainstorm; RRID:SCR_001761

TouchSim [8] https://bensmaialab.org/download/

R version 3.2.3 [51] RRID:SCR_001905
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Luke E.Miller (L.Miller@

donders.ru.nl). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

16 right-handed subjects (mean age: 26.5 years, range 20 to 34 years, 5 males) free of any known sensory, perceptual, or motor dis-

orders, volunteered to participate in Experiment 1. Ten of these participants also completed Experiment 2. A neurological patient (DC;

female, 50 years of age) also completed Experiment 1. All subjects provided written informed consent according to national guide-

lines of the ethics committee (CPP SUD EST IV).

METHOD DETAILS

Experimental Setup
In Experiment 1, Participants sat in a chair with their right arm placed on an adjustable armrest. A wooden rod (length: 100 cm; cross-

sectional radius: 0.75 cm) was held in their right hand, with the tip of the stick resting on a support so that it would stay stable and

parallel to the participant’smidline. A fixation crosswas displayed on a computer screen�100 cm in front of the participant. A left foot

double-pedal (Leptron Footswitch 548561) was used to make responses in the task (see below).

The rod was contacted with solenoids (Mecalectro 8.19.AB.83) at two different location (see Figure 1A): �16 cm from the hand

(close location) and �63 cm from the hand (far location). The solenoids were powered with 36W in order to achieve a sufficient

impact level and were controlled via customMATLAB code. Each had an identical acceleration profile, ensuring that contact force

(�14 N) did not vary from trial-to-trial. Furthermore, the acceleration onset of the solenoid was controlled with sub-millisecond pre-

cision (SD of acceleration onset: 0.26 ms), guaranteeing good time-locking for the EEG analysis (see below). All solenoids were

secured by adjustable tripods, which were used to place the solenoid 1 cm below the surface of the rod. To ensure uniform

and consistent contact between solenoids and the body of the rod, a plastic disc (4 cm diameter) was added at the tip of each

solenoid’s metal point.

Two precautions were taken to mask the sound generated by the solenoids: (i) white noise was played continuously over noise-

cancelling earphones (Bose QuietComfort 20) at a level that made the solenoids almost inaudible; (ii) a ‘decoy’ solenoid was placed

next to the rod and in between the other two solenoids so that the activation of each solenoid was always accompanied by an acti-

vation of the decoy, further obscuring auditory cues to solenoid position. All solenoids were supported by adjustable tripods at the

same height. Visual cues were prevented by spreading a black sheet between the screen and subjects’ neck to cover their hands and

the stick.

The experimental setup was almost exactly the same as Experiment 1. Participants sat in a chair with their right elbow and hand

each placed on an armrest. Stimulation was applied to the ventral surface of their right forearm, which was position between each

arm rest. As with the prior experiment, the solenoids were positioned at two locations, �5 cm from the crook of the arm and �5 cm

from the wrist, and 1 cm below the surface.

Delayed match-to-sample paradigm
Participants performed a delayed match-to-sample task (DMS) whereby they had to decide whether two mechanical stimulations

were in the same or different location on either the rod (Experiment 1) or the arm (Experiment 2). Specifically, participants were
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instructed to report whether the two contacts were in the same or a different location, using foot pedals placed under their left foot

(i.e., ipsilateral to the site of stimulation). When the two locations of contact were different, participants made no overt response.

When they were in the same location, we required them to make explicit judgments about whether they were close to the hand

(raising their heal) or far from the hand (raising their toe). This ensured that our paradigm did not fall prey to the known criterion effects

in based same versus different psychophysical tasks. Furthermore, no feedback was ever given to participants on whether their re-

sponses were correct or incorrect, ensuring that they could not learn arbitrary rules to distinguish close or far. All stimulus presen-

tation and behavioral response collection was controlled via custom scripts in MATLAB (MathWorks).

