
169

Theoretical Description of Robotic Mechanisms

Kinematics of Common Industrial Robots

John Lloyd and Vincent Hayward
Computer Vision and Robotics Laboratory, McGill Research
Centre for Intelligent Machines, McGill University, Montreal,
Quebec, Canada

An approach to finding the solution equations for simple
manipulators is described which enhances the well known
method of Paul, Renaud, and Stevenson, by explicitly making
use of known decouplings in the manipulator kinematics. This
reduces the set of acceptable equations from which we obtain
relationships for the joint variables. For analyzing the Jacobian,
such decoupling is also useful since it manifests itself as a
block of zeros, which makes inversion much easier. This zero
lock can be used to obtain a concise representation for the
forward and inverse Jacobian computations. The decoupling
also simplifies the calculations sufficiently to allow us to make
good use of a symbolic algebra program (MACSYMA) in
obtaining our results. Techniques for using MACSYMA in this
way are described. Examples are given for several industrial
manipulators.

Keywords: Robots, Kinematics, Jacobian matrices, Automated
mathematical derivations.

1. Introduction

There are two ways to approach the problem of
inverse robot kinematics: numerically and sym-
bolically. Numerical treatments [1] are general,
and can be made to yield clean solutions in the
presence of singularities, but are computationally
burdensome for real time applications. By con-
trast, analytical solutions, optimized for a particu-
lar robot, can be quite rapid. The major drawback
is that working out such a solution may not al-
ways be possible (although it usually is for most
i n d u s t r i a l m a n i p u l a t o r s) . I n t h e g e n e r a l c a s e o f a

r o b o t w i t h 6 r e v o l u t e j o i n t s , i t h a s b e e n s h o w n

t h a t t h e s o l u t i o n fo r t h e t a n g e n t o f t h e h a l f a n g l e

o f e a c h j o i n t is a 32 d e g r e e p o l y n o m i a l o f t h e

c o o r d i n a t e s o f t h e l a s t l i n k [12]. A t t e m p t s to de -

r ive a n exp l i c i t f o r m fo r t h i s p o l y n o m i a l h a v e b e e n

u n s u c c e s s f u l , a l t h o u g h i t h a s b e e n s h o w n to b e

e q u i v a l e n t to b o t h a 16 x 16 d e t e r m i n a n t e q u a t i o n

John Lloyd was born in Victoria,
Canada, on April 22, 1958. He re-
ceived a B.Sc. in physics from McGill
University in 1980, worked briefly in
the wilds of northern British Col-
umbia, and returned to McGill and
received an M.Eng specializing in
robotics in 1985. He then worked for a
year designing controllers and build-
ing laser vision systems for welding
robots. During the last two years, Mr.
Lloyd has been involved in setting up
robot control environments for pro-

jects at RCA/Genera l Electric, NASA, and the Jet Propulsion
Laboratory. His most recent work has been (with Mike Parker)
the development of RCI (Real-time Control Interface), a
package for creating real-time control tasks in a multi-CPU
V A X / U N I X environment. His research interests include robot
kinematics and control, computer languages and real-time
computing, and the software engineering aspects of sensor-
driven robot and multi-robot systems. He currently lives in
Montreal and is pursuing a Ph.D. at the McGill University
Research Center for Intelligent Machines.

North-Holland
Robotics 4 (1988) 169-191

Vincent Hayward was born in Paris,
France, on January 5, 1955. He re-
ceived the Dipltme d'Ing~nieur from
Ecole Nat ionale Sup~rieure de
M~w.anique de Nantes, Nantes, France,
and the Dipltme de Docteur-Ing~nieur
from Universit6 de Paris XI at Orsay
in computer science, in 1978 and 1981,
respectively.
From December 1981 to December
1983, he was at Purdue University, in
the Department of Electrical En-
gineering, the first year as a Visiting

Scholar sponsored by CNRS's ARA program (Automatique et
Robotique Avancte), and the second year as a Visiting Assis-
tant Professor. There, he developed RCCL, a robot control and
programming system. He then joined CNRS at the LIMSI
laboratory in Orsay, where he worked as attach6 de Recherche
on trajectory planning and spatial reasoning until May 1985.
He is now Assistant Professor with the Department of Electri-
cal Engineering at McGiU University, where he teaches a
course on Artificial Intelligence, and a Research Associate with
the McCAll Research Center for Intelligent Machines. His
research interests and publications are in the following areas:
robot programming and control, 3-D imaging, computational
geometry, spatial reasoning, computational architectures, space
and remote applications of robotics and telerobotics.
Dr. Hayward is member of IEEE.

0167-8493/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

170 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

[2], and a system of eight second degree equations
[131.

Some of the original work on obtaining inverse
kinematic solutions was done by Pieper, who enu-
merated special cases in which a closed form
solution is feasible. This includes the case where
any three adjacent joint axes intersect, which is
often true of the last three joints (or "wrist") of
many industrial robots and defines the class of
"wrist partitioned" manipulators. The kinematics
of these robots have been extensively studied
[3,4,9].

The best known method for determining a
dosed kinematic solution is the one described in
[7,8] which involves systematically exploring vari-
ous kinematic relationships and picking out the
best ones to yield solutions. In this paper, we
adapt this technique so that it is more directed by
the special geometry of the manipulator in ques-
tion. This limits the search for a workable set of
equations and is justifiable since special geometry
is required to solve a manipulator anyway. We will
also show how to use the same in determining the
manipulator Jacobian and its inverse. Two special
geometries that will be considered in particular are
the cases where either three adjacent joints axes
intersect, or three adjacent axes are parallel. The
approach also lends itself to the use of a computer
algebra program (in particular, MACSYMA *), and
we will describe how we used this effectively in
obtaining our results.

2. Forward and Inverse Kinematics

2.1. Finding the Equations

The forward kinematics for a manipulator are
always straight-forward to derive:

T 6 = A I A 2 . . . A N (1)

where T 6 is the position of link 6 relative to the
robot base, A i is the well known "A" matrix for
link i [6,7], and N is the number of links.

A method for finding the inverse kinematics is
described in [8], where (for a six link arm) we
search the following set of equivalent equations
for simple relationships between the joint angles

* MACSYMA is a large symbolic mathematics program distrib-
uted by Symbolics, Inc., Cambridge, Mass.

we wish to find, and the hand coordinates and the
joint angles we have already solved for:

A 1 A 2 A 3 A 4 A s A 6 = T 6 (2)

A2A3A4AsA6 = A1-T6

A3A4AsA6 = A~-lA11T6

We present here a variation on this approach.
Assume that there are j adjacent joints whose

kinematics decouple from those of the N - j sur-
rounding joints. If the products of the transforma-
tion matrices of these joints is denoted by C, and
the matrices for the surrounding joints are given
by U a and U b, then we have

UaCU b = T 6 (3)

If we can use the decoupling to find an ap-
propriate set of equations for the other N - j
joints, then this equation can be rewritten as as

C = O a- 1T6Ub 1 (4)

where the right hand side is known. Then, if
necessary, we can resolve C into its component
matrices and apply the procedure of (2) to obtain
the equations necessary to solve for the remaining
j angles which comprise C.

This approach is useful because it breaks the
problem cleanly into two smaller problems which
are easier to solve, even if it still becomes neces-
sary at that point to resort to a numerical tech-
nique to find the remainder of the solution. It is
highly applicable to commercial robots which al-
most always (intentionally) decouple in some
straightforward w~ty. Conversely, the idea may be
used in reverse to provide guidelines for robot
design.

If C decouples totally, then for an arbitrary
adjacent transform M, either MC or CM contains
N - j independent components which do not de-
pend on C at all. If the operator S groups these
components into a column vector, then for the
" M C " case we have

UaCU b = T 6 (5)

Ua C = T6Ub- 1

S (U a) = S(T6Ub - 1) (6)

and, similarly, for the " C M " case:

S(Ub) = S(U~ 1T6) (7)

In the manner of (2), we can use these relations to

3". Lloyd, V. Hayward / Kinematics of Common Industrial Robots 171

obtain different sets of equations by taking (5)
and successively either premultiplying by the in-
verse components of Ua, or postmultiplying by the
inverse components of Ub.

In formulating C, it may be convenient to allow
the component matrices to differ slightly from the
strict "A" matrix definition. We can do this as
follows. An "A" matrix is the product of four
components: A rotation about 0 about the z axis,
a translation d along the z axis, a translation a
along the new x axis, and a rotation a about the
new z axis:

A = R o T a T o R ~ (8)

For a joint described by A i, we may migrate some
of the constant terms into the adjacent matrices
Ai_l or Ai+ 1, requiring only that A i remains
dependent on its joint variable. Caution should be
exercised in doing this since some analysis tech-
niques involving "A" matrices do in fact assume
the standard definition of (8).

