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Abstract

In on-line robot trajectory generation, a connecting polynomial
is normally used to remove discontinuities in velocity and
acceleration between adjacent path segments. This article
presents a new technique for performing such transitions in
which adjacent path segments are “blended” together, with
excess acceleration being removed using an estimate of the
initial path velocities. Because this method requires no advance
knowledge of the path segments, it can handle situations where
the paths are changing with time (as when tracking sensor

or control inputs). The method can also be used to adjust the
spatial shape of the transition curve (such as to have it pass
around or through the “via point”), which may be necessary
to handle constraints imposed by different types of manipulator
tasks. When the blended paths are nonlinear, it is possible to
set a tight bound on the resulting transition acceleration. The
blend technique works directly for vector trajectories and can
be modified to handle 3-D rotational trajectories. A simple
trajectory generation algorithm is presented as an illustration.

1. Introduction

The trajectory generator is that part of a manipulator
control system that accepts motion commands and pro-
duces a stream of set points (usually at a fixed sample
rate) that can be tracked by a feedback controller. Motion
commands typically prescribe constraints for the manip-
ulator to satisfy, such as target positions, velocities, path
shape, arrival times, and stiffnesses or compliant forces.
The trajectory generator must then produce a sampled
path that meets these constraints as closely as possible.
A central problem in trajectory generation is that the
specified task constraints often conflict with the kinematic
or dynamic constraints of the manipulator itself. In par-
ticular, the final path must be smooth, with no discontinu-
ities in the velocity and possibly higher derivatives.
Current approaches to trajectory generation can be
roughly grouped into off-line and on-line techniques. If
the trajectory is computed off-line (i.e., before the robot
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program is actually run), then time is available to com-
pute a trajectory that addresses both task and manipulator
constraints in some optimal fashion. Common optimal-
ity criteria include minimum time and minimum path
error, in the presence of various constraints. This problem
has been extensively studied in the literature. Lin et al.
(1983) describes a spline-based method for generating
time-optimal paths satisfying constraints in the velocity,
acceleration, and jerk; Shin and McKay (1985, 1986)

and Bobrow et al. (1985) describe ways for computing
time-optimal trajectories along parametric paths subject to
torque constraints.

Once computed, however, such trajectories are gen-
erally difficult to modify in response to real-time sensor
information, although this problem may be tempered
somewhat by relaxing the optimality criterion and form-
ing a trajectory using localized splines (Thompson and
Patel 1987). With on-line trajectory generation, the ma-
nipulator set points are computed in real time, usually at
some known sample rate, at the same time they are sent
to the controller. This maximizes the opportunity to re-
spond to sensor-driven events, at the expense of creating
paths that utilize only very local (and usually suboptimal)
constraints. Recent increases in CPU power currently
permit more sophisticated trajectories to be computed
on-line.

A classic technique for on-line trajectory generation is
to compute idealized path segments that satisfy program
requirements but ignore the manipulator dynamics, and
then join these together using polynomial fits applied
across a transition window (Paul 1981, Taylor 1979),

We believe that this paradigm has more utility than
is generally realized. In addition to permitting sensor
responsiveness, it effectively decouples the problem of
meeting both program and manipulator constraints: dur-
ing the transition window, the program path constraints
are relaxed, and the dynamics constraints predominate.
Between transition windows, where the path segments
may accelerate very little, the program constraints pre-
dominate, The amount of manipulator torque required for
the transition is proportional to the inverse square of the
length of the transition window (Hollerbach 1984), and
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so can be easily controlled. The importance of decoupling
these constraints stems from the fact that in a complex
robot task, we frequently need to impose a far richer set
of constraints on the manipulator motion than just travers-
ing a path in the shortest time. For instance, it is often
necessary to have the manipulator travel at a constant
speed, or exert a certain force, or stop and wait for some
event. When such needs are absent, it may be possible to
“extend” the transition window so that it covers the entire
motion and compute each path as a polynomial fit to the
next goal position (Andersson 1988).

