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Theoretical Description of Robotic Mechanisms 

Kinematics of Common Industrial Robots 

John Lloyd and Vincent Hayward 
Computer Vision and Robotics Laboratory, McGill Research 
Centre for Intelligent Machines, McGill University, Montreal, 
Quebec, Canada 

An approach to finding the solution equations for simple 
manipulators is described which enhances the well known 
method of Paul, Renaud, and Stevenson, by explicitly making 
use of known decouplings in the manipulator kinematics. This 
reduces the set of acceptable equations from which we obtain 
relationships for the joint variables. For analyzing the Jacobian, 
such decoupling is also useful since it manifests itself as a 
block of zeros, which makes inversion much easier. This zero 
lock can be used to obtain a concise representation for the 
forward and inverse Jacobian computations. The decoupling 
also simplifies the calculations sufficiently to allow us to make 
good use of a symbolic algebra program (MACSYMA) in 
obtaining our results. Techniques for using MACSYMA in this 
way are described. Examples are given for several industrial 
manipulators. 

Keywords: Robots, Kinematics, Jacobian matrices, Automated 
mathematical derivations. 

1. Introduction 

There are two ways to approach the problem of 
inverse robot kinematics: numerically and sym- 
bolically. Numerical treatments [1] are general, 
and can be made to yield clean solutions in the 
presence of singularities, but are computationally 
burdensome for real time applications. By con- 
trast, analytical solutions, optimized for a particu- 
lar robot, can be quite rapid. The major drawback 
is that working out such a solution may not al- 
ways be possible (although it usually is for most 
i n d u s t r i a l  m a n i p u l a t o r s ) .  I n  t h e  g e n e r a l  c a s e  o f  a 

r o b o t  w i t h  6 r e v o l u t e  j o i n t s ,  i t  h a s  b e e n  s h o w n  

t h a t  t h e  s o l u t i o n  fo r  t h e  t a n g e n t  o f  t h e  h a l f  a n g l e  

o f  e a c h  j o i n t  is a 32 d e g r e e  p o l y n o m i a l  o f  t h e  

c o o r d i n a t e s  o f  t h e  l a s t  l i n k  [12]. A t t e m p t s  to  de -  

r ive  a n  exp l i c i t  f o r m  fo r  t h i s  p o l y n o m i a l  h a v e  b e e n  

u n s u c c e s s f u l ,  a l t h o u g h  i t  h a s  b e e n  s h o w n  to  b e  

e q u i v a l e n t  to  b o t h  a 16 x 16 d e t e r m i n a n t  e q u a t i o n  
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[2], and a system of eight second degree equations 
[131. 

Some of the original work on obtaining inverse 
kinematic solutions was done by Pieper, who enu- 
merated special cases in which a closed form 
solution is feasible. This includes the case where 
any three adjacent joint axes intersect, which is 
often true of the last three joints (or "wrist") of 
many industrial robots and defines the class of 
"wrist partitioned" manipulators. The kinematics 
of these robots have been extensively studied 
[3,4,9]. 

The best known method for determining a 
dosed kinematic solution is the one described in 
[7,8] which involves systematically exploring vari- 
ous kinematic relationships and picking out the 
best ones to yield solutions. In this paper, we 
adapt this technique so that it is more directed by 
the special geometry of the manipulator in ques- 
tion. This limits the search for a workable set of 
equations and is justifiable since special geometry 
is required to solve a manipulator anyway. We will 
also show how to use the same in determining the 
manipulator Jacobian and its inverse. Two special 
geometries that will be considered in particular are 
the cases where either three adjacent joints axes 
intersect, or three adjacent axes are parallel. The 
approach also lends itself to the use of a computer 
algebra program (in particular, MACSYMA *), and 
we will describe how we used this effectively in 
obtaining our results. 

2. Forward and Inverse Kinematics 

2.1. Finding the Equations 

The forward kinematics for a manipulator are 
always straight-forward to derive: 

T 6 = A I A 2 . . . A  N (1) 

where T 6 is the position of link 6 relative to the 
robot base, A i is the well known "A"  matrix for 
link i [6,7], and N is the number of links. 

A method for finding the inverse kinematics is 
described in [8], where (for a six link arm) we 
search the following set of equivalent equations 
for simple relationships between the joint angles 

* MACSYMA is a large symbolic mathematics program distrib- 
uted by Symbolics, Inc., Cambridge, Mass. 

we wish to find, and the hand coordinates and the 
joint angles we have already solved for: 

A 1 A 2 A 3 A 4 A s A  6 = T 6 (2) 

A2A3A4AsA6 = A1-T6 

A3A4AsA6 = A~-lA11T6 

We present here a variation on this approach. 
Assume that there are j adjacent joints whose 

kinematics decouple from those of the N - j  sur- 
rounding joints. If the products of the transforma- 
tion matrices of these joints is denoted by C, and 
the matrices for the surrounding joints are given 
by U a and U b, then we have 

UaCU b = T 6 (3) 

If we can use the decoupling to find an ap- 
propriate set of equations for the other N - j  
joints, then this equation can be rewritten as as 

C = O a- 1T6Ub 1 (4) 

where the right hand side is known. Then, if 
necessary, we can resolve C into its component 
matrices and apply the procedure of (2) to obtain 
the equations necessary to solve for the remaining 
j angles which comprise C. 

This approach is useful because it breaks the 
problem cleanly into two smaller problems which 
are easier to solve, even if it still becomes neces- 
sary at that point to resort to a numerical tech- 
nique to find the remainder of the solution. It is 
highly applicable to commercial robots which al- 
most always (intentionally) decouple in some 
straightforward w~ty. Conversely, the idea may be 
used in reverse to provide guidelines for robot 
design. 

If C decouples totally, then for an arbitrary 
adjacent transform M, either MC or CM contains 
N - j  independent components which do not de- 
pend on C at all. If the operator S groups these 
components into a column vector, then for the 
" M C "  case we have 

UaCU b = T 6 (5) 

Ua C = T6Ub- 1 

S ( U a )  = S(T6Ub - 1 )  (6) 

and, similarly, for the " C M "  case: 

S(Ub) = S(U~ 1T6) (7) 

In the manner of (2), we can use these relations to 
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obtain different sets of equations by taking (5) 
and successively either premultiplying by the in- 
verse components of Ua, or postmultiplying by the 
inverse components of Ub. 

In formulating C, it may be convenient to allow 
the component matrices to differ slightly from the 
strict "A" matrix definition. We can do this as 
follows. An "A"  matrix is the product of four 
components: A rotation about 0 about the z axis, 
a translation d along the z axis, a translation a 
along the new x axis, and a rotation a about the 
new z axis: 

A = R o T a T o R  ~ (8 )  

For a joint described by A i, we may migrate some 
of the constant terms into the adjacent matrices 
Ai_l  or Ai+ 1, requiring only that A i remains 
dependent on its joint variable. Caution should be 
exercised in doing this since some analysis tech- 
niques involving "A"  matrices do in fact assume 
the standard definition of (8). 

We shall now study some applications of the 
approach, beginning with the well studied instance 
where three joint axes intersect. This makes it 
possible to formulate as C for the joints in ques- 
tion which has no translational component, which 
implies that 

where R is a 3 X 3 rotation matrix. Premultiplying 
this by any transform X leaves the fourth column 
invariant: 

XCe4 = X e  4 (10) 

(where e i is defined by e l ( j )  = 0 for j 4: i, ei(i  ) = 
1). 

In the well known "wrist partioned" case, C 
comprises the last three joints, so that 

AIAEA3C = T 6 

Applying (6) and (10) allows us to generate the 
following equations: 

AIA2A3e 4 = T t e  4 (11) 

A2A3e 4 = Ai- aTte4 (12) 

A3e 4 -- A21A~- 1T6e4 (13) 

This provides enough information to determine 
A 1, A 2 ,  and A 3. C can then be determined from 
equation (4): 

C = A31A21AllT6 (14) 

The rest of the problem can be solved by applying 
method (2) to C alone: 

A4AsA 6 = C (15) 

AsA 6 = A41C (16) 

A 6 = A~- 1A41C (17) 

If C comprises a set of intermediate links, such as 
(for example) 3, 4, and 5, then we obtain a differ- 
ent version of (11)-(13): 

T61A1A2e4 = A61e4 

A1A2e 4 = T6A6 le4 

A2e 4 = A~- 1T6A61e4 

(18) 

(19) 

(20) 

along with equations analogous to (14)-(17) to 
solve for the component of C. 