We shall now study some applications of the
approach, beginning with the well studied instance
where three joint axes intersect. This makes it
possible to formulate as C for the joints in ques-
tion which has no translational component, which
implies that

where R is a 3 X 3 rotation matrix. Premultiplying
this by any transform X leaves the fourth column
invariant:

XCe4 = X e 4 (10)

(where e i is defined by e l (j) = 0 for j 4: i, ei(i) =
1).

In the well known "wrist partioned" case, C
comprises the last three joints, so that

AIAEA3C = T 6

Applying (6) and (10) allows us to generate the
following equations:

AIA2A3e 4 = T t e 4 (11)

A2A3e 4 = Ai- aTte4 (12)

A3e 4 -- A21A~- 1T6e4 (13)

This provides enough information to determine
A 1, A 2 , and A 3. C can then be determined from
equation (4):

C = A31A21AllT6 (14)

The rest of the problem can be solved by applying
method (2) to C alone:

A4AsA 6 = C (15)

AsA 6 = A41C (16)

A 6 = A~- 1A41C (17)

If C comprises a set of intermediate links, such as
(for example) 3, 4, and 5, then we obtain a differ-
ent version of (11)-(13):

T61A1A2e4 = A61e4

A1A2e 4 = T6A6 le4

A2e 4 = A~- 1T6A61e4

(18)

(19)

(20)

along with equations analogous to (14)-(17) to
solve for the component of C.

Another case of interest is when we have three
rotational joints whose axes are parallel to each
other. If we use one of these axes as a reference,
then the three joints form a complete two dimen-
sional system with one rotational freedom about
the axis and two translational freedoms per-
pendicular to it. If we define this axis to be z, then
C can be defined as

[cos (0) - s i n (0) 0 Pc,,]

c = / sin(O) cos(O) 0 p.i (21)

o o o]
/ ° o o

where Pox and Pcy are the net displacements, and
0 is the net rotation. Post multiplication CX of
this matrix leaves the 3rd row invariant, which
allows us to establish

ercx = e~'X (22)

If we assume, for example, that C is formed from
angles 2, 3, and 4 (as is the case for the "elbow"
manipulator), then

A1CAsA 6 = T 6

and applying (7) and (22) gives the following
equations:

e~'A 5 = e3rA11T6A61 (23)

e3rAsA6 = eTAIlT6 (24)

e &A6X -I = ,gAi (25)

This yields a solution for angles 1, 5, and 6. C is
then known from (4).

C = n l 1TtA61A~ 1 (26)

172 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

and given (21), is it easy to solve for the 3 compo-
nent matrices which comprise C (see the end of
Section 2.2).

Decouplings similar to the three parallel axis
case can also occur for combinations of prismatic
and revolute joints. Prismatic joints are generally
much easier to deal with since they introduce no
rotational motion. The case where any three adjac-
ent joints are prismatic is easy to solve, since it
represents a C in which the rotational component,
if not 0, is at least constant. If Ra, Rc, Rb, and R 6
are the rotational submatrices of U a, C, U b and T6,
respectively, then R C and R 6 are known and we
can formulate our base equations from the rela-
tionship

RaReR b = R 6 (27)
and the component matrices of Ra and R a, which
together contain only 3 independent variables.

Lastly, we consider the case where only two
axes intersect. Though this problem is certainly
not always tractable, it is common to most mani-
pulators and hence worth some discussion. As in
the case where three joints intersect, it is possible
to construct a C matrix which has only a rota-
tional component (though using only two compo-
nent matrices this time). The difficulty is that the
resulting equations we can generate for the trans-
lational part of the problem will depend on four
joint variables instead of three. Even if these rela-
tionships are simple, we will still need an ad-
ditional equation to solve for the subsystem. This
can be found if the rotational component of C
contains any constant entries (which is true when
any of the component "twist" angles a, are multi-
plies of ~r/2). We can then find the necessary
equation from

a c = RT~R6R~ (28)

by equating these elements which are constant on
the left hand side with their corresponding ele-
ments on the right. This constraint is actually the
one commonly used to solve the elbow manipu-
lator [7,10], although in that instance it is not
actually needed because of the three parallel axes.

2.2. Solving the Equat ions

In the rest of this paper, we will use the com-
mon kinematician's shorthand where s i ~-sin 0,,
c i = cos 0 i, si j = sin 0 i + sin 0j, and cij = cos 0 i +

cos 0j. We will also make use of the function
atan2(y, x), which takes two arguments, y and x,
proportional, respectively, to the sine and cosine
of some angle 0, and returns the value of that
angle in the range - rr < 0, < = rr. This method of
performing inverse trigonometry is preferred be-
cause it is numerically well behaved and easily
resolves ambiguities about what quadrant the an-
gle is in.

Once a reasonable set of equations has been
determined by the methods discussed above, solu-
tions are obtained in the same way detailed in [7]:
The individual elements are examined for simple
relationships describing the joint variables. Some
of the common forms of these relationships for
revolute joints are described here, along with their
solutions.

In the most ideal case we will find two equa-
tions of the form

as, = k 1 (29)

ac i = k 2

where k I and k 2 are given or known from a
previous part of the solution. 0, can then be
determined unambiguously from

0/= a t an2(k~) (30)

except when a = 0, which probably indicates a
singularity. Alternatively, we may find an equa-
tion

as i 4- bc i = k (31)

whose solution may be expressed either as [7]

k
0 /=a t an2 (+ _ ~ / a 2 + b 2 - k 2) - a t a n 2 (b) (32)

or [10],

O i = 2 a t a n 2 (a + + - v / a 2 + b 2 - k 2)
k + b (33)

If such relationships are not explicitly available,
they can often be found by squaring and combin-
ing neighboring equations. Sometimes we may only
have a convenient representation for either the
sine or the cosine term. This can still be resolved
using the above equations; if we have an expres-
sion for the cosine, then we can use (33) with
a = 0 a n d b = l t o g e t

0 ,= 2 atan2(+_ !/1 - c-------~2) l + c (34)

Z Lloya~ V. Hayward / Kinematics of Common Industrial Robots 173

Another possibility is that an equation of the form
(31) is be complemented by an additional equa-
tion to give a linear relationship,

alsi + big = k 1 (35)

a2s i + b2c i = k 2

which may be solved to give si and c i explicitly.
These are then used as arguments to atan20.

We conclude this section with the solution of C
for the three parallel joint case discussed above.
For notational convenience, we will assume that
the three component joints are 2, 3, and 4. If the
translational offset for each link is a~*, we then
have

C234 -- 5'234 0 Pcx 1

5'234 C234 0 Pcy

0 0 1 ~]
0 0 0

c234 ~s234 0 a2c 2 + a3c23 -4- a4c234

= / 5'234 c234 0 a25" 2 --[- a35'23 -4- 17/45'234
| 0 0 1 0

0 0 1
(36)

The solution to this can be determined with the
law of cosines and a little algebra:

(:i: ~1 + c2) (37)
03 = 2 atan 2 1 + c 3

a 2 + a32 2 2 ~ d x - d ;

C 3 = 2a2a 3

dx = P c x - c234a4

dy = Pcy - 5'234a4

(a 3 s 3 d x + (a 3 c 3 + a 2) d y)
02 = atan 2 (a3c 3 + a2)d x + a3s3dy

04----atan 2(s23-----4) --_ 03 = 02
C234

Note that there is a singularity at 03 = 0.

3. Forward and Inverse Jacobians

The decoupling which we have considered in
the above section on kinematics is also important

* Because the joints are parallel, d i can be set to 0.

in any treatment of the manipulator Jacobian,
where it will manifest itself as zero entries. It
might even be preferable to work out the Jacobian
before doing the kinematics (in analyzing a
manipulator, one usually finds themself doing
both, anyway) in case a partitioning is revealed
that was not previously noticed.

It is well known that the Jacobian can be
greatly simplified if it is expressed in some alter-
nate frame k, instead of the canonical frame (which
is usually in link 6 of the manipulator). This frame
k is typically located in an intermediate manipu-
lator link [11]. Such simplification is of particular
interest for inversion purposes, although it must
be remembered that it is then necessary to map
Cartesian forces and velocities to and from frame
k.