The structure of each trial was as follows. Each trial began with a fixation cross presented at the center of the computer screen,

which blinked after 1000 ms to inform the participants that a contact was coming soon and to therefore pay attention. After a delay

period (between 1000-1500 ms, randomly chosen from a uniform distribution), mechanical stimulation was applied to the experi-

mental surface (i.e., rod or arm) at one of the two locations (close or far; pseudo-randomly chosen). During a retention period, par-

ticipants kept the location of contact in working memory (between 2000-2500 ms, randomly chosen from a uniform distribution); this

retention period ended with the application of the second stimulus (location chosen pseudo-randomly). Participants then decided

whether the second hit was in the same location as the first and kept this decision in mind during a further delay period (between

1000-1500 ms, randomly chosen from a uniform distribution). This delay period ended when the fixation cross changed to an ‘X’,

signifying to the subject to make a response (see above). The ‘X’ turned back into a fixation cross just after the response was

made, or after 2000 ms if no response, and the next trial began.

Subjects performed four blocks of 100 trials each (400 trials in total), in which stimulus location was pseudo-randomly interleaved

for each hit. Thus, there were 200 contacts per location for each of the two hits (400 close and 400 far contacts in total). Furthermore,

on half of the trials the two hits were in the same location and on the other half the two hits were in different locations. Each trial lasted

between 5000 and 8500 ms. A brief rest period was provided between blocks during which the subjects could move their hands and

eyes freely. For two participants in each experiment, one block of data was not recorded due to experimenter error; their full dataset

therefore only contains three blocks.

Clinical testing and details for participant DC
We have previously completed a tool-use experiment with participant DC [29]. DC is a right-handed 50-year old woman who un-

derwent surgery in March 2006 to remove a vascular tumor in the proximity of the right medulla oblongata. Following surgery, DC

lost proprioception and kinaesthesia in her right upper limb, which remains deafferented to this day. Light touch on her right upper

limb is largely spared. She currently prefers manipulating objects and use tools with her right hand (self-report and Edinburgh

Handedness Index), and often compensates with visual feedback. The sensorimotor functions of all other limbs were unaffected

by the surgery.

Clinical examination with the Rivermead Assessment of Somatosensory Performance [52] was performed prior to her inclusion in

the present study. This test confirmed that, for both hands, she could perfectly discriminate sharp/dull probes, detect surface pres-

sure, and localize touches (100% accuracy). Her ability to discriminate proprioceptive movements of her elbow, wrist, and thumb

were perfect for her left upper limb (100% accuracy). On the contrary, she was highly impaired when discriminating proprioceptive

movements of three joints (i.e., elbow, wrist, and thumb) for her right upper limb (33% accuracy).

Participant DC completed the procedures from Experiment 1 with both her intact (left) and deafferented (right) hand in separate

blocks (block order: left, right, right, left). The experimental procedures were identical to described above. In debriefing, DC reported

that she did not feel her wrist moving during the experiment.

Electroencephalographic (EEG) recording parameters
EEG data were recorded continuously using a 65 channel ActiCap system (Brain Products). Horizontal and vertical electro-oculo-

grams (EOGs) were recorded using electrodes placed below the left eye, and near the outer canthi of the right eye. Impedance of

all electrodes was kept at < 20 kU. FCz served as the reference during recording. EEG and EOG signals were low-pass filtered online

at 0.1 Hz, sampled at 2500 Hz, and then saved to a disk.

Preprocessing of the EEG data
EEG signals were preprocessed using the EEGLab Toolbox [49]. The preprocessing steps for each participant were as follows: We

appended all four blocks of the experiment into a single dataset, resampled the signal at 250 Hz, and high-pass filtered at 1 Hz. We

then epoched the data into a time window of 3 s, 1 s before and 2 s after the hit (time zero). We then isolated epochs related to the

second hit, as this was the focus of our analysis (see below); each epoch was categorized as reflecting the same location as the first

hit (‘same’ condition) or a different location (‘different’ condition). Next, we removed signal artifacts with two steps: First, we removed

eye blinks and horizontal eye movements from the signal using independent components analysis [53] and a semi-automated algo-

rithm called SASICA [54]. Second, we excluded the first ten trials of the experiment, trials that were interrupted by the experimenter,

all trials where subjects answered incorrectly, and manually rejected trials that were contaminated by muscle artifacts or other forms

of signal noise. In all, this led to a mean exclusion of 35.5 trials in Experiment 1 (range: 14–56) and 24.1 trials in Experiment 2 (range:

12-43). Next, we used the EEGLab function pop_reref to add FCz (the online reference) back into the dataset. Finally, we re-refer-

enced the data to the average voltage across the scalp and re-epoched the data into a time window of 250 ms, –100 ms before
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and 150 ms after the hit. We chose this time window because it captures three mid-latency somatosensory evoked potentials (SEPs)

related to the early stages of perceptual processing [22], the P50, N80 and P100.

Vibration recordings
We previously demonstrated that information about impact location is initially encoded by the modal response of a rod when

contacted [7]. We recorded these vibrations in order to estimate how mechanoreceptors in the hand respond to impact at the

two locations in Experiment 1. All vibrations were recorded using a miniature tri-axis analog accelerometer (Analog Devices; Model

ADXL335), which have low mass (40.0 mg), a wide frequency bandwidth (0–1,600 Hz in X and Y; 0–550 Hz in Z), and high dynamic

range (�3.6 to 3.6 g).

Vibrationswere recorded from the base of the tool shaft as one of the authors (V.R.) held the rod in place. Themodal response of the

rod was measured forty times for each location. We restricted the recording to the Z axis as this contained the bulk of the impact

response. The signal was digitized with a 14-bit resolution and sampled at a frequency of 2 kHz over a three-second window using

a data acquisition device (National Instruments; Model USB-6009). We then converted the signal into three temporal derivatives (ac-

celeration, velocity, and displacement) and high-pass filtered it at 100 Hz using a 3rd order zero-phase Butterworth FIR filter. All data

was recorded and processed using MATLAB 2017b (The MathWorks).

Skin-neuron model
Pacinian mechanoreceptors in the hand have previously been proposed to play a role in encoding vibrations during tool-surface

contact [31]. We recently provided evidence, using a biologically plausible computational skin-neuron model (TouchSim; [8]), that

they re-encode where a tool has been touched [7]. MATLAB code to implement the model is freely available online (http://

bensmaialab.org/download/). The reader should refer to the original article for an in-depth treatment of the methods and model

validation.

We used TouchSim to simulate the responses of a population of Pacinian mechanoreceptors (286 in total) to the vibrations

described above. The population was confined to skin surfaces that are tangential to the force of impact when holding the rod.

The vibration on each trial (see above) was used as the input for each mechanoreceptor in the population. To more realistically

simulate themechanoreceptors, the temporal profile of their responses included stochastic noise and considered knownmechan-

ical and spiking delays. We then derived the population-level response pattern by summing the spiking of each individual

mechanoreceptor.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cluster-based analysis of EEG signals
The goal of each experiment was to identify time windows where the amplitude of SEPs was modulated by whether the location of

contact was repeated or not (seeMain Text). We hypothesized that the evoked response to the second hit would be smaller when the

stimulus was at the same location as the first (i.e., ‘same’ condition), compared to when it was at a different location (i.e., ‘different’

condition). We therefore focused our analysis on the evoked responses to the second stimulus presentation. Identical results were

found when this procedure was performed on the two contact locations separately (data not shown); we therefore combined them

into a single dataset for the final analysis. To identify time windows of suppression, we used a nonparametric cluster-based permu-

tation test [55], a popular data-driven approach that robustly controls for the multiple comparison problem inherent in M/EEG anal-

ysis. We focused this analysis on electrodes over temporal and sensorimotor regions contralateral to the stimulation: P7, P5, P3, P1,

Pz, TP9, TP7, CP5, CP3, CP1, CPz, T7, C5, C3, C1, Cz, FT9, FT7, FC5, FC3, FC1, FCz, F7, F5, F3, F1, and Fz. The sensorimotor

electrodes are the most common sites of the three SEPs corresponding to the chosen time window [22] and the temporal electrodes

served as neutral electrodes where no suppression was expected.