This article describes a new transition window tech-
nique that uses blend functions to connect manipulator
path segments. Use of this paradigm offers the following
advantages:

¢ Path segments may be nonlinear, and knowledge of
their future behavior is not required.

» The spatial profile of the transition can be controlled
by the adjustment of a pair of scalar parameters.

The first item is important whenever the manipulator
trajectory is adjusted on-line by inputs from sensors
or operator controls such as joysticks and hand con-
trollers (the latter being common in shared control and
telerobotics applications) (Hayati and Venkataraman 1989;
Hirzinger and Dietrich 1986). In these situations, the pre-
cise manipulator trajectory is not known in advance. The
second itemn is useful in situations where the transition
shape must conform to certain task constraints. For in-
stance, a transition associated with going around a corner
usually “cuts” the corner on the inside. However, if the
manipulator is tracking the outside of an angular solid,
the transition shape must be adjusted so that it lies on the
outside of the solid. Examples showing how the transition
shape can be controlled are given in Section 5.

Our method of transition blending is applicable to tra-
jectories described by vectors and also works for the 3-D
rotational paths associated with Cartesian trajectories,
using some modifications as described in Section 7. The
methods outlined in this article have been fully imple-
mented and form the core of the trajectory generators for
the robot programming systems Multi-RCCL (Lloyd et al.
1988) and Kali (Hayward et al. 1989).

Section 2 reviews the conventional transition window
paradigm. Transition blending is introduced in Sections
3 and 4. Section 5 describes how to control the spatial
shape of the transition, Section 6 contains an example
trajectory algorithm to illustrate the ideas of the paper,
and Section 7 discusses the modifications necessary to
handle 3-D rotations.

Throughout the article, vectors will be indicated with
lower case boldface letters (e.g., ¥), and matrices will be
indicated with upper case boldface letters (e.g., M).

2. Review of the Transition Window
Technique

Suppose that a manipulator is following a particular

path x;(¢) in some coordinate system and that at time

ts switches to a second path x,(t). The time dependen-
cies of these paths may be induced by both the trajectory
generator (such as by interpolating between via points),
and by external influences (such as by tracking a moving
target). Very little is assumed about paths x; and x;, ex-
cept that individually they provide a smooth trajectory for
the robot to follow (i.e., they have no discontinuities in
position, velocity, and possibly higher derivatives).

If no transition is applied, then the switching between
paths at t = ¢, will generally create a discontinuity in
acceleration, velocity, and possibly position. The conven-
tional remedy for this (Paul 1981; Taylor 1979) amounts
to connecting x;(¢) and x,(¢) with a smooth polynomial
that spans an interval ¢ € [t; — 7, ¢, + 71, for some appro-
priate value of 7 (Fig. 1). This involves (1) determining
an appropriate length of time (27) for the transition and
(2) forming the connecting polynomial.

A simple way to estimate the necessary transition time
is to divide the magnitude of the velocity change by some
desired reference acceleration a,.:

o [%a(ts + 1) = %1 (ts — 7|
ar )

2 m

Different variations on this equation can be used. In joint
coordinates, one may compute individual transition times
for each joint and then use the maximum, whereas in
Cartesian coordinates, one may compute separate tran-
sition times for the translational and rotational path
components and then take the maximum of these. The
acceleration limit itself (a,.) can be determined by con-
sidering actuator torque limits, applying some estimate of
the manipulator dynamic capacity, and mapping back into

4 o
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Fig. 1. Hustration of a path segment transition in one di-
mension. The path segments x| and x5, which intersect at
B, are indicated by hatched lines, and the final connected
path is indicated by a solid line.
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the appropriate coordinate system. This issue is impor-
tant but is outside the scope of this article and is assumed
solved without loss of generality.