In establishing a simple (easy to invert) version
of the Jacobian, we are interested that it not only
be sparse, but also that it be block triangular, if
possible. In particular, for wrist partioned mani-
pulators, where the last three joints do not con-
tribute to translation, the Jacobian is of the form

(J. o)
S = ~321 322 (38)

Lets begin by reiterating the formulae for the
column vectors Ji of J expressed in frame k: If the
coordinate transform from frame k to the base
frame of axis i (located in link i - 1) is given by
the matrix Ki, where

K i = (Ri 0 P i) = (0 i Oi 0 a~ 0 P~) (39,

then we have, using a notation similar to that in
[14]:

j, = (p, x a, /
ai] (rotary joint) (40)

and

= (ai
0) (prismatic joint) (41) J,

(The perhaps more familiar formulae given in [7]
are obtained using K71 instead of Ki.)

These equations can be used to establish some
characteristics of the simplifying cases considered
in section 1. If the three rotational joint axes
intersect, and we chose our frame k to be coinci-
dent on this point of intersection, then p,. will be
zero for each of the three columns associated with
the joints in question. The top three elements of

J. Lloyd, K Hayward / Kinematics of Common Industrial Robots 175

then our computations arrange to look something
like:

de = J21 dO1 + J22 dO2

(Jl~l del) (52)
dO = J221(-J21 dO1 + dc2)

[J~ql + J2~q2/ (53)
t = 1 Ja~q2]

(j ~ l T (t l - jTqt)) (54)

q = I J~ 1Tt2

Likewise, the easiest way to invert the submatrices
Jn and J22 is to solve explicitly for the vector in
question. If we have the matrix equation My = x,
where y = (Yl, Y2, Y3) T and x = (x l , x2, X3) T are
arbitrary vectors, then we use the notation sol(M)
to denote the product M-ax. This is best found in
the usual way by putting the composite matrix
(Mx) into echelon form and then solving for y
recursively (dements of the solution vector y may
hence be explicitly contained in the expression for
sol(M)). The solution to equations (52) and (54) is
completed by finding sol(Jll), sol(J22), sol(J~),
and sol(J2~).

As was mentioned a little earlier, if the Jacobian
is derived in an intermediate frame k, then we
have to map quantities to and from the frame of
interest (often the frame in link 6). If the trans-
form from frame k to the frame in link 6 is K6,
then the matrix D6k which transforms velocities
from e to k, and its inverse, Dke, are given by

R 6] 0 R T]

(55)
where the notation p x R indicates a matrix whose
columns are the cross products of p and each of
the columns of R. Similarly, the force transforma-
tions F6k and Fk6 are given by

p 6 X R 6 R 6 (p6 × R6) T R~

(56)

Clearly, these transformations are much sim-
pler to work with if there is no translation be-
tween frames k and 6.

4. Using MACSYMA to Determine the Kinematics

The methods described above are easy to im-
plement using a computer algebra program. We
will describe a few details about doing this here,
using MACSYMA as.an illustration.

4.1. Matrices

Most of the MACSYMA work is done using the
matrix routines along with the regular algebra
facilities. The matrix functions provide for most
common matrix operations, including multiplica-
tion (.) and inversion (invO). Column vectors are
also represented as matrices. Multiplying a col-
umn vector v by the inverse of a matrix A 1 would
look like

inv(A1) . v;

Basic algebraic simplification is performed
using the function ratsimpO.

4.2. Trigonometric Simplification

Although MACSYMA has rules to handle trigono-
metric constructions, we found that it was faster
(and more compact) to use our own trigonometric
notation and provide the required identities ex-
plicitly. The trig expressions contained only sines
and cosines, which were represented using the
convention:

s iX = sin(0 x)

coX = c o s (0 x)

s i X Y = sin(0 x + Or)

c o X Y = cos(0 x + Or')

The only trig identities which we found neces-
sary were

siX^2 + coX^2 = 1 (57)

s iXY^2 + coXY^2 = 1 (58)

and

s i n X Y = s iXcoY + s iYcoX (59)

c o s X Y = c i X c o Y - s iXs iY (60)

~CS~-A allows users to specify a single sub-
stitution with the function ratsubstO, or a list of
substitutions with the function lratsubstO. The

176 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

identities (57) and (58) can be wrapped into a
function tsimpO, defined as

tsimp(x) := lratsubst([tidl, tid2, tid3 tid12,

tid23], x)

where t idX and t i dXY correspond to identities
(57) and (58) for the required joint angles.

Identities (59) and (60) are important whenever
the axes of two consecutive joints are parallel. For
any two joint angles X and Y, we can define a
function combineXY 0 which combines angles, and
a function expandXY 0 which expands them.

MACSYMA has some difficulty combining angles
which are in the midst of a large expression,
although this is usually not a problem since it is
possible to combine the angles before making the
expression complex. For example, if we have the
matrices A1, A2, A3, and A4, then

combine23(A 1. A 2. A 3. A 4);

might have some difficulty, whereas

A1. combine23(A2. A3). A4;

would succeed. It is often useful to assign such
predetermined products to a variable, as in:

A12 : combine12(A1. A2);

For analyzing the Jacobian, several support
functions were written. These include jacobcolr(m)
and jacobcolp(m), which return a column of the
Jacobian for revolute and prismatic joints, respec-
tively, given the transform matrix m between the
frame of the joint in question and frame k. For
historical reasons, our implementation of these
functions uses the formula given in [7], rather than
(40), so m is the inverse of the matrix K i described
in Section 2.

jacobcolr(m) := block([r],
r:matrix([m[2, 1] * re[l, 4]

-m[1,
r." addrow(r, [m[2,

- - r a i l ,

r: addrow(r, [m[2,
- - r a i l ,

FOR i THR U 3 DO
r: addrow(r, [m[3,

r);

jacobcolp(m) := block ([r],
r: matrix([m[3, 1]]),
r: addrow(r, [m[3, 2]]),
r: addrow(r, [m[3, 3]]),

11 • m[2, 4]),
2 1 . m [1 , 4 1
2] * m[2, 411),
3 1 " m H , 41
3] * m[2, 411),

ill),

FOR i T H R U 3 DO
r." addrow(r, [0]),

r);

For exchanging rows and columns of the
Jacobian, we have defined exrow(m, i, j) and ex-
col(m, i, j) , which exchange rows (or columns) i
and j of m:

exrow(matrix, i, j) := block(
It, t1,
r: copymatrix(matrix),
t ." r[j], rD'] ." r[i], r[i] : t,
r),"

excol(matrix, i, j) .'= block(
Jr, t1,
r: transpose(matrix),
t: r[j], r[j] ." r[i], r[i] ." t,
transpose (r));

Lastly, the functions usolve(m, y, x) and
lsolve(m, y, x) can be used to determine sol(m) for
a matrix which is either closer to upper triangular,
or closer to lower triangular, respectively. The
arguments x and y provide symbolic descriptions
of the input and output vectors.

usolve(m, y, x) := block(
[ue, no1,
nc : length(m[1]) + 1,
ue : uechelon(m, x),
col(ue, nc) - (submatrix(ue, nc)

- ident(nc - 1)). y),"

lsolve(m, y, x) ,= block(
[ue, ncl,
nc : length (re[l]) + 1,
ue : lechelon(m, x),
col(ue, nc) - (submatrix(ue, no)

- ident(nc - 1)).y),"

uechelon(m, x) .'= echelon(addcol(m, x)),"

lechelon(m, x) := block(
Jr, ncl,
nc : length(m[1]) + 1,
r: echelon(addcol (flipmatrix(m), reverse(x))),
addcol (flipmatrix(submatrix(r, no)),

reverse(col(r, Nc)))),"

flipmatrix(m)
:= reverse(transpose(reverse(transpose(m)))),.

5. Examples

(61)

In the following examples, the elements of T 6
will be denoted in the usual way.

n X

ny
T6=

nz

0
while the

ncx

Oxa).x
oy ay py
Oz az
0 0

dements of C will be denoted by

ocx acx Pc~
Ocy acy Pcy
Ocz acz Pcz
0 0 1

(62)

(63)

5.1. Example 1: The ETL Robot

This is a 6 revolute joint robot designed at the
Japanese Electrotechnical Laboratory (ETL). (Fig.
1), The "A" matrices for this robot are:

¢1 - - S l

A t ----- S1 Cl

0 0
0 0 c:o

A2 = 0
1

0

c 3 0

A3 = s 3 0
0 1

0 0

C a 0

A4 = S 4 0

0 - 1
0 0

c5 0

A5 = s 5 0
0 1
0 0

C - - S 6

A 6 = $6 C6

0 0
0 0

0 alc 1
0 a151
1 0
0 1

sz 0)
-c2 0
o -(2
0
S 3 d4s3)

- - C 3 -- c3d 4
0 d 3
0 1

C4

0
0

s 5 0
-c5 0
0 0
0 1

°i) 0
1

0

@

Since this is a wrist partitioned manipulator, we
start with equations (11)-(13), which yields several
equivalently useful relationships. Equation (13)
evaluates to

(d4s3 I (PyS12+c12Px-axc2)
-c3d41 = Pz + d2 (64)

°[13] -oIs2+pxSl2-cl2PYl

The second row gives a single cosine relationship
for 03 .