Multivariate pattern decoding of EEG signals
Decoding was performed on the datasets from the ten participants that took part in both Experiment 1 and 2. The trial-by-trial EEG

signal is dominated by low-frequency oscillations, which swamp the evoked responses. Therefore, in order to place greater emphasis

on the evoked SEPs, we subtracted the EEG following the first hit from the second hit on every trial. Trials were then classified by the

two above-mentioned trial conditions: Same and Different.

Representational distance approach

To test the hypothesis that similar processing stages are used to localize touch on an arm and tool, we compared the similarity of the

multivariate neural patterns of suppression for both surfaces at each time point (�40 to 120 ms after touch) using the Mahalanobis

distance (MD) metric [34]. All trials in both the tool and arm datasets were divided into the conditions ‘same location’ and ‘different

location’. Then, for each trial in the participant’s tool dataset, we calculated itsMD from the average of all trials in the participant’s arm

dataset whose condition was eithermatching or non-matching. For example, a trial in the ‘same’ condition from the tool dataset could

be compared against the average of the ‘same’ condition (match) or the ‘different’ condition (non-matching) in the arm dataset. The

degree of decoding for each time point was then quantified by subtracting the condition-matched MD from the condition-mis-

matched MD.
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If the multivariate neural patterns of suppression in the arm dataset were in fact predictive of the patterns of suppression in

the tool dataset, per our hypothesis, the condition-matched MD should yield smaller values than the condition-mismatched MD.

We assessed this using the nonparametric cluster-based permutation test described above. Prior to this analysis, the trial-aver-

aged MD values for each participant were smoothed using a Gaussian-kernel with a standard deviation of 8 ms. This approach

increases the sensitivity of the analysis [34] and did not have an effect on our pattern of results. We restricted the present anal-

ysis (and therefore the multivariate patterns) to nine of the sensorimotor channels from the significant cluster in Experiment 1

(CP3, CP1, CPz, C3, C1, Cz, FC3, FC1, FCz) and seven ventral electrodes where no significant classification was expected (P7,

TP9, TP7, T7, FT9, FT7, F7).

Hierarchical clustering

The full dataset for each participant contains four distinct trial types that are derived from the combinations of trial condition and the

surface touched.We used hierarchical clustering to assess their representational similarity. The Euclidean distance between the trial-

average neural patterns for each trial type was calculated for each participant. We then averaged the matrix of Euclidean distances

across all participants and clustered the data using the hclust function in R version 3.2.3 [51]. This was done for two time points: (i) the

earliest time point (52 ms) of significant cross-surface decoding described above; (ii) a later time point (80 ms) corresponding to the

peak of the N80 (Figures S1 and S3). We restricted the present analysis to nine of the sensorimotor channels from the significant clus-

ter in Experiment 1 (CP3, CP1, CPz, C3, C1, Cz, FC3, FC1, FCz).

Support vector classification

For each participant, we attempted to classify the four distinct trial types in their full dataset using a support vector machine (SVM)

[56] with a radial basis kernel. Our classification scheme used 5-fold cross validation. Thus, we trained the classifier on four subsam-

ples of the data (i.e., 80% of the trials) and tested classifier performance on the leftover subsample (i.e., the remaining 20% of the

trials). Each fold had an equal number of items per trial type. The hyperparameters of the SVM,C and g, were tuned using grid search;

tuning occurred separately for each of the five classification iterations. The features for classification were the neural patterns of sup-

pression for each of the two time points mentioned above (i.e., 52 and 80ms). Classification was performed using the e1071 package

[57] and its interface with LIBSVM [58]. This was implemented with R version 3.2.3 [51]. Chance classification (i.e., random guessing)

was 25%. Classification was done separately for each participant. We restricted the present analysis to nine of the sensorimotor

channels from the significant cluster in Experiment 1 (CP3, CP1, CPz, C3, C1, Cz, FC3, FC1, FCz).