Another case of interest is when we have three 
rotational joints whose axes are parallel to each 
other. If we use one of these axes as a reference, 
then the three joints form a complete two dimen- 
sional system with one rotational freedom about 
the axis and two translational freedoms per- 
pendicular to it. If we define this axis to be z, then 
C can be defined as 

[ cos (0 )  - s i n ( 0 )  0 Pc,,] 

c =  / sin(O) cos(O) 0 p.i (21) 

o o o ]  
/ ° o o 

where Pox and Pcy are the net displacements, and 
0 is the net rotation. Post multiplication CX of 
this matrix leaves the 3rd row invariant, which 
allows us to establish 

ercx = e~'X (22) 

If we assume, for example, that C is formed from 
angles 2, 3, and 4 (as is the case for the "elbow" 
manipulator), then 

A1CAsA 6 = T 6 

and applying (7) and (22) gives the following 
equations: 

e~'A 5 = e3rA11T6A61 (23) 

e3rAsA6 = eTAIlT6 (24) 

e &A6X  -I = ,gAi (25) 

This yields a solution for angles 1, 5, and 6. C is 
then known from (4). 

C = n l  1TtA61A~ 1 (26) 
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and given (21), is it easy to solve for the 3 compo- 
nent matrices which comprise C (see the end of 
Section 2.2). 

Decouplings similar to the three parallel axis 
case can also occur for combinations of prismatic 
and revolute joints. Prismatic joints are generally 
much easier to deal with since they introduce no 
rotational motion. The case where any three adjac- 
ent joints are prismatic is easy to solve, since it 
represents a C in which the rotational component, 
if not 0, is at least constant. If Ra, Rc, Rb, and R 6 
are the rotational submatrices of U a, C, U b and T6, 
respectively, then R C and R 6 are known and we 
can formulate our base equations from the rela- 
tionship 

RaReR b = R 6 (27) 
and the component matrices of Ra and R a, which 
together contain only 3 independent variables. 

Lastly, we consider the case where only two 
axes intersect. Though this problem is certainly 
not always tractable, it is common to most mani- 
pulators and hence worth some discussion. As in 
the case where three joints intersect, it is possible 
to construct a C matrix which has only a rota- 
tional component (though using only two compo- 
nent matrices this time). The difficulty is that the 
resulting equations we can generate for the trans- 
lational part of the problem will depend on four 
joint variables instead of three. Even if these rela- 
tionships are simple, we will still need an ad- 
ditional equation to solve for the subsystem. This 
can be found if the rotational component of C 
contains any constant entries (which is true when 
any of the component "twist" angles a, are multi- 
plies of ~r/2). We can then find the necessary 
equation from 

a c = RT~R6R~ (28) 

by equating these elements which are constant on 
the left hand side with their corresponding ele- 
ments on the right. This constraint is actually the 
one commonly used to solve the elbow manipu- 
lator [7,10], although in that instance it is not 
actually needed because of the three parallel axes. 

2.2. Solving the Equat ions  

In the rest of this paper, we will use the com- 
mon kinematician's shorthand where s i ~-sin 0,, 
c i = cos 0 i, si j  = sin 0 i + sin 0j, and cij = cos 0 i + 

cos 0j. We will also make use of the function 
atan2(y, x), which takes two arguments, y and x, 
proportional, respectively, to the sine and cosine 
of some angle 0, and returns the value of that 
angle in the range - rr < 0, < = rr. This method of 
performing inverse trigonometry is preferred be- 
cause it is numerically well behaved and easily 
resolves ambiguities about what quadrant the an- 
gle is in. 

Once a reasonable set of equations has been 
determined by the methods discussed above, solu- 
tions are obtained in the same way detailed in [7]: 
The individual elements are examined for simple 
relationships describing the joint variables. Some 
of the common forms of these relationships for 
revolute joints are described here, along with their 
solutions. 

In the most ideal case we will find two equa- 
tions of the form 

as, = k 1 (29) 

ac i = k 2 

where k I and k 2 are given or known from a 
previous part of the solution. 0, can then be 
determined unambiguously from 

0/= a t an2(k~)  (30) 

except when a = 0, which probably indicates a 
singularity. Alternatively, we may find an equa- 
tion 

as i 4- bc i = k (31) 

whose solution may be expressed either as [7] 

k 
0 /=a t an2 (  + _ ~ / a 2 + b 2 - k 2  ) - a t a n 2 ( b )  (32) 

or [10], 

O i = 2 a t a n 2 (  a + + - v / a 2 + b 2 - k 2  ) 
k + b (33) 

If such relationships are not explicitly available, 
they can often be found by squaring and combin- 
ing neighboring equations. Sometimes we may only 
have a convenient representation for either the 
sine or the cosine term. This can still be resolved 
using the above equations; if we have an expres- 
sion for the cosine, then we can use (33) with 
a = 0 a n d  b = l t o g e t  

0 ,= 2 atan2(+_ !/1 - c-------~2 ) l + c  (34) 
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Another possibility is that an equation of the form 
(31) is be complemented by an additional equa- 
tion to give a linear relationship, 

alsi + big = k 1 (35) 

a2s i + b2c i = k 2 

which may be solved to give si and c i explicitly. 
These are then used as arguments to atan20. 

We conclude this section with the solution of C 
for the three parallel joint case discussed above. 
For notational convenience, we will assume that 
the three component joints are 2, 3, and 4. If the 
translational offset for each link is a~*, we then 
have 

C234 -- 5'234 0 Pcx 1 

5'234 C234 0 Pcy 

0 0 1 ~ ]  
0 0 0 

c234 ~s234 0 a2c 2 + a3c23 -4- a4c234 

= / 5'234 c234 0 a25" 2 --[- a35'23 -4- 17/45'234 
| 0 0 1 0 

0 0 1 
(36) 

The solution to this can be determined with the 
law of cosines and a little algebra: 

( :i: ~1 + c2 ) (37) 
03 = 2 atan 2 1 +  c 3 

a 2 + a32 2 2 ~ d  x - d ;  

C 3 = 2a2a 3 

dx = P c x -  c234a4 

dy = Pcy - 5'234a4 

( a 3 s 3 d x + ( a 3 c 3 + a 2 ) d y )  
02 = atan 2 (a3c 3 + a2)d  x + a3s3dy 

04----atan 2( s23-----4 ) --_ 03 = 02 
C234 

Note that there is a singularity at 03 = 0. 

3. Forward and Inverse Jacobians 

The decoupling which we have considered in 
the above section on kinematics is also important 

* Because the joints are parallel, d i can be set to 0. 

in any treatment of the manipulator Jacobian, 
where it will manifest itself as zero entries. It 
might even be preferable to work out the Jacobian 
before doing the kinematics (in analyzing a 
manipulator, one usually finds themself doing 
both, anyway) in case a partitioning is revealed 
that was not previously noticed. 

It is well known that the Jacobian can be 
greatly simplified if it is expressed in some alter- 
nate frame k, instead of the canonical frame (which 
is usually in link 6 of the manipulator). This frame 
k is typically located in an intermediate manipu- 
lator link [11]. Such simplification is of particular 
interest for inversion purposes, although it must 
be remembered that it is then necessary to map 
Cartesian forces and velocities to and from frame 
k. 

In establishing a simple (easy to invert) version 
of the Jacobian, we are interested that it not only 
be sparse, but  also that it be block triangular, if 
possible. In particular, for wrist partioned mani- 
pulators, where the last three joints do not con- 
tribute to translation, the Jacobian is of the form 

(J. o) 
S = ~321 322 (38) 

Lets begin by reiterating the formulae for the 
column vectors Ji of J expressed in frame k: If the 
coordinate transform from frame k to the base 
frame of axis i (located in link i - 1) is given by 
the matrix Ki, where 

K i = (  Ri 0 P i ) =  ( 0  i Oi 0 a~ 0 P~) (39, 

then we have, using a notation similar to that in 
[14]: 

j, = (p, x a, / 
ai ] (rotary joint) (40) 

and 

= ( ai 
0 ) (prismatic joint) (41) J, 

(The perhaps more familiar formulae given in [7] 
are obtained using K71 instead of Ki.) 