Squaring and adding rows 1 and 3 gives the
equation

2 2 +p2y+p2_2aaclp~,+a2 d4s 3 + d 2 = -2atpyS 1
(65)

which then provides a solution for 01.
Equation (12) gives us

[e2d4s3+d3s21[pySl+clPx-al)
d4s2s3-c2d3 [= I clpY-pxSl (66)

Rows 1 and 2 give a set of equations for s 2 and e z
of the form

d4s3 d3
k21) (67)

which gives a solution for 0 2. A solution for 0 2

Fig. 1. The ETL robot.

®
A0
I

J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots 177

178 3". Lloyd, V. Hayward / Kinematics of Common Industrial Robots

could also be found by squaring and combining a
pair of equations, as was done for 01 .

One we have solved for the first three angles,
we can solve for the wrist angles using equations
(14) and (15)-(17). These equations are relatively
simple since the wrist contains no offsets and the
twist angles are multiples of ~r/2.

Elements (1.3) and (2.3) of equation (15) give a
relation for angle 04:

C4S 68,
We note the singularity when 05 = 0.

Elements (1.3) and (2.3) of equation (16) yield a
relation for 05:

(acy, a xc4)
Finally, 06 can be determined from elements

(1.1) and (2.1) of equation (17):

C6 (cS (ncyS4" l t - c4Hcx) -BczS5) (70)
($ 6) = \ C4ncy - -ncxS 4

The complete inverse kinematics for the ETL
robot can now be summarized:

+ _ ~ d 4 - (p z + d 2)
0 3 = 2 atan2 ~-j ~_ ~2---~/4 (71)

(2 a l P y + ~ 4 a 2 p 2 + 4 a 2 p 2 - k 2 1)

01 = 2 atan2 kl 1 + 2 a l p x

k l a = p ~ + p Z + a 2 _ d4s32 2 d 2

82= 2 atan2(dak2____Al + d__4sak2_____~ 2)
d4sak21 - d3kE2

k21 =pyS1 + Clp x -- a 1

k22 = C 1Py -- pxs1

04=atan2(a Yt
~acx /

05=atan2(acys4+acxc4) a cz

C4ncy -- ncxS 4)

06 = atan2 (nc -2--y~4 + c4ncx)~ -- C 5 glc2S 5

where the rotational component of C is defined by (ncx.acx) (c2c3 s2 c12s
Hcy Ocy acy = c3s12 -- c12 s12s3]
ncz ocz acz s 3 0 --C 3]

We derive the Jacobian for the ETL robot in the

frame defined by AIA2A 3. Because axes 1 and 2
are parallel, columns 1 and 2 can be combined:

Ja =Jl - J2 (72)
The Jacobian relationship then takes the form

dr.
dy
dz
d~
do
dep

' alC3S2

--O1C 2

OIS2S 3

0

0

0

d01

c3d 3 d 4 0 0 0

- d4s 3 0 0 0 0

d3s 3 0 0 0 0

s 3 0 0 - s 4 c 4 s 5

0 1 0 c 4 $4s 5

- c 3 0 1 0 c 5

dO 2 - dO 1

dO3
X dO 4 (73)

dO5
dO6

Permuting columns and rows to optimize the tri-
angularity of the diagonal blocks gives us the
following:

clz
dx
dq~
dp

dq~

-- a l e 2

als2s3

alc3s2

0

0

0

dO,,_

dO 2 -- dO1

eo~
×

dO6
dO~
dO4

-- d4s 3 0 0 0 0

d3s 3 0 0 0 0

c3d 3 d 4 0 0 0

s 3 0 c4s 5 - s 4 0

0 1 s4s5 c4 0

- - C 3 0 C 5 0 1

(74)

J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots 179

We will now solve for the various blocks of J
using the notation described in section 2. Making
the substitution

h = ald4S2s 3 - alC2d 3 (75)

and solving the equation JuY = x yields

d 4 x 2 + d3x 1

h
a l c 2 y 1 + X 1

so l (J l l) ----- d4s3 (76)

c3d3y 2 + a l c3s2y 1 - x 3

d4

Solving for J22 yields, initially,

S4X 2 + C4X 1

$5

S4S5Yl -- X2 (77)

C4

x 3 -- c5y 1

but this is not quite correct since the c 4 term in
the denominator of the second row cancels out
(this can be determined in advance by examining
the determinant of J22 and noticing that there are
no singularities at c 4 = 0). Substituting for Yl in
the second row gives

S4X 2 + C4X 1

sol(J22) = s, (78)
C4X 2 -- S4X 1

x 3 - c 5),1

Similarly, we can find solutions for j r and ,IT,

®

° t

Fig. 2. The elbow manipulator.

respectively:

sol(J r) = _

c 3 d 3 Y 3 + d 3 s 3 Y 2 - X 2

d4s3

c 3 h y 3 + a l c 2 X 2 - d 4 s 3 x 1

hs 3

13

d4

(79)

C4c5y 3 + $4S5X 2 -- C4X 1

$5

sol(J r) = _ Css4y3 -- C4S5X2 - - S4Xl (80)

S5

X3

The rest of the solution follows from equations
(51)-(54).

5.2. Example 2: The Elbow Manipulator

The elbow manipulator (Fig. 2) is a common
industrial robot in which the axes of joints 2.3,
and 4 are parallel. The " A " matrices for this
robot, with A 4 and A 5 modified so that the z axis
defined by A 4 is parallel to the z axes of A 2 and
A3, are:

c

A1 = s 1

0
0

C2

A 2 = S2
0
0

 3/ci
C4

A 4 = $4
0
0

c 5

As = 0
--S 5

0

0 s 1

0 - q

1 0
0 0

- s 2 0

c 2 0

0 1
0 0

- s 3 0

c 3 0

0 1
0 0

- - S4 0

c 4 0

0 1
0 0

0 s 5

1 0
0 c 5

0 0

0

0

0
1

a2c2 I

ao)
a 3C3

a3s3

0
1

a 4C4 1

ai ')

(81)

180 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

A 6 = $6 ¢6 0

0 0 1
0 0 0

Since this manipulator has three parallel axes, we
can first use equations (23)-(25). We find equa-
tion (24) (presented in column form) to be

c6S5 { n x S l - - C l n y 1

$5S6 = l o x s 1 C10y I

C5 l a x S l ay¢l I

0 ~ pxSl C 1 py }

(82)

The 4th row of this gives a relation for 01, while
rows 1 and 2 provide a relation for 06. We note the
existence of a singularity when 05 = 0.

Next, we examine equation (23):

- -S 5

0

¢5
0

¢ SI (C6H x -- OxS6) -- ¢1(¢6Hy -- OyS6)

s l (nxS 6 -1- C60x) -- ¢l (nyS6 --t- ¢60y)

axS 1 -- ayC 1

p~sl - cl py
(83)

This gives an unambiguous solution for 05, since
the other two angles have been solved for.

Having solved for the three angles which sur-
round C, we now solve for the components of C
itself (which are of the form given in (21)). Be-
ginning begin with the equation

C = A 1 - 1 T 6 A 6 1 A s I (84)

we find the second row, presented in column
form, is

234 /

Pcy]

--C50zS 6 --1- azS 5 + c5c6n z '

nzS 6 + c60 z

OzS5S 6 -- c6glzS 5 + azC 5
Pz

(85)

This gives a relation for 0234 and Pcy"
For p¢~, we see from inspection of the (1.4)

elements of (84) that

Pc~ =pySa + ClPx (86)

The results for the elbow manipulator can now
be summarized:

0 a = 2 atan2 _---p--y (87)

06 = atan21 °xsa - - cl°y]
Clny -- HxS 1 !

05 = atan2 s l (c6nx - °xs6) : Cl(----~C6ny -- OyS6)]

axS 1 -- ayC 1 !
$234 = --¢50zS6 q- azS 5 -[- C5C6H z

C234 = nzS 6 + C60 z

Pcy = Pz

Pox =pySl + caP~

The remainder of the solution follows from equa-
tions (37).