To further explore the performance of the classifier, we assessed the confusion matrix for each participant. There were four

possible types of classifier judgments. The classifier could be completely accurate about both condition and surface

(condition+, surface+). The classifier could also produce three types of possible misclassifications: (i) accurate about surface

only (condition-, surface+); (ii) accurate about condition only (condition+, surface-), and (iii) fully inaccurate (condition-,

surface-). Different proportions of misclassification are informative about which categories are considered most similar and

distinct by the classifier.

Source reconstruction
The cortical sources underlying the observed repetition suppression in both experiments were estimated using Standardized Low

Resolution Brain Electromagnetic Tomography (sLORETA) [59], which approximates the generators underlying a given scalp topog-

raphy by finding a discrete solution to the inverse problem. A boundary element method (OpenMEEG) was used to create a realistic

head model (15000 vertices) to constrain source reconstruction [60]. This process was implemented using the Brainstorm toolbox

[50], which is freely available for download online under the GNU general public license (http://neuroimage.usc.edu/brainstorm).

Sources were reconstructed separately for each experimental condition (‘same’ and ‘different’) and were statistically compared us-

ing a paired permutation-based t test (1000 repetitions) at the group-level (FDR corrected at p < 0.05). Given prior studies on the

sources between 40 and 100 ms after stimulation [22, 23, 26, 27], we constrained our analyses to a region-of-interest covering

contralateral MI, SI, and the PPC (1300 vertices). Our analysis focused on two time points in the observed windows of suppression

discussed above: 52 and 80 ms. Qualitatively similar results were found when using a cluster-based approach to source reconstruc-

tion (data not shown).

We further compared the sources for each surface, tool and arm, in the ten participants who completed both experiments. We first

investigated the interaction between condition (‘same’, ‘different’) and surface (tool, arm) by using the abovemethods to compare the

sources of suppression (i.e., the arithmetic difference between both conditions) for both surfaces. Given that this analysis yielded no

results, we combined the data from both experiments into a single dataset in order to identify regions that coded for contact location

on both the tool and arm.

Support vector classification of simulated spikes
We sought to derive a theoretical lower bound on how efficiently the brain could extract where a rod was touched. This involved three

steps: (i) recording the rod’s modal responses to being impacted (see above); (ii) simulating how this response is encoded by mech-

anoreceptors in the hand (see above); (iii) using machine learning to classify how quickly impact location emerges in mechanore-

ceptor spiking.

We classified impact location from the population response using a support vector machine (SVM) [56] with a radial basis kernel.

Our classification scheme used 5-fold cross validation. Thus, we trained the classifier on four subsamples of the data (i.e., 80% of

the trials) and tested classifier performance on the leftover subsample (i.e., the remaining 20% of the trials). Each fold had an equal
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number of items per impact location. The hyperparameters of the SVM, C and g, were tuned using grid search; tuning occurred

separately for each of the five classification iterations. We specifically sought to characterize when a location-specific pattern

emerged in the PC population’s spiking pattern. The features for classification were therefore subsets of this population spiking

across multiple temporal window sizes (5 to 50 ms, in steps of 1 ms). Classification was performed using the e1071 package [57]

and its interface with LIBSVM [58]. This was implemented with R version 3.2.3 [51]. Chance classification (i.e., random guessing)

was �50%.

DATA AND CODE AVAILABILITY

Data for the EEG experiments and skin-neuron modeling is available here (https://osf.io/c4qmr/). For privacy reasons, this does not

include the data from participant DC. Additional requests should be sent to the Lead Contact, Luke E. Miller (L.Miller@donders.ru.nl).
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