These equations can be used to establish some 
characteristics of the simplifying cases considered 
in section 1. If the three rotational joint axes 
intersect, and we chose our frame k to be coinci- 
dent on this point of intersection, then p,. will be 
zero for each of the three columns associated with 
the joints in question. The top three elements of 
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then our computations arrange to look something 
like: 

de = J21 dO1 + J22 dO2 

( Jl~l del ) (52) 
dO = J221(-J21 dO1 + dc2) 

[ J~ql + J2~q2/ (53) 
t =  1 Ja~q2 ] 

( j ~ l T ( t l -  jTqt)  ) (54) 

q = I J~ 1Tt2 

Likewise, the easiest way to invert the submatrices 
Jn  and J22 is to solve explicitly for the vector in 
question. If we have the matrix equation My = x, 
where y = (Yl,  Y2, Y3) T and x = (x l ,  x2, X3) T are 
arbitrary vectors, then we use the notation sol(M) 
to denote the product M-ax.  This is best found in 
the usual way by putting the composite matrix 
(Mx) into echelon form and then solving for y 
recursively (dements of the solution vector y may 
hence be explicitly contained in the expression for 
sol(M)). The solution to equations (52) and (54) is 
completed by finding sol(Jll),  sol(J22), sol(J~), 
and sol(J2~ ). 

As was mentioned a little earlier, if the Jacobian 
is derived in an intermediate frame k, then we 
have to map quantities to and from the frame of 
interest (often the frame in link 6). If the trans- 
form from frame k to the frame in link 6 is K6, 
then the matrix D6k which transforms velocities 
from e to k, and its inverse, Dke, are given by 

R 6 ] 0 R T ] 

(55) 
where the notation p x R indicates a matrix whose 
columns are the cross products of p and each of 
the columns of R. Similarly, the force transforma- 
tions F6k and Fk6 are given by 

p 6 X R  6 R 6 (p6 × R6) T R~ 

(56) 

Clearly, these transformations are much sim- 
pler to work with if there is no translation be- 
tween frames k and 6. 

4. Using MACSYMA to Determine the Kinematics 

The methods described above are easy to im- 
plement using a computer algebra program. We 
will describe a few details about doing this here, 
using MACSYMA as.an illustration. 

4.1. Matrices 

Most of the MACSYMA work is done using the 
matrix routines along with the regular algebra 
facilities. The matrix functions provide for most 
common matrix operations, including multiplica- 
tion (.) and inversion (invO). Column vectors are 
also represented as matrices. Multiplying a col- 
umn vector v by the inverse of a matrix A 1 would 
look like 

inv(A1) . v; 

Basic algebraic simplification is performed 
using the function ratsimpO. 

4.2. Trigonometric Simplification 

Although MACSYMA has rules to handle trigono- 
metric constructions, we found that it was faster 
(and more compact) to use our own trigonometric 
notation and provide the required identities ex- 
plicitly. The trig expressions contained only sines 
and cosines, which were represented using the 
convention: 

s iX  = sin(0 x )  

coX = c o s ( 0 x )  

s i X Y  = sin(0 x + Or) 

c o X Y  = cos(0 x + Or') 

The only trig identities which we found neces- 
sary were 

siX^2 + coX^2 = 1 (57) 

s iXY^2  + coXY^2  = 1 (58) 

and 

s i n X Y  = s iXcoY  + s iYcoX  (59) 

c o s X Y  = c i X c o Y -  s iXs iY  (60) 

~CS~-A allows users to specify a single sub- 
stitution with the function ratsubstO, or a list of 
substitutions with the function lratsubstO. The 
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identities (57) and (58) can be wrapped into a 
function tsimpO, defined as 

tsimp(x) := lratsubst([tidl, tid2, tid3 . . . .  tid12, 

tid23 . . . .  ], x) 

where t idX and t i dXY  correspond to identities 
(57) and (58) for the required joint angles. 

Identities (59) and (60) are important whenever 
the axes of two consecutive joints are parallel. For  
any two joint angles X and Y, we can define a 
function combineXY 0 which combines angles, and 
a function expandXY 0 which expands them. 

MACSYMA has some difficulty combining angles 
which are in the midst of a large expression, 
although this is usually not a problem since it is 
possible to combine the angles before making the 
expression complex. For example, if we have the 
matrices A1, A2, A3, and A4, then 

combine23(A 1. A 2. A 3. A 4); 

might have some difficulty, whereas 

A1. combine23(A2. A3).  A4; 

would succeed. It is often useful to assign such 
predetermined products to a variable, as in: 

A12 : combine12(A1. A2); 

For analyzing the Jacobian, several support 
functions were written. These include jacobcolr(m) 
and jacobcolp(m), which return a column of the 
Jacobian for revolute and prismatic joints, respec- 
tively, given the transform matrix m between the 
frame of the joint in question and frame k. For 
historical reasons, our implementation of these 
functions uses the formula given in [7], rather than 
(40), so m is the inverse of the matrix K i described 
in Section 2. 

jacobcolr(m) := block([r], 
r:matrix(  [m[2, 1] * re[l, 4] 

-m[1, 
r." addrow(r, [m[2, 

- -  r a i l ,  

r: addrow(r, [m[2, 
- -  r a i l ,  

FOR i THR U 3 DO 
r: addrow(r, [m[3, 

r); 

jacobcolp(m) := block ([r], 
r: matrix( [m[3, 1]]), 
r: addrow(r, [m[3, 2]]), 
r: addrow(r, [m[3, 3]]), 

11 • m[2, 4]), 
2 1 . m [ 1 , 4 1  
2] * m[2, 411), 
3 1 " m H ,  41 
3] * m[2, 411), 

ill), 

FOR i T H R U  3 DO 
r." addrow(r, [0]), 

r); 

For exchanging rows and columns of the 
Jacobian, we have defined exrow(m, i, j )  and ex- 
col(m, i, j) ,  which exchange rows (or columns) i 
and j of m: 

exrow(matrix, i, j )  := block( 
It, t1, 
r: copymatrix(matrix), 
t ." r[j], rD'] ." r[i], r[i] : t, 
r)," 

excol(matrix, i, j)  .'= block( 
Jr, t1, 
r: transpose(matrix), 
t: r[j], r[j] ." r[i], r[i] ." t, 
transpose (r)); 

Lastly, the functions usolve(m, y, x) and 
lsolve(m, y, x) can be used to determine sol(m) for 
a matrix which is either closer to upper triangular, 
or closer to lower triangular, respectively. The 
arguments x and y provide symbolic descriptions 
of the input and output vectors. 

usolve(m, y, x) := block( 
[ue, no1, 
nc : length(m[1]) + 1, 
ue : uechelon(m, x), 
col(ue, nc) - (submatrix(ue, nc) 

- ident(nc - 1)). y)," 

lsolve(m, y, x) ,= block( 
[ue, ncl, 
nc : length (re[l]) + 1, 
ue : lechelon(m, x), 
col(ue, nc) - (submatrix(ue, no) 

- ident(nc - 1)).y)," 

uechelon(m, x) .'= echelon(addcol(m, x))," 

lechelon(m, x) := block( 
Jr, ncl, 
nc : length(m[1]) + 1, 
r: echelon(addcol (flipmatrix(m), reverse(x))), 
addcol (flipmatrix(submatrix(r, no)), 

reverse(col(r, Nc))))," 

flipmatrix(m) 
:= reverse(transpose(reverse(transpose(m)))),. 



5. Examples 

(61) 

In the following examples, the elements of T 6 
will be denoted in the usual way. 

n X 

ny 
T6= 

nz 

0 
while the 

ncx 

Oxa ).x 
oy ay py 
Oz az 
0 0 

dements  of C will be denoted by 

ocx acx Pc~ 
Ocy acy Pcy 
Ocz acz Pcz 
0 0 1 

(62) 

(63) 

5.1. Example 1: The ETL Robot 

This is a 6 revolute joint robot designed at the 
Japanese Electrotechnical Laboratory (ETL). (Fig. 
1 ), The "A"  matrices for this robot are: 

¢1 - - S l  

A t ----- S1 Cl 

0 0 
0 0  c:o 

A2 = 0 
1 

0 

c 3 0 

A3 = s 3 0 
0 1 

0 0 

C a 0 

A4 = S 4 0 

0 - 1  
0 0 

c5 0 

A5 = s 5 0 
0 1 
0 0 

C - -  S 6 

A 6 = $6 C6 

0 0 
0 0 

0 alc 1 
0 a151 
1 0 
0 1 

sz 0 ) 
-c2 0 
o -(2 
0 
S 3 d4s3 ) 

- -  C 3 -- c3d 4 
0 d 3 
0 1 

C4 

0 
0 

s 5 0 
-c5 0 
0 0 
0 1 

°i) 0 
1 

0 

@ 

Since this is a wrist partitioned manipulator, we 
start with equations (11)-(13), which yields several 
equivalently useful relationships. Equation (13) 
evaluates to 

( d4s3 I ( PyS12+c12Px-axc2 ) 
-c3d41 = Pz + d2 (64) 

°[13] -oIs2+pxSl2-cl2PYl 

The second row gives a single cosine relationship 
for 03 . 