To form the connecting polynomial x(¢), it is conve-
nient to definc a ncw time coordinate s,

t—te+ 71
2T ’

8

2)

so that the transition occurs during the interval s € [0.1].
For each of the path vector components ¢, the polynomial
x(s) must satisfy the following boundary conditions with
X,(8), X2(s), and their first and second derivatives:

z;(0) = z1,(0) = pu3,
z:(0) = 21;(0) = vy,
Z;(0) = £:(0) = ay,,

(1) = z2,() =poi,. (3)
(1) = Z2(1) = v2, (4)
Z:(1) = E2:(1) = ap;. (5)

These can be satisfied using a fifth-degree poly-
nomial whose coefficients, described by the vector
¢ = (¢s5,¢4,03,C2,01,00)T, can be found using a Her-
mite boundary condition matrix H (Foley and Van Dam
1984):

0O 00001
0 00010
0 00200
H = 1 11111 ©)
5 43210
20126200
If the boundary conditions are described by a vector
b = (p1;,vii, @14, P2is V2i, @2;)7, ¢ may be determined
from
c=H'bh s}
This can be expanded to yield
cs = (@2 — a13)/2 + 6(p2; — p1a) — 3(vas + v13),
ca = (Bay; — 2a2:)/2 + 15(p1i — pas) + 8vii + Tozs,
c3 = (a2 — 2a13)/2 + 10(p2s — p13) — 6v1; — duy,,
¢ = a1;/2,
C1 = Vg,
Co = Plis (8)

which can be used to construct a connecting polynomial
for each coordinate 1.

The method just described constitutes the basis for
most current on-line trajectory generators. It is simple and
easy to implement, but suffers from two deficiencies:

* To compute the connecting polynomial, it is neces-
sary, at the start of the transition, to know x;, and its
first two derivatives at s = 1. However, this may not
be possible if the path is tracking external sensor
signals or control inputs.
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e There is no particularly easy way to control the
transition’s shape in either space or in time. If the
two paths intersect at s = 1/2 (as in Figure 1), then
the smoothed path undercuts this intersection. Al-
though this is often desirable, task constraints may
occasionally make it preferable to travel through the
intersection, or even to overshoot it.

The next two sections will present a solution to both of
these problems.

3. Path Segment Blending

We can avoid the problem of path uncertainty in the
following way: instead of connecting the paths x; and
x; by a fixed polynomial, we can simply blend them
together using a convex average. During the transition
interval, the final path x(s) is computed from

x(s) = x;(8) + a(8)(X2(5) — x1(9)), )

where a(s) is a blend function that smoothly increases
from 0 to 1 over the interval s € [0, 1] and satisfies the
boundary conditions

a@=0, «ol)=1, (10)
a0) =0, &(1)=0, (11)
&0 =0, @l)=0. (12)
These conditions are met if « is defined by the poly-
nomial
afs) = 65° — 15s* + 105>, (13)

A one-dimensional example of path blending is illus-
trated in Figure 2. The blended path x(s) meets all of the
boundary conditions specified in (4) without requiring any
a priori knowledge of either path.

There is a problem, however, in that the blended path
tends to accelerate (and then decelerate) more than nec-
essary during the transition; notice the increase in path
slope after the transition begins. It turns out that this can

— —_—

_—_——_
——— -

H
L
1

Y

(7]

Fig. 2. Direct blend of paths x, and z;.
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be minimized by using an estimate of the transition ve-
locity change (for which at least an approximate value
should be available to set the transition time in the first
place). This is shown with the following calculations:

Assume that we can compensate for the extra accel-
eration by adding to the blended path an additional term
A(s)u, where 3 is some polynomial in s and u is a fixed
vector, so that

x(8) = x(8) + a(s)(x2(5) — x,(5)) + B(s)u. (14)

What degree should 3 be? To avoid disturbing the exist-
ing boundary conditions, we must have 3(0) = 3(0) =
£(0) = A1)y = B(1) = B(1) = 0. This requires a fifth-
degree polynomial, and to allow 3 to do something useful
as well requires at least one more degree, so we let J be
of degree 6.