We can use the same "A" matrices to derive a
Jacobian for the manipulator in the frame k de-
fined by AIA2A3A 4. Since three axes are parallel,
we can simplify the Jacobian by combining col-
umns. Specifically, we take

J'~ --J2 - J3 (88)

and

J~ = J 3 - J 4 (89)

The Jacobian relationship is then defined by

dx
dy

do
d~

0 a2s34 a3s 4 0 0 0 \

o a2c3, a3c, a, 0 I I = -- a4c234 -- a3c23 -- a2c 2 0 0 0 0
S234 0 0 0 0

C234 0 0 0 1

0 0 0 1 0 c5 J

, d O a ,

| dO 3 - dO 2 |

I d ° , l
~ dO6 I

Using the substitution

h = - a 4 c 2 3 4 - a3c23 - a2c 2 (91)

J. Lloyd, K Hayward / Kinematics of Common Industrial Robots 181

and rearranging columns to migrate the zero block
into the upper right comer and optimize the trian-
gularity of the diagonal blocks, we get the rela-
tionship

'dz h

d~b S234

d p c234

de 0

dx 0

~dy 0

X

0 0

s 5 0
0 1

c 5 0
0 0

0 0

dO1

dO6
dO5
dO2

dO 3 - dO 2

dO 4 - dO 3

The solution for

JlaY -- x

works out to

X 1

h
sol(J11) = x2 - - S234Y 1

S5

X 3 - - C234Y 1

Solving for ,I22 initially delds

S4X 3 - - C4X 2 -- a 4 s 4 x I

a2s3

a2834Y 1 - x 2

a3s4

x1

0 0 0

0 0 0

0 0 0

0 0 1

a 2 s 3 4 a3s 4 0

a 2 c 3 4 a3c4 a4

(92)

(93)

(94)

(95)

but the s 4 in the denominator of the second row
cancels out to yield

S4X 3 -- C4X 2 -- a 4 $ 4 x 1

a 2 s 3

s o l (J 2 2) = s 3 4 x 3 - - c 3 4 x 2 -- a4s34x1 (9 6)

a3s3

x1

Similarly, the solutions for j r and J2~ are, respec-
tively,

C234Y 3 + S234Y 2 - - X 1

h
sol(Jl~) = x__22 (97)

S5

X3

and

x 3 - a4y 3
a2c34x 2 -- a 3 c 4 x l

sol(J2~) = a2a3s3 (98)
a2s34X 2 -- a 3 s 4 x 1

a 2 a 3 s 3

The rest of the solution follows easily from equa-
tions (51)-(54).

6. Summary

The methods described above can be encapsu-
lated into the following procedures:

6.1. Working out the Kinematics

1. Enter all the "'A'" matrices, modifying them as
necessary to define a reasonable C matrix.

2. Build the equations by multiplying the neces-
sary matrices and equating elements. There will
typically be two equation sets: a set of column
vector equations in terms of the angles extrin-
sic to C, and a set of matrix equations in terms
of the angles intrinsic to C.

3. Solve for the angles outside C, first by inspect-
ion, and secondly by combining equal de-
ments.

4. Solve for the angles of C in terms of C, in the
same way. The elements of C are known from
step 3.

6.2. Working out the Jacobian

1. Establish the frame k in which the I is to be
derived. This should be optimized with regard
to obtaining a simple Jacobian while not allow-
ing the computation of K 6 to become too com-
plicated.

2. Derive J using equations (40) and (41) and the
successive Kt found by multiplying "A"
matrices. The functions jacobcolrO and
jacobcolpO do this using values of K 71 instead.

3. Rearrange J to simplify the inversion. Permute
the rows and columns of J to first put the
matrix into a block triangular form, if possible,
and then arrange each of the blocks themselves
to be as triangular as possible. Additional sim-
plification can be obtained by adding or sub-

182 J. Lloyd, IL. Hayward / Kinematics of Common Industrial Robots

tracting columns which correspond to parallel
joints.

4. Find the inverse relationships. The blocks can
be inverted using the functions usolveO and
lsolveO, and the rest of the solutions are ob-
tained directly from (51)-(54).

References

[13] L.-W. Tsai and A.P. Morgan: "Solving the Kinematics of
Most General Six- and Five-degree of Freedom Manipula-
tors by Continuation Methods". Journal of Mechanisms,
Transmissions, and Automation in Design, June, 1985, pp.
189-200 (Vol. 197, No. 2).

[14] K.J. Waldron, Shih-Liang Wang, and S.J. Bolin: "A Study
of the Jacobian Matrix of Serial Manipulators". Journal
of Mechanisms, Transmissions, and Automation in Design,
June, 1985, pp. 230-238 (Vol. 197, No. 2).

[1] Jorge Angeles: " O n the Numerical Solution of the Inverse
Kinematic Problem". International Journal of Robotics
Research, Summer 1985, pp. 21-37 (Vol. 4, No. 2).

[2] Duffy and Crane: "A Displacement Analysis of the Gen-
eral Spatial 7-link, 7R mechanism". Mechanism and Mac-
hine Theory, 1980, pp. 153-169 (Vol. 15, No. 3).

[3] R. Featherstone: "Position and Velocity Transformations
between Robot End-effector Coordinates and Joint An-
gles". International Journal of Robotics Research, Summer
1983, pp. 35-45, (Vol. 2, No. 2).

[4] John M. HoUerbach and Gideon Sahar: "Wrist Parti-
tioned, Inverse Kinematic Accelerations and Manipulator
Dynamics". International Journal of Robotics Research,
Winter 1983, pp. 61-76 (Vol. 2, No. 4).

[5] K.H. Hunt: "The Particular or the General? (Some Exam-
ples from Robot Kinematics)". Mechanism and Machine
Theory, 1986, pp. 481-487 (Vol. 21, No. 6).

[6] C.S.G. Lee: "Robot Arm Kinematics, Dynamics, and
Control". Computer, December 1982, pp. 61-80 (Vol. 15,
No. 12).

[7] Richard Paul: Robot Manipulators: Mathematics, Pro-
gramming, and Control. The MIT Press, Cambridge, Mas-
sachusetts, 1981.

[8] Richard Paul, Marc Renaud, and Charles N. Stevenson:
"A Systematic Approach for Obtaining the Kinematics of
Recursive Manipulators Based on Homogeneous Trans-
formations". Robotics Research - The first International
Symposium, Michael Brady and Richard Paul, Editors.
The MIT Press, Cambridge, Massachusetts, 1984, pp.
707-726.

[9] Richard P. Paul and Hong Zhang: "Computationally
Efficient Kinematics for Manipulators with Spherical
Wrists Based on the Homogeneous Transform Represen-
tation". International Journal of Robotics Research,
Summer 1986, pp. 32-44 (Vol. 5, No. 2).

[10] G.R. Pennock and A.T. Yang: "Application of Dual-
Number Matrices to the Inverse Kinematics Problem of
Robot Manipulators". Journal of Mechanisms, Transmis-
sions, and Automation in Design, June, 1985, pp. 201-208
(Vol. 197, No. 2).

[11] Marc Renaud: "Geometric and Kinematic Models of a
Robot Manipulator: Calculation of the Jacobian Matrix
and Its Inverse". Proceedings of the l l t h International
Symposium on Industrial Robots, Tokyo, Japan, October
7-9, 1981, pp. 757-763.

[12] Bernard Roth, J. Rastegar, and V. Scheinman: "On the
Design of Computer Controlled Manipulators". On the
Theory and Practice of Robots and Manipulators, First
CISM-IFToMM Symposium, September 1973, pp. 93-113
(Vol. 1).

Appendix A. MACSYMA
Sessions

A.1 Derivation of ETL Robot Kinematics

This is an annotated MACSYMA session used in deriving the
inverse kinematics for the ETL robot.

; The variables al through a6 denote the 6 A matrices for the
; robot while il through i6 denote their inverses. The link pa-
; rameters are given by aal, dd2, dd3, and dd4. The sines and
; cosines are given by sil through si6 and col through co6. sil2
; and co12 are the sine and cosine of angle 1 + angle 2.

; For later convenience, precombine a l . a2 and its inverse:

(c127) a12 : combine12 (al.a2);

co12 0 si12 aalcol]
(d127) sil2 0 - co12 aalsi l

0 1 0 - dd2
0 0 0 1

(c128) i12: combine12 (tsimp(invert(a2)). tsimp(invert(al)));

l
co12 si12 0 - aalco2 1

(d128) 0 0 1 dd2 [
sil2 - co12 0 - aalsi2 I

0 0 0

; Now form the first three equations to f ind angles 1 through 3.
; The vector e4 is used to extract the fourth column of each
; equation.