Squaring and adding rows 1 and 3 gives the 
equation 

2 2 +p2y+p2_2aaclp~,+a2 d4s 3 + d 2 = -2atpyS 1 
(65) 

which then provides a solution for 01. 
Equation (12) gives us 

[e2d4s3+d3s21[pySl+clPx-al ) 
d4s2s3-c2d3 [ = I clpY-pxSl (66) 

Rows 1 and 2 give a set of equations for s 2 and e z 
of the form 

d4s3 d3 
k21 ) (67) 

which gives a solution for 0 2. A solution for 0 2 

Fig. 1. The ETL robot. 

® 
A0 
I 
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could also be found by squaring and combining a 
pair of equations, as was done for 01 . 

One we have solved for the first three angles, 
we can solve for the wrist angles using equations 
(14) and (15)-(17). These equations are relatively 
simple since the wrist contains no offsets and the 
twist angles are multiples of ~r/2. 

Elements (1.3) and (2.3) of equation (15) give a 
relation for angle 04: 

C4S  68, 
We note the singularity when 05 = 0. 

Elements (1.3) and (2.3) of equation (16) yield a 
relation for 05: 

(acy,  a xc4 ) 
Finally, 06 can be determined from elements 

(1.1) and (2.1) of equation (17): 

C6 ( cS (ncyS4" l t - c4Hcx) -BczS5  ) (70) 
( $ 6 ) =  \ C4ncy - -ncxS  4 

The complete inverse kinematics for the ETL 
robot can now be summarized: 

+ _ ~ d 4 - ( p z + d 2 )  
0 3 = 2 atan2 ~-j ~_ ~2---~/4 (71) 

( 2 a l P y + ~ 4 a 2 p 2 + 4 a 2 p 2 - k 2 1 )  

01 = 2 atan2 kl  1 + 2 a l p  x 

k l a = p ~ + p Z + a 2 _  d4s32 2 d 2 

82= 2 atan2( dak2____Al + d__4sak2_____~ 2 ) 
d4sak21 - d3kE2 

k21 =pyS1 + Clp x -- a 1 

k22 = C 1Py -- pxs1 

04=atan2(a Yt 
~acx /  

05=atan2(  acys4+acxc4 ) a  cz 

C4ncy -- ncxS 4 ) 

06 = atan2 ( nc -2--y~4 + c4ncx)~ --  C 5 glc2S 5 

where the rotational component of C is defined by (ncx.acx) (c2c3 s2 c12s  
Hcy Ocy acy = c3s12 -- c12 s12s3 ] 
ncz ocz acz s 3 0 --C 3 ] 

We derive the Jacobian for the ETL robot in the 

frame defined by AIA2A 3. Because axes 1 and 2 
are parallel, columns 1 and 2 can be combined: 

Ja =Jl  - J2  (72) 
The Jacobian relationship then takes the form 

dr. 
dy 
dz 
d~ 
do 
dep 

' alC3S2 

--O1C 2 

OIS2S 3 

0 

0 

0 

d01 

c3d 3 d 4 0 0 0 

- d4s 3 0 0 0 0 

d3s 3 0 0 0 0 

s 3 0 0 - s 4 c 4 s 5 

0 1 0 c 4 $4s 5 

- c 3 0 1 0 c 5 

dO 2 - dO 1 

dO3 
X dO 4 (73) 

dO5 
dO6 

Permuting columns and rows to optimize the tri- 
angularity of the diagonal blocks gives us the 
following: 

clz 
dx 
dq~ 
dp 

dq~ 

-- a l e  2 

als2s3 

alc3s2 

0 

0 

0 

dO,,_ 

dO 2 -- dO1 

eo~ 
× 

dO6 
dO~ 
dO4 

-- d4s 3 0 0 0 0 

d3s 3 0 0 0 0 

c3d 3 d 4 0 0 0 

s 3 0 c4s 5 - s 4 0 

0 1 s4s5 c4 0 

- -  C 3 0 C 5 0 1 

(74) 
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We will now solve for the various blocks of J 
using the notation described in section 2. Making 
the substitution 

h = ald4S2s  3 - alC2d 3 (75)  

and solving the equation JuY = x yields 

d 4 x  2 + d3x  1 

h 
a l c 2 y  1 + X 1 

so l ( J l l  ) ----- d4s3 (76)  

c3d3y  2 + a l c3s2y  1 - x 3 

d4 

Solving for J22 yields, initially, 

S4X 2 + C4X 1 

$5 

S4S5Yl -- X2 (77) 

C4 

x 3 -- c5y  1 

but  this is not quite correct since the c 4 term in 
the denominator of the second row cancels out 
(this can be determined in advance by examining 
the determinant of J22 and noticing that there are 
no singularities at c 4 = 0). Substituting for Yl in 
the second row gives 

S4X 2 + C4X 1 

sol(J22) = s, (78) 
C4X 2 -- S4X 1 

x 3 - c 5),1 

Similarly, we can find solutions for j r  and ,IT, 

® 

° t 

Fig. 2. The elbow manipulator. 

respectively: 

sol(J  r )  = _ 

c 3 d 3 Y 3 + d 3 s 3 Y 2 - X 2  

d4s3 

c 3 h y 3 + a l c 2 X 2 - d 4 s 3 x  1 

hs 3 

13 

d4 

(79) 

C4c5y 3 + $4S5X 2 -- C4X 1 

$5 

sol(J  r )  = _ Css4y3 -- C4S5X2 - -  S4Xl (80) 

S5 

X3 

The rest of the solution follows from equations 
(51)-(54). 

5.2. Example  2: The Elbow Manipulator 

The elbow manipulator  (Fig. 2) is a common 
industrial robot in which the axes of joints 2.3, 
and 4 are parallel. The " A "  matrices for this 
robot, with A 4 and A 5 modified so that the z axis 
defined by  A 4 is parallel to the z axes of A 2 and 
A3, are:  

c 

A1 = s 1  

0 
0 

C2 

A 2 = S2 
0 
0 

 3/ci 
C4 

A 4 = $4 
0 
0 

c 5 

As = 0 
--S 5 

0 

0 s 1 

0 - q  

1 0 
0 0 

- s  2 0 

c 2 0 

0 1 
0 0 

- s  3 0 

c 3 0 

0 1 
0 0 

- -  S4 0 

c 4 0 

0 1 
0 0 

0 s 5 

1 0 
0 c 5 

0 0 

0 

0 

0 
1 

a2c2 I 

ao) 
a 3C3 

a3s3 

0 
1 

a 4C4 1 

ai ' ) 

(81) 
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A 6 =  $6 ¢6 0 

0 0 1 
0 0 0 

Since this manipulator has three parallel axes, we 
can first use equations (23)-(25). We find equa- 
tion (24) (presented in column form) to be 

c6S5 { n x S l - - C l n y  1 

$5S6 = l o x s 1  C10y I 

C5 l a x S l  ay¢l  I 

0 ~ pxSl C 1 py } 

(82) 

The 4th row of this gives a relation for 01, while 
rows 1 and 2 provide a relation for 06. We note the 
existence of a singularity when 05 = 0. 

Next, we examine equation (23): 

- -S  5 

0 

¢5 
0 

¢ SI ( C6H x -- OxS6 ) -- ¢1(¢6Hy -- OyS6 ) 

s l  ( nxS  6 -1- C60x ) -- ¢l ( nyS6 --t- ¢60y) 

axS  1 -- ayC 1 

p~sl - cl py 
(83) 

This gives an unambiguous solution for 05, since 
the other two angles have been solved for. 

Having solved for the three angles which sur- 
round C, we now solve for the components of C 
itself (which are of the form given in (21)). Be- 
ginning begin with the equation 

C = A 1 - 1 T 6 A 6 1 A s  I (84) 

we find the second row, presented in column 
form, is 

234 / 

Pcy ] 

--C50zS 6 --1- azS 5 + c5c6n z ' 

nzS  6 + c60 z 

OzS5S 6 -- c6glzS 5 + azC 5 
Pz 

(85) 

This gives a relation for 0234 and Pcy" 
For p¢~, we see from inspection of the (1.4) 

elements of (84) that 

Pc~ =pySa + ClPx (86) 

The results for the elbow manipulator can now 
be summarized: 

0 a = 2 atan2 _---p--y (87) 

06 = atan21 °xsa - -  cl°y ] 
Clny -- HxS 1 ! 