The relationship between the boundary conditions and
the coefficients of J can be expressed using the (underde-

termined) Hermite matrix

00 00001
00 00010

, | o0oo00200

=y rr100 (15
6 5 43210
3020 126200

If there is one set of coefficients ¢y that satisfies this
matrix, then all other such sets ¢ must satisfy

¢ = ¢p+ R(HK,

where k is an arbitrary vector whose length equals the
dimension of the matrix’s null space. In the present case,
the boundary conditions are all zero, implying ¢y = 0.
The null space of H' has dimension 1, implying k = k,
and is spanned by (1, -3, 3, —1,0,0,0), which yields the
following form for 3(s):

B(s) = k(s® — 38 + 35 — 53).

k is a free parameter that may be used to adjust the char-
acteristics of the transition curve. Because the term being
sought is of the form J(s)u, we can, without loss of gen-
erality, set k = 1 and adjust the magnitude of u instead.
Now u will be determined so as to minimize the average
values of ||X(s)||; this is reasonable, since the purpose of
B(s)u is to remove excess accelerations. For purposes

of this analysis, we will assume that the paths x; and x;
are close to linear during the transition interval, which
implies that they can be approximated by

xi1(s) = by +vys,
X2(8) = by + v35,

(16)
(7

where b; and v; are fixed. Let v, = v, — v be the
difference in path velocities, and let by = b; — b, be the
difference in path positions, so that (14) becomes

x(s) = vi5 + by + a(s)(vgs + by) + 3(s)u. (18)

For simplicity, the explicit dependence on s of a(s),
3(s), and their derivatives will be omitted in most of the
remaining discussion. Eq. (18) can be differentiated twice
to determine

%(8) = (&8 + 26)vq + dby + Su. (19)

Minimizing the average acceleration is equivalent to
minimizing the integral

I i
[Hx(s)nzds:f [(ds+2a»)2|vd||2+oz2|b,,|\2
Q 0 |
+ 3|u]f?
+ 2¢(és + 26)vq - by
+ 28(és + 26)vq - u + 2a( by - u| ds,

which reduces, after some work, to

1/7(60|vg||> + 120v,4 - by + 120|bg||?)

+1/353@0vg -u+2[uly). (20
The first term of (20) does not depend on u and therefore
does not figure into the calculation. To minimize the
second term, resolve u into two components u,, and ug,
which are parallel and perpendicular, respectively, to vg.
The right side then becomes

1/350l|valllluy || + 2|, |1* + 2[hu [1%),

which is minimized by setting u; = 0 and u, =
~15/2vy =

o
-

=4

path displacement x
N
[ —

=4
o

-04
-0.5
06 L L n 2
0 0.2 0.4 0.6 0.8 1

§ parameler

Fig. 3. Blend transitions for two linear path segments in-
tersecting at s = '/ and with « set to O (top), 6 (middle),
and 15/2 (bottom).
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Fig. 4. (A), Plot of a(s). (B), Plot of 3(s).

Note that v, is the transition velocity change men-
tioned earlier. Letting u = —xvy, the full formula for the
transition blend becomes

X(s) = Xi(s) + a(x2(s) —x1(8)) — kBvq.  (21)
& 1s a parameter that controls the amount of acceleration
compensation to apply; very qualitatively, it provides a
sort of “damper” control on the transition curve. Typi-
cally, we will want to set x to the optimal value of 15/2
derived above, but other values can be used: for instance,
if x is set 1o 6 and the path segments are linear and inter-
sect at s = 1/2, the transition curve becomes a fifth-order
polynomial identical to the one originally described in
Paul (1981). If we don’t want to apply compensation
at all, x can be set to 0. Figure 3 shows some transi-
tion curves with different values of . The «(s) and 3(s)
blend functions are graphed in Figure 4.

In the case where x; and x; are not linear, v4 and by
are set to the initial differences in velocity and position,
and x3 v, will then compensate for accelerations associ-
ated with the lincar path components.