(c129) e4 : transpose (matrix([O, O, O, 1]));

(c130) eqnl : a12.a3.e4 = t6.e4;

(d130) dd4s i l2s i3 + aals i l - col2dd3 = py
- co3 d d 4 - dd2

1

(c131) eqn2 : a2.a3.e4 = il. t6.e4;

-co2dd4si3 + dd3si2 - p y s i l + colpx - aal q

(d131) dd4si2si3 - co2dd3 = colpy - pxs i l

1 - c o 3 d d 4 - dd2 pz

1 1

J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots 183

(c132) eqn3 : a3.e4 = i12.t6.e4;

[dd4si3] I pysi l2+c°12px-aalc°2] 1 .]
- co3dd4 | = pz + dd2

(d132) dd3 | - aalsi2 + pxsil2 - col2py
1

; Extract solution for angle 3:

(c133) part(eqn3, 1)[2, 11 = part(eqn3, 2)[2, 1];

(d133) - co3dd4 = pz + dd2

; Extract solution for angle 1;

(c134) x : part(eqn3, 2);

[pysil2 + col2px - aalco2 1

I pz + dd2 I
(d134) [- a a l s i 2 + plsil2-col2py J

(c135) part(eqn3, 1);

[dd4si3]
(d135) | -co3dd4 |

(c136) x[1, 11^2 + x[3, 1]'2

= tsimp(expand12(x[1, 112 + x[3, 115));

(d136) dd42si3: + dd32

= 2aalpysil + pye + px 2 _ 2aalcolpx + aal 2

; Extract solution for angle 2

(c137) eqn2;

[co2dd4si3 + dd3si2 1 [pysil + colpx - aal-
l dd4si2si3 - co2dd31 =

(d137)[_co3d~14_dd2] [I colpy-pxsilpz

(c138) x:matrix([dd4 * si3, dd3], [- dde, dd4 * si3]);

dd3
[dd4si3 dd4si3] J (d138)
t - dd3

(c139) invert(x);

dd4si3 dd3
dd42si32 + d d 3 2 dd42si32 + dd32

(d139) dd3 dd4si3

dd42si32 + dd32 dd4esi32 + dd3:

(cl40) kl = part(eqn2, 2)[1, 1];

(d140) kl = pysil + colpx - aal
(c141) k2 = part(eqn2, 2)[2, I];

(d141) k2 = colpy - pxsil

(c142) print (matrix([co2], [si2]),
" ' = '" revert(x), matrix([kl], [k2]));

co2 dd42si32 + d d 3 2 dd42si32 + dd3e

si2 dd3 dd4si3 k2
J dd42si32 + dd32 dd42si32 + dd32

; Derive the solutions for the last three joint angles. For conven-
," ience, define a macro "rot' which returns the rotational part
; of a transform,

(c143) rot(m) := submatrix(4, m, 4);
(d143) rot(m) :ffi submatrix(4, x, 4)

; Evaluate C in terms of al through a3, and then the find the
; component angles of C.

(c144) c;

ncx ocx acx p c x]
net ocy acy pcy I

(d144) n ocz acz

o o 7 J
(c145) rot(c) ~ rot(a12.a3);

ncx vex acx] [co12co3
(d145) ncy ocy acy I = I co3si12

ncz ocz acz .I L si3

(c146) rot(a4.a5.a6) = rot(c);

co4co5co6 - si4si6 - co4co5si6 - co6si4
co4si6 + co5co6si4 co4co6 - co5si4si6

- co6si5 siSsi6 [acx] n c x O C X

= ncy ocy acy
L ncz ocz acz d

(c147) col(part(%, 1), 3) = col(part(%, 2), 3);

[co4si5] [acx]
(d147) [si4si5 [= acy

L co5 J [acz]

(c148) rot(a5.a6) = rot(i4.c);

 co. o6 . . . 6
(d148) I co6si5 - si5si6

I_ si6 co6

ncysi4 + co4ncx ocysi4 + co4ocx
- - n c z - - o c z

co4ncy -- ncxsi4 co4ocy -- ocxsi4

(c149) col(part(%, 1), 3) = col(part(%, 2), 3);

si '] [acysi4+acxco4]
(d149) - e o 5 1 = l - a c z I

O J L acyco4 - acxsi4 J

(c15O) rot(a6);

[c o 6 - s i 6 i]
. . o , [,o O6o
(c151) col(%, 1) = col(rota5.i4.c), 1);

sil2 col2si31
- co12 sil2si3

0 - co3

(d151)

co4si5]
si4si5 I
co5 J

acysi4 + acxco4]
acyco4a'Zacxsi4]

[co6] [co5(ncysi4 + co4ncx) -- nczsi5
= I co4ncy -- ncxsi4

[(ncysi4 + co4ncx)si5 + co5ncz

A.2 Derivation of Elbow Manipulator Jacobian

Thi s is a n a n n o t a t e d MACS','MA sess ion to i l lus t ra te the

d e r i v a t i o n a n d m a n i p u l a t i o n o f J a c o b i a n s .

; For the elbow manipulator, the link offsets are given by the
; variables aa2, aa3, and aa4. The composite A matrices a23,
; a34, and a234, along with their inverses i23, i34, and i234,
; are precomputed to help MACSYMA keep the associated angles
; combined

; Start by computing and simplifying all six columns of the
jacobian:

184 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

(cl 11) j l : tsimp(jacobcolr(al.a234));

0
0

(d111) - aa4co234 - aa3co23 - aa2co2
si234
co234

0
(cl 12) j2: tsimp(jacobcolr(a2, a3. a4));

(aa2co3 + aa3)si4 + aa2co4si3 1

1
- aa2si3si4 + (aa2co3 + aa3)co4 + aa4

(dl12) 0
0
0
1

(el 13) j3 : tsimp(jacobcolr(a3.a4));

aa3si4
aa3co4 + aa4

(dl13) 0
0
0
1

(c l 14) j4: tsimp(jacobcolr(a4));

V ° aa4

; k is the matrix between the frame coinciding with joint 5
; and the Jacobian frame. This is not the identity since the
; z axis of k is not parallel with the axis of joint 5.

(c115) display (k); [,o o
k = 0 0 - 1

0 1 0
0 0 0

(c l l 6) j5 : tsimp(jacobcolr(k));

(d116) 0

(cl 17) j6: jacobcolr(i5) ;

(d117) 0
S

L co5 d
; Simplify the columns by subtraction:

(c118)j2: combine34(j2 - j3)$

(c119)jS:j3 - j45

; Now form the Jacobian:

(c120) j : addcolO'l, j2, j3, j4, jS, j6);

0 a a 2 s i 3 4 a a 3 s i 4 0 0

0 a a 2 c o 3 4 a a 3 c o 4 a a 4 0

- - a a 4 c o 2 3 4 -- a a 3 c o 2 3 -- aa 2 co 2 0 0 0 0

s i 234 0 0 0 0

co234 0 0 0 1

0 0 0 1 0

o o

$

co5 J

; Exchange various rows and columns to move the zero block
; into the upper right hand corner and optimize the triangularity
; of the blocks:

(c121) exrow(%, 1, 3)$

(c122) exrow(%, 2, '4)$

(c123) exrow(%, 3, 5)$

(c124) excol(%, 3, 5)$

(c125) excol(%, 2, 5)$

(c126) excol(%, 4, 6)$

(c127) excol(%, 4, 6)$

; Now we have the permuted version of the Jacobian.

(c128) h: - aa4 * co234 - aa3 * co23 - aa2 * co25

(c12 9) jp : ratsubst("h, h, d127),"

I h 0 0 0
si234 si5 0 0

(d129) co234 0 1 0
0 co5 0 0
0 0 0 aa2si34
0 0 0 aa2co34

," Define the sub-blocks of the matrix:

(c130)j l l .'submatrix(4, 5, 6,jp, 4, 5, 6)," o
(d130) si234 si5

co234 0

(c131)j22.'submatrix(1, 2, 3,jp, 1, 2, 3); [o o ,]
(d131) aa2si34 aa3si4 0

aa2co234 aa3co4 aa4

(c132)j21 :submatrix(1, 2, 3,jp, 4, 5, 6); [oco,
(d132) 0 o

0 0

," Solve j l l recursively, and simplify."