05 = atan2 s l (  c6nx - °xs6) : Cl(----~C6ny -- OyS6) ] 

axS  1 -- ayC 1 ! 
$234 = --¢50zS6 q- azS  5 -[- C5C6H z 

C234 = nzS 6 + C60 z 

Pcy = Pz 

Pox =pySl  + caP~ 

The remainder of the solution follows from equa- 
tions (37). 

We can use the same "A"  matrices to derive a 
Jacobian for the manipulator in the frame k de- 
fined by AIA2A3A 4. Since three axes are parallel, 
we can simplify the Jacobian by combining col- 
umns. Specifically, we take 

J'~ --J2 - J3  (88) 

and 

J~ = J 3 - J 4  (89) 

The Jacobian relationship is then defined by 

dx 
dy 

do 
d~ 

0 a2s34 a3s 4 0 0 0 \ 

o a2c3, a3c, a, 0 I I = -- a4c234 -- a3c23 -- a2c 2 0 0 0 0 
S234 0 0 0 0 

C234 0 0 0 1 

0 0 0 1 0 c5 J 

, d O  a , 

| dO 3 - dO 2 | 

I d ° , l  
~ dO6 I 

Using the substitution 

h = - a 4 c 2 3 4  - a3c23 - a2c 2 (91) 
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and rearranging columns to migrate the zero block 
into the upper right comer and optimize the trian- 
gularity of the diagonal blocks, we get the rela- 
tionship 

'dz  h 

d~b S234 

d p  c234 

de  0 

dx 0 

~dy 0 

X 

0 0 

s 5 0 
0 1 

c 5 0 
0 0 

0 0 

dO1 

dO6 
dO5 
dO2 

dO 3 - dO 2 

dO 4 - dO 3 

The solution for 

JlaY -- x 

works out to 

X 1 

h 
sol(J11 ) = x2 - -  S234Y 1 

S5 

X 3 - -  C234Y 1 

Solving for ,I22 initially delds 

S4X 3 - -  C4X 2 -- a 4 s 4 x  I 

a2s3 

a2834Y 1 - x 2 

a3s4 

x1 

0 0 0 

0 0 0 

0 0 0 

0 0 1 

a 2 s 3 4  a3s  4 0 

a 2 c 3 4  a3c4 a4 

(92) 

(93) 

(94) 

(95) 

but the s 4 in the denominator of the second row 
cancels out to yield 

S4X 3 -- C4X 2 -- a 4 $ 4 x  1 

a 2 s  3 

s o l ( J 2 2  ) = s 3 4 x 3  - -  c 3 4 x 2  --  a4s34x1 ( 9 6 )  

a3s3 

x1 

Similarly, the solutions for j r  and J2~ are, respec- 
tively, 

C234Y 3 + S234Y 2 - -  X 1 

h 
sol(Jl~) = x__22 (97) 

S5 

X3 

and 

x 3 - a4y  3 
a2c34x  2 -- a 3 c 4 x l  

sol(J2~ ) = a2a3s3 (98) 
a2s34X 2 -- a 3 s 4 x  1 

a 2 a 3 s 3  

The rest of the solution follows easily from equa- 
tions (51)-(54). 

6. Summary 

The methods described above can be encapsu- 
lated into the following procedures: 

6.1. Working out the Kinematics 

1. Enter all the "'A'" matrices, modifying them as 
necessary to define a reasonable C matrix. 

2. Build the equations by multiplying the neces- 
sary matrices and equating elements. There will 
typically be two equation sets: a set of column 
vector equations in terms of the angles extrin- 
sic to C, and a set of matrix equations in terms 
of the angles intrinsic to C. 

3. Solve for the angles outside C, first by inspect- 
ion, and secondly by combining equal de- 
ments. 

4. Solve for the angles of  C in terms of C, in the 
same way. The elements of C are known from 
step 3. 

6.2. Working out the Jacobian 

1. Establish the frame k in which the I is to be 
derived. This should be optimized with regard 
to obtaining a simple Jacobian while not allow- 
ing the computation of K 6 to become too com- 
plicated. 

2. Derive J using equations (40) and (41) and the 
successive Kt found by multiplying "A"  
matrices. The functions jacobcolrO and 
jacobcolpO do this using values of K 71 instead. 

3. Rearrange J to simplify the inversion. Permute 
the rows and columns of J to first put the 
matrix into a block triangular form, if possible, 
and then arrange each of the blocks themselves 
to be as triangular as possible. Additional sim- 
plification can be obtained by adding or sub- 
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tracting columns which correspond to parallel 
joints. 

4. Find the inverse relationships. The blocks can 
be inverted using the functions usolveO and 
lsolveO, and the rest of the solutions are ob- 
tained directly from (51)-(54). 
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Appendix A. MACSYMA 
Sessions 

A.1 Derivation of ETL Robot Kinematics 

This is an annotated MACSYMA session used in deriving the 
inverse kinematics for the ETL robot. 

; The variables al  through a6 denote the 6 A matrices for the 
; robot while il  through i6 denote their inverses. The link pa- 
; rameters are given by aal, dd2, dd3, and dd4. The sines and 
; cosines are given by sil  through si6 and col through co6. sil2 
; and co12 are the sine and cosine of  angle 1 + angle 2. 

; For later convenience, precombine a l .  a2 and its inverse: 

(c127) a12 : combine12 (al.a2); 

co12 0 si12 aalcol  ] 
(d127) sil2 0 - co12 aalsi l  

0 1 0 - dd2 
0 0 0 1 

(c128) i12: combine12 (tsimp(invert(a2)). tsimp(invert(al ))); 

l 
co12 si12 0 - aalco2 1 

(d128) 0 0 1 dd2 [ 
sil2 - co12 0 - aalsi2 I 

0 0 0 

; Now form the first three equations to f ind angles 1 through 3. 
; The vector e4 is used to extract the fourth column of  each 
; equation. 

(c129) e4 : transpose (matrix([O, O, O, 1])); 

(c130) eqnl : a12.a3.e4 = t6.e4; 

(d130) dd4s i l2s i3  + aals i l  - col2dd3 = py 
- co3 d d 4 -  dd2 

1 

(c131) eqn2 : a2.a3.e4 = il. t6.e4; 

-co2dd4si3 + dd3si2 - p y s i l  + colpx - aal  q 

(d131) dd4si2si3 - co2dd3 = colpy - pxs i l  

1 - c o 3 d d 4 -  dd2 pz  

1 1 
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(c132) eqn3 : a3.e4 = i12.t6.e4; 

[ dd4si3 ] I pysi l2+c°12px-aalc°2 ] 1  .] 
- co3dd4 | = pz + dd2 

(d132) dd3 | - aalsi2 + pxsil2 - col2py 
1 

; Extract solution for angle 3: 

(c133) part(eqn3, 1)[2, 11 = part(eqn3, 2)[2, 1]; 

(d133) - co3dd4 = pz + dd2 

; Extract solution for angle 1; 

(c134) x : part(eqn3, 2); 

[ pysil2 + col2px - aalco2 1 

I pz + dd2 I 
(d134) [ - a a l s i 2  + plsil2-col2py J 

(c135) part(eqn3, 1); 

[ dd4si3 ] 
(d135) | -co3dd4 | 

(c136) x[1, 11^2 + x[3, 1]'2 

= tsimp(expand12(x[1, 112 + x[3, 115)); 

(d136) dd42si3: + dd32 

= 2aalpysil + pye + px 2 _ 2aalcolpx + aal 2 

; Extract solution for angle 2 

(c137) eqn2; 

[co2dd4si3 + dd3si2 1 [pysil + colpx - aal- 
l dd4si2si3 - co2dd31 = 

(d137)[ _co3d~14_dd2 ] [I colpy-pxsilpz 

(c138) x:matrix([dd4 * si3, dd3], [ -  dde, dd4 * si3]); 

dd3 
[ dd4si3 dd4si3 ] J (d138) 
t - dd3 

(c139) invert(x); 

dd4si3 dd3 
dd42si32 + d d 3 2  dd42si32 + dd32 

(d139) dd3 dd4si3 

dd42si32 + dd32 dd4esi32 + dd3: 

(cl40) kl = part(eqn2, 2)[1, 1]; 

(d140) kl = pysil + colpx - aal 
(c141) k2 = part(eqn2, 2)[2, I]; 

(d141) k2 = colpy - pxsil 

(c142) print (matrix([co2], [si2]), 
" ' =  '"  revert(x), matrix([kl], [k2])); 

co2 dd42si32 + d d 3 2  dd42si32 + dd3e 

si2 dd3 dd4si3 k2 
J dd42si32 + dd32 dd42si32 + dd32 

; Derive the solutions for the last three joint angles. For conven- 
," ience, define a macro "rot' which returns the rotational part 
; of a transform, 

(c143) rot(m) := submatrix(4, m, 4); 
(d143) rot(m) :ffi submatrix(4, x, 4) 

; Evaluate C in terms of al through a3, and then the find the 
; component angles of C. 