It should be noted that changing the value of x changes
the overall acceleration associated with the transition,
making it necessary to adjust the transition time. This is
discussed further in Section 5.3.

4. Blending Nonlinear Paths

Some of the analysis in the preceding section assumed
that paths x; and x, are linear. If the paths are nonlinear,
the transition will still be smooth, as the boundary condi-
tions of (4) will still be satisfied. However, what will be
the acceleration magnitude ||X(s)||? This is a reasonable
question, as the primary purpose of the transition is to
limit |j%(s)]).

If x, and x; are nonlinear, they are accelerating; in
particular, given that we have required them to have no
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-0.008 |-

-0.0121

-0.016 1 ; L L
0 0.2 0.4 0.6 0.8 1

(b)

discontinuities in position or velocity, we can expand
each of them as a Taylor series about s = O

(22)
(23)

x1(8) = by + V8 + y1(8),
x2(5) = by +vas + yz(s),

yi(s) = // %i(o)do”.
JJo

This formulation separates the paths into linear and non-
linear components. The linear component (formed from
b; and v,) is that part that depends on the position and
velocity of the paths at the start of the transition (when
s = 0); because of this, it is also the part we can predict.
The nonlinear component depends on the future accel-
eration profile and is the part of the path that cannot be
predicted. !

By applying (21) to the paths in (22), differentiating
twice, and letting yq(s) = y2(s) — yi(s), the acceleration is
found to be

where

X(s) = X.(s) + ¥(s),

where

Rr(s) = by + 5vq)
+ (26 — kB)WVq,

¥(s) = ¥1(5) + a¥4(s) + 2a¥als)
+ cyq(s).

(linear component)

(nonlinear component)

The linear component %X, (s) is the quantity that is con-
trolled when (1) (or a similar relation) is used to deter-
mine the transition time. An important question is how
much additional acceleration can be imposed by the non-
linear component ¥(s). It turns out that if the individual

1. Prediction based on the extrapolation of second and higher order deriva-
tives is possible in theory but is generally hard in practice because of the
difficulty in estimating these quantities reliably, coupled with the sensitiv-
ity of such predictions to errors in the initial conditions.
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path accelerations ¥,(s) and ¥,(s) are bounded, then the
bound on ||¥(s)|| is described by the following theorem:

THEOREM 1. Let y((t) and y,(¢) be two paths in space,
and let y(t) be the blend of these two paths such that

¥(t) = yi(1) + as)(y2(8) — y1(2)), for ¢ € [0,T], with
a(s) = 68> — 15s* + 10s* and s = t/T. If yu(t) = y2(t) —
y1(t) satisfies the boundary conditions y4(0) = y4(0) = 0O,
and [y, [9200]] < A. then

Iy < (19/4HA,
where this bound is tight.

Note that the definition of y; implies that the boundary
conditions yz(0) = y4(0) = O are satisfied and that
¥, = ¥, and X, = ¥,. The proof of the theorem is rather
tedious, and is therefore deferred to the Appendix.

Theorem 1 indicates that it is possible for the tran-
sition blend to amplify the accelerations of the paths
being blended, and that if we want to be sure ||¥(s)|| is no
larger than ||%,(s)||, then we should ensure that (roughly)
1%1()]l, [1%2(8)|| < 1/5|%L(s)]]. The bound of the theo-
rem is tight in the case where both paths are accelerating
directly away from each other.

5. Adjusting the Transition Shape

For some applications, it may be desirable to adjust the
actual “shape” of the path segment transitions. For in-
stance, we may want to actually go through the intersec-
tion point of paths x; and x; or perhaps overshoot the
intersection point altogether.

5.1. Halt and Start Transition Components

An easy way to go through the intersection point is to set
% = 0 in equation (21), although this has the disadvantage
of causing the manipulator to speed up during the transi-
tion. In this section, we will develop a simple technique
for adjusting the shape of the transition without causing
the manipulator to speed up. For the purposes of analy-
sis, it will again be assumed that the path segments are
approximately linear.