(c133) tsimp(lsolve(j11, y, x));

x l
h

(d133) si234y1 - x2
si5

x3 - co234yl

," Solve j22 recursively, and simplify:

(c134) v: tsimp(lsoloe(j22, y, x));

si4x3 - co4x2 - aa4si4xl
aa2co34si4 - aa2co4si34

(d134) aa2si34y1 - x2
aa3si4
x l

(c135) co34 * si4 - co4 * si34,"

(d135) co24si4 - co4si34

(c136) v : ratsubst(tsimp(expand34(%)), %, v);

si4x3 - co4x2 - aa4si4xl
aa2si3

(d136) aa2si34y1 - x2
aa3si4
x l

oo]
0 0
0 0
0 1

aa3si4 0
aa3co4 aa4

J. Lloya~ V. Hayward / Kinematics of Common Industrial Robots 185

,. Substitute y l into the second row to eliminate si4:

(c137) tsimp(ratsubst(v[1, 11, y l , v));

si4x3 - co4x2 - aa4si4xl
aa2si3

(d137) si34x3 - co34x2 - aa4si34x1
aa3si3
x l

; Solve for j l 1 recursively, and simplify:

(c138) tsimp(usolve(transpose(j11), y, x)),"

co234y3 + si234y2 - x l
h

(d138) x2
si5
x3

; Solve for j22 recursively, and simplify:

(c139) v : tsimp(usolve(transpose(j22), y, x));

x3 - aa4y3
aa3co4y3 - x2

(d139) aa3si4
aa2si34x2 - aa3si4xl

aa2aa3co34si4 - aa2aa3co4si34

(c140) co34 * si4 - co4 * si34;

(d140) co34si4 - co4si34

(c141) v: ratsubst(tsimp(expand34(%)), %, v);

x3 - aa4y3
aa3co4y3 - x2

(d141) aa3si4
aa2$i34x2 - aa3si4xl

aa2aa3si3

(c142) tsimp(ratsubst(v[3, 1], y3, v);

x3 - aa4y3
aa2co34x2 - aa3co4xl

(d142) aa2aa3si3
aa2si34x2 - aa3si4xl

aa2aa3si3

; Lastly, determine the matrix k6 which maps from k to link 6:

(c143) k6 : a5.a6;

co5co6 - coSsi6 sis i l
(d143) si6 co6 0

- co6si5 si5si6 co5
0 0 0

Appendix B. Examples with
Other Robots

B.1 T h e P U M A

Probably the most famous of all research robots, the PUMA
(Fig. 3) is an anthropomorphic arm with six revohite joints. It

is also one of the more complicated industrial arms, since it has
4 offsets.

The modified "A" matrices are defined as follows:

A1 =

A 2 =

A 3 =

C4

A4 = s4
0
0

(C5

f ¢6

A6 =

c l o sl
s 1 0 -- c 1
0 1 0
0 0 0

C2 - - S2 0 a 2 c 2
I

S200 C200 001 ais2)

f c 3 0 - - s 3 a 3 c 3 - - d 4 s 3

S 3 0 C 3 a 3 5 3 + c 3 d 4

0 - 1 0 d 3
0 0 0 1

0 - - C 4

1 0
0 0

0 - s 5 O)

0 c5 i
- 1 0 .
0 0

The inverse kinematics solution is

02 = atan2 (2a2pz + ~4a2(P2k21 _ 2 a 2 k l 1 + k21) - k21)

kl l = pysl + clpx

2 2 k21= t72 + k21 + a2 _ d4 _ a~

83 = atan2(- d4k31 + a3k32 I
a3k31 + d4k32]

k31 = pzS2 + C2kll - a 2

k32 = c2p z - klS 2

0 4 = atan2(- acy I
\ - ac~]

05 = atan2(-acys4-acxC4)a.~

06 = atan2 (- °czs5 S c5 (°*YS4._...~ + c'°cx))
C40cy - - OcxS 4]

where the rotational components of C can be computed from
the first three angles by

n cx ° c x Cl C23
n c Y °cY a c y = C23Sl Cl -- $1523 /
n cz Ocz a cz s23 0 c23]

186 J. Lloyd, V. H a y w a r d / K i n e m a t i c s o f C o m m o n Indus t r ia l R o b o t s

The manipulator Jacobian is derived in the link defined by
AaA2A 3. This gives a K 6 matrix defined by

K 6 =

C4C5C 6 -- S4S 6 -- C4C5S 6 -- C6S 4 -- C4S 5 0

C4S 6 + C5C6S 4 C4C 6 -- C5S4S 6 -- S4S 5 0

C6S 5 -- S5S 6 C 5 0

0 0 0 1

The corresponding Jacobian relationship is

c /(c23 3h a2s3-4° ° ° 1 0 0 0 0
-- d3s23 a2c 3 a 3 0 0 0 = t .) . o o o . - . s ,

d o 0 0 - 1 0 - c a - s 4 d 5

d ~ c23 0 0 1 0 c 5

d01

dS:

×
de4
dO~
de,

where rows 2 and 3 have been combined and h is defined by

h = - d4823 + a3c23 + a2c 2

The permuted form of the relationship is

d x - d3s23 a2c 3 a 3 0 0 0

dz s23 0 0 -- C4S 5 S 4

d~b 0 0 - 1 - s4s 5 - c 4

d o C23 0 0 C 5 0
ddp

dO1 I

l aa~ |

/ ~°6 /

\ ~04 /

The solution is given by

sol(Jll) =

Xl

h

(d3das23 - a3c23d3) y 1 + d 4 x 3 + a 3 x 2

a 2 a 3 s 3 + a 2 c 3 d a

x 3 -- a 2 c 3 y 2 + d3s23Y 1

a3

t -- $4x2 + C4X1 I
sol(J22) = Ss

S4X 1 -- C4X 2

x 3 -- Csy 1

®

@

@ ®

Fig. 3. The PUMA manipulator.

sol(J T) =

~ol(J~) =

d3s23Y 3 - c 2 3 d 3 y 2 + x 1

h

a 3 y 3 -- x 3

d4

a 2 s 3 x 3 + d 4 x 2

a 2 a 3 s 3 + a 2 c 3 d 4

C45c5y 3 + S4S5X 2 -- C4XI

$5

C5s4y 3 -- C4S5X2 -- S4X 1

S 5
X3

B.2 The Stanford Manipulator

The Stanford manipulator (F ig . 4) is a spherical robot with an
offset at the shoulder.

The "A" matrices for the robot are:

(cl :1 -" i) A 1 = Sl Cl
0 - 0
0 0 0

A 2 =

A 3 =

it C 2 0 S 2 /
s 2 0 -- c 2 00

i 0 1 0 d12
0 0 0

l O o

0 1 d13
0 0

J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots 187

Fig. 4. The Stanford manipulator.

/c 0 s4
A 4 = 0 C 4

- 1 0
0 0

A5 = s5 0 - c 5
0 1 0
0 0 0

¢ c6 - s 6 0 0 1 /
A6 = | s 6 c 6 0 0

0 1 0
0 0 1

The inverse kinematic solution is

01 = 2 a t a n 2 d2 + py

! 2 2
d3 = V(pysl + cip~) + p~

\ a c x]

05 = atan2(acyS4acx + acxCa)

06= atan2(°czSs--_c,(°cyS, + C_,°cx)]
C40cy -- OcxS 4]

where the rotational components of C can be computed from
the first three angles by

n cy Ocy a cy =

n cz ocz a cz ~ - s 2 0 c 2

The manipulator Jacobian is derived in the link defined by
A1A2A 3. This gives a K 6 matrix defined by

C4C 5 C 6 -- S4S 6 -- C4C5S 6 -- C6S 4 C4S 5 0

) K 6 = c436 + c5c6s4 c4c 6 - c5s4s 6 3435

- c6s 5 s5s 6 c 5

0 0 0

The corresponding Jacobian relationship is

_ c 2 d 2 d3

d~ d 3 s 2 0

d z - d 2 s 2 0

dtk - s 2 0

dp 0 1

drk c 2 0

The permuted form of the

0 0 0 O ~ [d O l ~

0 0 0 0] / d 0 2 1

1 0 0 0 l i d 0 3 [
o 0 - s , c , s , / / d 0 , /
0 0 C 4 S4S51 / dO5]
0 1 0 c,] ~ d 0 6]

relationship is

dy
dx

dz

d~
dp

d e

d3s2

-- c2d 2

-- d2s 2

- - S 2

0

C2

0 0 0 0 O ~ [d O l l

d 3 0 0 0 0 1 1 d 0 2 }
o a o o o / / a o , /
0 o c,s5 - s , o / / a 0 6 /
1 0 S4S 5 C 4 O l l d O , I

0 0 c, 0 1] ~ d 0 4]

The solution to this is given by

X1

d3s2

sol(Jl l) = c2d2y 1 + X 2
d3

d2s2y 1 + x 3

S4X 2 + C4X 1

sol(J22) = ss
C4X 2 -- S4X 1

X 3 -- c S y 1

sol(J) =

d 2 s 2 y 3 + c 2 d 2 y 2 + X 1

d 3 s 2

x 2

d3
X3

s o l (J r) =

C4c5y 3 + S4SsX 2 -- C4X1

$5

C5S4y 3 -- C4S5X2 -- $4X1

S5

X3

B.3 The S C A R A , type 1

The SCARA robots are wrist partioned manipulators where
the first three joints consist of two rotary joints and one
prismatic joint, with all the joint axes parallel.