(c144) c; 

ncx ocx acx p c x ]  
net ocy acy pcy I 

(d144) n ocz acz 

o o 7 J  
(c145) rot(c) ~ rot(a12.a3); 

ncx vex acx] [co12co3 
(d145) ncy ocy acy I = I co3si12 

ncz ocz acz .I L si3 

(c146) rot(a4.a5.a6) = rot(c); 

co4co5co6 - si4si6 - co4co5si6 - co6si4 
co4si6 + co5co6si4 co4co6 - co5si4si6 

- co6si5 siSsi6 [ acx] n c x  O C X  

= ncy ocy acy 
L ncz ocz acz d 

(c147) col(part(%, 1), 3) = col(part( %, 2), 3); 

[ co4si5 ] [ acx ] 
(d147) [ si4si5 [ = acy 

L co5 J [ acz ] 

(c148) rot(a5.a6) = rot(i4.c); 

 co. o6 . . . 6  
(d148) I co6si5 - si5si6 

I_ si6 co6 

ncysi4 + co4ncx ocysi4 + co4ocx 
- -  n c z  - -  o c z  

co4ncy -- ncxsi4 co4ocy -- ocxsi4 

(c149) col(part( %, 1), 3) = col(part( %, 2), 3); 

si '  ] [acysi4+acxco4] 
(d149) - e o 5 1 =  l - a c z  I 

O J L acyco4 - acxsi4 J 

(c15O) rot(a6); 

[ c o 6 - s i 6  i ]  
. . o ,  [,o  O6o 
(c151) col( %, 1) = col(rota5.i4.c), 1); 

sil2 col2si31 
- co12 sil2si3 

0 - co3 

(d151) 

co4si5 ] 
si4si5 I 
co5 J 

acysi4 + acxco4 ] 
acyco4a'Zacxsi4] 

[co6] [ co5(ncysi4 + co4ncx) -- nczsi5 
= I co4ncy -- ncxsi4 

[ (ncysi4 + co4ncx)si5 + co5ncz 

A.2 Derivation of Elbow Manipulator Jacobian 

Thi s  is a n  a n n o t a t e d  MACS','MA sess ion  to  i l lus t ra te  the  

d e r i v a t i o n  a n d  m a n i p u l a t i o n  o f  J a c o b i a n s .  

; For the elbow manipulator, the link offsets are given by the 
; variables aa2, aa3, and aa4. The composite A matrices a23, 
; a34, and a234, along with their inverses i23, i34, and i234, 
; are precomputed to help MACSYMA keep the associated angles 
; combined 

; Start by computing and simplifying all six columns of the 
jacobian: 
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(cl 11) j l  : tsimp(jacobcolr(al.a234)); 

0 
0 

(d111) - aa4co234 - aa3co23 - aa2co2 
si234 
co234 

0 
(cl 12) j2:  tsimp(jacobcolr(a2, a3. a4)); 

(aa2co3 + aa3)si4 + aa2co4si3 1 

1 
- aa2si3si4 + (aa2co3 + aa3)co4 + aa4 

(dl12) 0 
0 
0 
1 

(el 13) j3  : tsimp(jacobcolr(a3.a4)); 

aa3si4 
aa3co4 + aa4 

(dl13) 0 
0 
0 
1 

(c l 14) j4:  tsimp(jacobcolr(a4)); 

V ° aa4 

; k is the matrix between the frame coinciding with joint 5 
; and the Jacobian frame. This is not the identity since the 
; z axis of k is not parallel with the axis of  joint 5. 

(c115) display (k); [,o o 
k =  0 0 - 1  

0 1 0 
0 0 0 

(c l l  6) j5 : tsimp(jacobcolr(k)); 

(d116) 0 

(cl 17) j6: jacobcolr(i5) ; 

(d117) 0 
S 

L co5 d 
; Simplify the columns by subtraction: 

(c118)j2: combine34(j2 - j3)$ 

(c119)jS:j3 - j45  

; Now form the Jacobian: 

(c120) j :  addcolO'l, j2, j3, j4, jS, j6); 

0 a a 2 s i 3 4  a a 3 s i 4  0 0 

0 a a 2 c o 3 4  a a 3 c o 4  a a 4  0 

- - a a 4 c o 2 3 4  -- a a 3 c o 2 3  -- aa 2 co 2  0 0 0 0 

s i 234  0 0 0 0 

co234  0 0 0 1 

0 0 0 1 0 

o o 

$ 

co5 J 

; Exchange various rows and columns to move the zero block 
; into the upper right hand corner and optimize the triangularity 
; of  the blocks: 

(c121) exrow( %, 1, 3)$ 

(c122) exrow( %, 2, '4)$ 

(c123) exrow( %, 3, 5)$ 

(c124) excol(%, 3, 5)$ 

(c125) excol(%, 2, 5)$ 

(c126) excol( %, 4, 6)$ 

(c127) excol(%, 4, 6)$ 

; Now we have the permuted version of  the Jacobian. 

(c128) h: - aa4 * co234 - aa3 * co23 - aa2 * co25 

( c12 9) jp : ratsubst( "h, h, d127)," 

I h 0 0 0 
si234 si5 0 0 

(d129) co234 0 1 0 
0 co5 0 0 
0 0 0 aa2si34 
0 0 0 aa2co34 

," Define the sub-blocks of the matrix: 

(c130)j l l  .'submatrix(4, 5, 6,jp, 4, 5, 6)," o 
(d130) si234 si5 

co234 0 

(c131)j22.'submatrix(1, 2, 3,jp, 1, 2, 3); [o o , ]  
(d131) aa2si34 aa3si4 0 

aa2co234 aa3co4 aa4 

(c132)j21 :submatrix(1, 2, 3,jp, 4, 5, 6); [oco, 
(d132) 0 o 

0 0 

," Solve j l  l recursively, and simplify." 

(c133) tsimp(lsolve(j11, y, x)); 

x l  
h 

(d133) si234y1 - x2 
si5 

x3 - co234yl 

," Solve j22 recursively, and simplify: 

(c134) v: tsimp(lsoloe(j22, y, x)); 

si4x3 - co4x2 - aa4si4xl 
aa2co34si4 - aa2co4si34 

(d134) aa2si34y1 - x2 
aa3si4 
x l  

(c135) co34 * si4 - co4 * si34," 

(d135) co24si4 - co4si34 

(c136) v : ratsubst(tsimp(expand34( % )), %, v); 

si4x3 - co4x2 - aa4si4xl 
aa2si3 

(d136) aa2si34y1 - x2 
aa3si4 
x l  

oo] 
0 0 
0 0 
0 1 

aa3si4 0 
aa3co4 aa4 
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,. Substitute y l  into the second row to eliminate si4: 

(c137) tsimp(ratsubst(v[1, 11, y l ,  v)); 

si4x3 - co4x2 - aa4si4xl 
aa2si3 

(d137) si34x3 - co34x2 - aa4si34x1 
aa3si3 
x l  

; Solve for j l  1 recursively, and simplify: 

(c138) tsimp(usolve(transpose(j11), y, x))," 

co234y3 + si234y2 - x l  
h 

(d138) x2 
si5 
x3 

; Solve for j22 recursively, and simplify: 

(c139) v : tsimp(usolve(transpose(j22), y, x)); 

x3 - aa4y3 
aa3co4y3 - x2 

(d139) aa3si4 
aa2si34x2 - aa3si4xl 

aa2aa3co34si4 - aa2aa3co4si34 

(c140) co34 * si4 - co4 * si34; 

(d140) co34si4 - co4si34 

(c141) v: ratsubst(tsimp(expand34( % )), %, v); 

x3 - aa4y3 
aa3co4y3 - x2 

(d141) aa3si4 
aa2$i34x2 - aa3si4xl 

aa2aa3si3 

(c142) tsimp(ratsubst(v[3, 1], y3, v); 

x3 - aa4y3 
aa2co34x2 - aa3co4xl 

(d142) aa2aa3si3 
aa2si34x2 - aa3si4xl 

aa2aa3si3 

; Lastly, determine the matrix k6 which maps from k to link 6: 

(c143) k6 : a5.a6; 

co5co6 - coSsi6 sis i l  
(d143) si6 co6 0 

- co6si5 si5si6 co5 
0 0 0 

Appendix B. Examples with 
Other Robots 

B.1  T h e  P U M A  

Probably the most famous of all research robots, the PUMA 
(Fig. 3) is an anthropomorphic arm with six revohite joints. It 

is also one of the more complicated industrial arms, since it has 
4 offsets. 