188 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

I o

@

O)

7~

I
J

Fig. 5. The SCARA manipulator, type 1.

I @

In the first type of SCARA robot (Fig. 5), the prismatic joint
is joint 2.

The "A" matrices for this robot are 00)
A1 = c I 0 0

0 1 0
0 0 1

l: °°oI A2 = 0 1 0

I 0 0

A 3 = 0 - c 3 - c 3 d 4

1 0 0

0 0 1

¢ C4

A 5 ~ s5

0
0

0 -- S 4 0

0 C 4 0

- 1 0 0
0 0 1

0 - Cs

1 0
0 0

_ s 6 o

A6 = c 6 0
0 1
0 0

The inverse kinematic solution is

2azpy +-~/4az(P;, + P ; ,) - k ~ l
01 = 2 atan 2 k u +2a2Px

2 2 kl l = p: + p2 - da + a2

d2 =Pz

03 = atall2(pysl + clpx - a2 - Clpy

o4 = atan2(ac" l
a~x]

Os= atan2(acys4 + acxc4 cz

O6=atan2(°¢zss-cs(~°f-ys4+--c4°cx)) C 4 0 c y - - OcxS 4

where the rotational components of C can be computed from
the first three angles by

n c y ° cy a c y = S13 0 -- c13

n cz °cz a cz 0 1 0

The manipulator Jacobian is derived in the link defined by
A1A2A 3. This gives a K 6 matrix defined by

C4C5C 6 -- $ 4 S 6 - - C4C5S 6 - - C6S 4 C4S s 0

K 6 = £ 4 s 6 q- c 5 ¢ 6 s 4 c 4 c 6 - - c 5 s 4 s 6 8 4 s 5 0

- - c 6 $ 5 s 5 s 6 c 5 0

0 0 0 1

The corresponding Jacobian relationship is

dx a2s 3 0 d4 0 0 0 ~ dO 1

dy 0 1 0 0 0 ~] dO 2

dz - a2c 3 0 0 0 0 dO 3 - dO 1

d~b 0 0 0 0 - - s 4 ¢ 4 s 5 dO 4

dp 0 0 0 1 0 c 5 [dO 5

dq~] dO 6

where columns 1 and 3 have been combined. The permuted
form of the relationsllip is

dy 0 1 0 0 0 0 dO 2

dx a2s 3 0 d 4 0 0 dO 3 - dO 1

d~k 0 0 0 c4s5 - s 4 dO 6

dp 0 0 1 SaS5 c 4 dO 5

dc k 0 0 0 C 5 0 dO4

The solution to this is given by

Xl

a 2 c 3

sol(Jla) = x 2
a2s3y 1 -- x 3

d4

S 4 X 2 + C 4 X 1

sol(Jza) = s5
C 4 X 2 - - S 4 X 1

x 3 - - csy 1

J. Lloya~ V. Hayward / Kinematics of Common Industrial Robots 189

sol(J~) =

sol (J r) =

a 2 s 3 y 3 - - X 1

O 2C3

X2

X3

d 4

C 4 C s y 3 + $4$5X2 -- C4X 1

S5

C s S 4 y 3 - - C4S5X 2 - - S4X 1

S5

X 3

B.4 The SCARA, Type 2

In the second type of scxa_~ robot (Fig. 6), the prismatic joint
is joint 3. The "A " matrices for the robot are:

Cl

A 1 = s l

0
0

t C2

A 2 = S2

0
0

'1
0

A 3 = 0

0

t C4

- - S 1 0 a l c 1

) c~ 0 als 1
0 1 0
0 0 1

- - $2 0 a 2 c 2
I

C200 001 a02 I

0 0 0
1 0 0
0 1 d 3
0 0 1
0 s a
0 - c4
1 0
0 0

®

Fig. 6. The SCARA manipulator, type 2.

c 0 - s 5 i)
A5 = s 5 0 c 5

0 - 1 0
0 0 0

A 6 = c 6 0

0 1
0 0

The inverse kinematic solution is

(2aaPy±¢4a2(pE + p2) - k2 ,)
01 = 2 atan 2 kn +2alpx

kl 1 = py2 +]o 2 _ a 2 + a 2

\ pysl + clv~ - al }

d 3 = Pz

04 = atan 2 (- a ~ Y /

05 = atan 2(-acyS4~-acxC4)acx

06=atan2(-°czs'~-c--5(°cys4----~+c4°cx)) c 4 o c y - OcxS 4

where the rotational components of C can be computed from
the first three angles by

n cz Ocz a ez, 0
The manipulator Jacobian is derived in the link defined by

A1A2A 3. This gives a K 6 matrix defined by

K 6 = c 4 s 6 + c 5 c 6 5 4 c 4 c 6 - c 5 s 4 s 6 - s 4 s 5

c 6 s 5 - - SsS 6 C5

0 0 0 1

The corresponding Jacobian relationship is r /(als2ooo o o}/ 1
alc 2 a 2 0 0 0 ~ I dO2- dO21

= 0 0 1 0 0 I d 0 3 1

do o o o o - c , - s , s , | ~os |
d~ o 1 o a o ~ / ~ dO6]

where columns 1 and 2 have been combined. The permuted
form of the relationship is

/ /(a12o0 o 0 0 i) / 01 a-,_c~ o,, 0 0 0 O / ~ ' O ' , - " O ' , L
= o o ! o o / , ~ o 3 /

o o o -c.s . . , ,
dp 0 0 0 - sass - c4 I dos I
dO 0 1 0 c 5 0 ~ dO,]

190 J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots

The solution is given by

x1

als2

s o l (J l l) = a l c 2 y 1 - x 2

a2

x 3

S4X 2 + C4X 1

S5

S4X 1 -- C4X 2

x 3 - csy 1

a l c 2 y 2 -- x 1

a l s 2

so1(42) =

s o l (J ~) =

s o l (J ~) =

X2

a2

X 3

c4c5y 3 + s 4 s 5 x 2 -- C4Xl

S5

C5S4y 3 -- C4S5X 2 -- S4X 1

S5

X3

B . 5 T h e M i c r o b o E C U R E U I L

This is a cylindrical robot manufactured by the Swiss
company Microbo (Fig. 7).

®

@

@

®

Fig. 7. The microbo ECUREUIL.

It is cylindrical, with two prismatic joints, and consequently
its kinematics are quite straightforward.

The "A" matrices for this robot are:

A1 = s 1 c 1 0

0 0 1
0 0 0 (Ol 0)

A 2 0 0 0
= 1 0 d 2

0 0 1 (oo o)
1 0 0

A3 = 0 1 d 3

0 0 1

s4 o)
A 4 = 0 - C 4 0

1 0 0
0 0 1

As = s 5 0 - c 5
0 1 0
0 0 0

A6 = s6 c6 0
0 0 1
0 0 0

The inverse kinematic solution is

01 = atan2(p y I
~ P x :

dE = Pz

d 3 = ~ + P :

04=atan2(acy)
\ acx

05 = ataxl2(acys4 + acxc4) _ acx

where the rotational components of C can be computed from
the first three angles by

(-) n cx °cx

a cy n cy °cy = c 1 0

n cz °cz a cz 0 1

The Jacobian is derived in the frame defined by A 1A 2 A 3A 4,
from which K 6 is defined by

K 6 = c6s5 - s5s 6 - c5

S 6 C 6 0

0 0 0

J. Lloyd, V. Hayward / Kinematics of Common Industrial Robots 191

The resulting Jacobian relationship is

= d 3 s 4 - c 4 0 0 0 ~ dO 3

S 4 0 0 0 0 S 5] d04

l o: o o OlO ,l o,
d 0 - - C 4 0 0 0 1 _ _ ~dO 6

The permuted form of this relationship is

c4d 3 s 4 0 0 0

il dy = o o 1 o o I de~

d~ s 4 0 0 s 5 0 I de6
dO - c , 0 0 0 1 [de 5

dp 0 0 0 - c 5 0 ~ de 4

The solution is given b y

S4X2 + C4X 1

d3
s o l (J l l) = S4X1 -- C4X 2

X3

sol(J22) S5
-- X2

c 5 y I + x 3

s o l (J ~) =

s o l O S) =

d 3 s 4 x 2 + c 4 x 1

d3

c 4 d 3 x 2 - $4x1

d3

x3

csy 3 + x I

) S5

X2

X3