The modified "A"  matrices are defined as follows: 

A1 = 

A 2 =  

A 3 =  

C4 

A4 = s4 
0 
0 

( C5 

f ¢6 

A6 = 

c l o  sl 
s 1 0 -- c 1 
0 1 0 
0 0 0 

C2 - -  S2 0 a 2 c  2 
I 

S200 C200 001 ais2 ) 

f c 3 0 - -  s 3 a 3 c  3 - -  d 4 s  3 

S 3 0 C 3 a 3 5 3  + c 3 d  4 

0 - 1  0 d 3 
0 0 0 1 

0 - -  C 4 

1 0 
0 0 

0 - s  5 O) 

0 c5 i 
- 1  0 . 
0 0 

The inverse kinematics solution is 

02 = atan2 ( 2a2pz + ~4a2(P2k21 _ 2 a 2 k l  1 + k21) - k21 ) 

kl l  = pysl + clpx 

2 2 k21= t72 + k21 + a2 _ d4 _ a~ 

83 = atan2( - d4k31 + a3k32 I 
a3k31 + d4k32 ] 

k31 = pzS2 + C2kll - a 2 

k32 = c2p z - klS 2 

0 4 = atan2( - acy I 
\ - ac~ ] 

05 = atan2(-acys4-acxC4)a.~ 

06 = atan2 ( - °czs5 S c5 ( °*YS4._...~ + c'°cx ) ) 
C40cy  - -  OcxS 4 ] 

where the rotational components of C can be computed from 
the first three angles by 

n cx ° c x  Cl C23 
n c Y  °cY a c y  = C23Sl Cl -- $1523 / 
n cz Ocz a cz s23 0 c23 ] 
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The manipulator Jacobian is derived in the link defined by 
AaA2A 3. This gives a K 6 matrix defined by 

K 6 =  

C4C5C 6 -- S4S 6 -- C4C5S 6 -- C6S 4 -- C4S 5 0 

C4S 6 + C5C6S 4 C4C 6 -- C5S4S 6 -- S4S 5 0 

C6S 5 -- S5S 6 C 5 0 

0 0 0 1 

The corresponding Jacobian relationship is 

c /(c23 3h a2s3-4° ° ° 1 0  0 0 0 
-- d3s23 a2c  3 a 3 0 0 0 = t . )  . o o o . - . s ,  

d o  0 0 - 1  0 - c a - s 4 d  5 

d ~  c23 0 0 1 0 c 5 

d01 

dS: 

× 
de4 
dO~ 
de, 

where rows 2 and 3 have been combined and h is defined by 

h = - d4823 + a3c23 + a2c  2 

The permuted form of the relationship is 

d x  - d3s23 a2c  3 a 3 0 0 0 

dz  s23 0 0 -- C4S 5 S 4 

d~b 0 0 - 1 - s4s  5 - c 4 

d o  C23 0 0 C 5 0 
ddp 

dO1 I 

l aa~ |  

/ ~°6 / 

\ ~04 / 

The solution is given by 

sol(Jll  ) = 

Xl 

h 

( d3das23 - a3c23d3 ) y 1 + d 4 x  3 + a 3 x  2 

a 2 a 3 s  3 + a 2 c 3 d  a 

x 3 -- a 2 c 3 y  2 + d3s23Y  1 

a3 

t -- $4x2 + C4X1 I 
sol(J22 ) = Ss 

S4X 1 -- C4X 2 

x 3 -- Csy  1 

® 

@ 

@ ® 

Fig. 3. The PUMA manipulator. 

sol(J  T ) = 

~ol(J~) = 

d3s23Y  3 - c 2 3 d 3 y  2 + x 1 

h 

a 3 y  3 -- x 3 

d4  

a 2 s 3 x  3 + d 4 x  2 

a 2 a 3 s  3 + a 2 c 3 d  4 

C45c5y  3 + S4S5X 2 -- C4XI 

$5 

C5s4y  3 -- C4S5X2 -- S4X 1 

S 5 
X3 

B.2 The Stanford Manipulator 

The Stanford manipulator (F ig .  4 )  is a spherical robot with an 
offset at the shoulder. 

The "A" matrices for the robot are: 

(cl :1 -" i) A 1 = Sl Cl 
0 - 0 
0 0 0 

A 2 =  

A 3 =  

it C 2 0 S 2 / 
s 2 0 -- c 2 00 

i 0 1 0 d12 
0 0 0 

l O  o 

0 1 d13 
0 0 
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Fig. 4. The Stanford manipulator. 

/c 0 s4 
A 4  = 0 C 4 

- 1  0 
0 0 

A5 = s5 0 - c 5 
0 1 0 
0 0 0 

¢ c6 - s 6 0 0 1 / 
A6 = | s  6 c 6 0 0 

0 1 0 
0 0 1 

The inverse kinematic solution is 

01 = 2 a t a n  2 d2 + py 

! 2 2 
d3 = V(pysl + cip~) + p~ 

\ a c x ]  

05 = atan2( acyS4acx + acxCa ) 

06= atan2( °czSs--_c,( °cyS, + C_,°cx) ] 
C40cy -- OcxS 4 ] 

where the rotational components of C can be computed from 
the first three angles by 

n cy Ocy a cy = 

n cz ocz a cz ~ - s 2 0 c 2 

The manipulator Jacobian is derived in the link defined by 
A1A2A 3. This gives a K 6 matrix defined by 

C4C 5 C 6 --  S4S 6 -- C4C5S 6 -- C6S 4 C4S 5 0 

) K 6 = c436 + c5c6s4 c4c  6 - c5s4s  6 3435 

- c6s  5 s5s  6 c 5 

0 0 0 

The corresponding Jacobian relationship is 

_ c 2 d  2 d3 

d~  d 3 s  2 0 

d z  - d 2 s  2 0 

dtk - s 2 0 

dp 0 1 

drk c 2 0 

The permuted form of the 

0 0 0 O ~ [ d O l ~  

0 0 0 0 ] / d 0 2 1  

1 0 0 0 l i d 0 3 [  
o 0 - s ,  c , s , / / d 0 , /  
0 0 C 4 S4S51 / dO5 ] 
0 1 0 c, ] ~ d 0 6 ]  

relationship is 

dy 
dx 

dz 

d~ 
dp 

d e  

d3s2 

-- c2d 2 

-- d2s 2 

- -  S 2 

0 

C2 

0 0 0 0 O ~ [ d O l l  

d 3 0 0 0 0 1 1 d 0 2 }  
o a o o o / / a o ,  / 
0 o c,s5 - s ,  o / / a 0 6  / 
1 0 S4S 5 C 4 O l l d O ,  I 

0 0 c, 0 1 ] ~ d 0 4 ]  

The solution to this is given by 

X1 

d3s2 

sol(Jl l  ) = c2d2y 1 + X 2 
d3 

d2s2y  1 + x 3 

S4X 2 + C4X 1 

sol(J22 ) = ss 
C4X 2 -- S4X 1 

X 3 -- c S y  1 

sol(J ) = 

d 2 s 2 y  3 + c 2 d 2 y  2 + X 1 

d 3 s  2 

x 2  

d3 
X3 

s o l ( J r )  = 

C4c5y  3 + S4SsX 2 -- C4X1 

$5 

C5S4y 3 -- C4S5X2 --  $4X1 

S5 

X3 

B.3 The S C A R A ,  type 1 

The SCARA robots are wrist partioned manipulators where 
the first three joints consist of two rotary joints and one 
prismatic joint, with all the joint axes parallel. 
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I o  

@ 

O) 

7~ 

I 
J 

Fig. 5. The SCARA manipulator,  type 1. 

I @ 

In the first type of SCARA robot (Fig. 5), the prismatic joint  
is joint 2. 

The "A" matrices for this robot are 00) 
A1 = c I 0 0 

0 1 0 
0 0 1 

l: °°oI A2 = 0 1 0 

I 0 0 

A 3  = 0 - c 3 - c 3 d  4 

1 0 0 

0 0 1 

¢ C4 

A 5 ~ s5 

0 
0 

0 -- S 4 0 

0 C 4 0 

- 1  0 0 
0 0 1 

0 - Cs 

1 0 
0 0 

_ s 6  o 

A6 = c 6 0 
0 1 
0 0 

The inverse kinematic solution is 

2azpy +-~/4az(P;, + P ; , ) - k ~ l  
01 = 2 atan 2 k u  +2a2Px 

2 2 kl l  = p:  + p2 - da + a2 

d2 =Pz 

03 = atall2( pysl + clpx - a2 - Clpy 

o4 = atan2(ac" l 
a~x ] 

Os= atan2( acys4 + acxc4 cz 

O6=atan2(°¢zss-cs(~°f-ys4+--c4°cx) ) C 4 0 c y  - -  OcxS 4 

where the rotational components  of C can be computed from 
the first three angles by 

n c y  ° cy  a c y  = S13 0 -- c13 

n cz °cz a cz 0 1 0 

The manipulator Jacobian is derived in the link defined by 
A1A2A 3. This gives a K 6 matrix defined by 

C4C5C 6 --  $ 4 S  6 - -  C4C5S 6 - -  C6S 4 C4S s 0 

K 6  = £ 4 s 6  q- c 5 ¢ 6 s  4 c 4 c  6 - -  c 5 s 4 s  6 8 4 s  5 0 

- -  c 6 $  5 s 5 s  6 c 5 0 

0 0 0 1 

The corresponding Jacobian relationship is 

dx a2s 3 0 d4 0 0 0 ~ dO 1 

dy 0 1 0 0 0 ~ ] dO 2 

dz - a2c 3 0 0 0 0 dO 3 - dO 1 

d~b 0 0 0 0 - -  s 4 ¢ 4 s 5  dO 4 

dp 0 0 0 1 0 c 5 [ dO 5 

dq~ ] dO 6 

where columns 1 and 3 have been combined. The permuted 
form of the relationsllip is 

dy 0 1 0 0 0 0 dO 2 

dx a2s 3 0 d 4 0 0 dO 3 - dO 1 

d~k 0 0 0 c4s5 - s 4 dO 6 

dp 0 0 1 SaS5 c 4 dO 5 

dc k 0 0 0 C 5 0 dO4  

The solution to this is given by 

Xl  

a 2 c 3  

sol(Jla ) = x 2 
a2s3y 1 -- x 3 

d4 

S 4 X  2 + C 4 X  1 

sol(Jza ) = s5 
C 4 X  2 - -  S 4 X  1 

x 3 - -  csy 1 
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sol(J~) = 

sol (J  r )  = 

a 2 s 3 y  3 - -  X 1 

O 2C3 

X2 

X3 

d 4  

C 4 C s y  3 + $4$5X2  --  C4X 1 

S5 

C s S 4 y  3 - -  C4S5X 2 - -  S4X 1 

S5 

X 3 

B.4 The SCARA, Type 2 

In the second type of scxa_~ robot (Fig. 6), the prismatic joint  
is joint  3. The "A "  matrices for the robot are: 

Cl 

A 1 = s l  

0 
0 

t C2 

A 2 = S2 

0 
0 

'1  
0 

A 3 =  0 

0 

t C4 

- -  S 1 0 a l c  1 

) c~ 0 als 1 
0 1 0 
0 0 1 

- -  $2 0 a 2 c  2 
I 

C200 001 a02 I 

0 0 0 
1 0 0 
0 1 d 3 
0 0  1 
0 s a 
0 - c4 
1 0 
0 0 

® 

Fig. 6. The SCARA manipulator, type 2. 

c 0 - s 5  i )  
A5 = s 5 0 c 5 

0 - 1  0 
0 0 0 

A 6  = c 6 0 

0 1 
0 0 

The inverse kinematic solution is 

( 2aaPy±¢4a2(pE + p2 ) - k2 ,  ) 
01 = 2 atan 2 kn +2alpx 

kl  1 = py2 +]o 2 _  a 2 + a 2 

\ pysl  + clv~ - al } 

d 3  = Pz 

04 = atan 2 ( - a ~ Y  / 

05 = atan 2(-acyS4~-acxC4)acx 

06=atan2(-°czs'~-c--5(°cys4----~+c4°cx) ) c 4 o c y  - OcxS 4 

where the rotational components  of C can be computed from 
the first three angles by 

n cz Ocz a ez, 0 
The manipulator  Jacobian is derived in the link defined by 

A1A2A 3. This gives a K 6 matrix defined by 

K 6 = c 4 s 6  + c 5 c 6 5 4  c 4 c  6 - c 5 s 4 s  6 - s 4 s  5 

c 6 s  5 - -  SsS 6 C5 

0 0 0 1 

The corresponding Jacobian relationship is r /(als2ooo o o}/ 1 
alc 2 a 2 0 0 0 ~ I dO2- dO21 

= 0 0 1 0 0  I d 0 3 1  

do o o o o - c ,  - s , s ,  | ~os | 
d~ o 1 o a o ~ / ~ dO6 ] 

where columns 1 and 2 have been combined. The permuted 
form of the relationship is 

/ /(a12o0 o 0 0 i )  / 01 a-,_c~ o,, 0 0 0 O / ~ ' O ' , - " O ' , L  
= o o !  o o / , ~ o 3  / 

o o o -c.s  . .  , , 
dp 0 0 0 - sass - c4 I dos I 
dO 0 1 0 c 5 0 ~ dO, ] 
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The solution is given by 

x1 

als2  

s o l ( J l l  ) = a l c 2 y  1 - x 2 

a2  

x 3 

S4X 2 + C4X 1 

S5 

S4X 1 -- C4X 2 

x 3 - csy 1 

a l c 2 y  2 -- x 1 

a l s 2  

so1(42) = 

s o l ( J ~ )  = 

s o l ( J ~ )  = 

X2 

a2 

X 3 

c4c5y  3 + s 4 s 5 x  2 -- C4Xl 

S5 

C5S4y 3 -- C4S5X 2 -- S4X 1 

S5 

X3 

B . 5  T h e  M i c r o b o  E C U R E U I L  

This is a cylindrical robot manufactured by the Swiss 
company Microbo (Fig. 7). 

® 

@ 

@ 

® 

Fig. 7. The microbo ECUREUIL. 

It is cylindrical, with two prismatic joints, and consequently 
its kinematics are quite straightforward. 

The "A"  matrices for this robot are: 

A1 = s 1 c 1 0 

0 0 1 
0 0 0 ( Ol 0) 

A 2  0 0 0 
= 1 0 d 2 

0 0 1 ( oo o) 
1 0 0 

A3 = 0 1 d 3 

0 0 1 

s4 o) 
A 4  = 0 - C 4 0 

1 0 0 
0 0 1 

As = s 5 0 - c 5 
0 1 0 
0 0 0 

A6 = s6 c6 0 
0 0 1 
0 0 0 

The inverse kinematic solution is 

01 = atan2(  p y  I 
~ P x :  

dE = Pz 

d 3 = ~ + P :  

04=atan2(  acy ) 
\ acx 

05 = ataxl2( acys4  + acxc4 ) _  acx 

where the rotational components  of C can be computed from 
the first three angles by 

( - )  n cx °cx 

a cy n cy °cy = c 1 0 

n cz °cz a cz 0 1 

The Jacobian is derived in the frame defined by A 1A 2 A 3A 4, 
from which K 6 is defined by 

K 6 = c6s5 - s5s  6 - c5 

S 6 C 6 0 

0 0 0 
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The resulting Jacobian relationship is 

= d 3 s  4 - c 4 0 0 0 ~ dO 3 

S 4 0 0 0 0 S 5 ] d04 

l o: o o OlO ,l o, 
d 0 - - C  4 0 0 0 1  _ _  ~dO 6 

The permuted form of this relationship is 

c4d 3 s 4 0 0 0 

il dy = o o 1 o o I de~ 

d~ s 4 0 0 s 5 0 I de6 
dO - c ,  0 0 0 1 [ de 5 

dp 0 0 0 - c 5 0 ~ de 4 

The solution is given b y  

S4X2 + C4X 1 

d3 
s o l ( J l l  ) = S4X1 -- C4X 2 

X3 

sol(J22 ) S5 
-- X2 

c 5 y  I + x 3 

s o l ( J ~ )  = 

s o l O S )  = 

d 3 s 4 x  2 + c 4 x  1 

d3 

c 4 d 3 x  2 - $4x1 

d3 

x3 

csy 3 + x I 

) S5 

X2 

X3 