It is useful to think of a transition as being the super-
position of two actions: a halt transition, which brings the
motion along path x; to rest at some fixed target point p,
and a start transition, which initiates a motion along path
x; away from p. This is illustrated in Figure 5, where p
has been set equal to x;(!/) (i.e., the point along x; that
would have been reached at s = !/; had there been no
transition). The notion can be expressed by deliberately
expanding (21) to include p:

X(s) = x1(8) + a(p — x1(8)) + KI%,(0)

halt component

total
transition

halt
component

start
component

L.y
’ o

|
T
0 1
Fig. 5. The transition between paths x| and x; (top
figure) can be thought of as the combination of a halt
component, which brings the motion along x, to rest at
p = z;(1/2) (middle figure), and a start component that
initiates motion along xt; away from p (bottom figure).

+ a(x2(s) — p) — kB %2(0) —p- (24)

start component

It should be understood that p is somewhat artificial; even
if x;(s) is not heading toward a fixed point, p can be
approximated by extrapolating x(0).

Now consider what happens to the *halt” component
if x| intersects p at s = 0 instead of s = 1A (ie., pis
set to x1(0)): the resulting motion overshoots the target
point and then slowly comes to rest there (Fig. 6). Alter-
natively, if x; intersects p at s = 1, then the resulting
motion speeds up to “catch” the target before coming
to rest. We can also adjust the “start” component of the
transition so that x; intersects p at some s value other
than !/; Figure 6 shows the resulting motions when the
intersection value is set to 0 and 1.

By controlling the timing of the halt and start transi-
tion components in this way, the shape of the transition
can be adjusted. We define the preview parameters 7,
and 7, to be the values of s for which the halt and start
components intersect p. Both of these have a nominal
value of /. Qualitatively, each preview factor is a mea-
sure of how much the trajectory generator is allowed
to “plan ahead” in computing the associated transition
component.
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halt
component

(n,=0)

start
component

(rs=0)

start (

component ' ~
|
|

(7!5 = 1)

Fig. 6. Top, A transition halt component where x| in-
tersects the stationary position p at s = 0. Middle, A
transition start component where X, intersects the station-
ary position at s = 0. Bottom, Start component where
intersects the stationary position at s = 1.

5.2, Using the Preview Parameters

The effect of different settings of 7, and 7, on the tran-
sition profile is illustrated in Figure 7. In each of these
examples, the path segments are linear, have equal
speeds, and intersect at right angles. All transitions are
computed with x = 6. The spatial trajectory is displayed
in the large box on the left, with dots indicating the “ma-
nipulator” position at different times. Normal path motion
and transitional motion are indicated by light gray and
dark gray dots, respectively. The box at the upper right
shows the displacements associated with the transition
halt and start components, as a function of s, while the
box at the lower right shows the magnitudes of the ma-
nipulator velocity (dotted line) and acceleration (solid
line), also as functions of s.

With 7, = 7, = 0.5, we have the conventional tran-
sition in Figure 7A. In Figure 7B, setting m;, = 0.3125
and 7, = 0.6875 causes the transition to travel through
the path intersection point (the values depend on &, which
is 6 here). In Figure 7C, we let 7, = O and 7, = 0.5,
which causes path x; to be followed all the way to the
end, where it then overshoots the intersection point as
it begins the blend into path x;. The opposite case—
undershooting to follow path x, completely from the
beginning—requires w, = 0.5 and 7, = 1, as is shown in
Figure 7D. By setting 7, = 0 and n, = 1 (Figure 7E), it
is possible to follow both paths exactly, at the expense of
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(c) Transition profile with 1, =0.0and ;= 0.5

Fig. 7. Different transition profiles created with k = 6
and different values of m,, and w4 for two straight mo-
tion segments intersecting at right angles. The left box
shows the spatial shape of the transition, the top right
box graphs the displacements of the halt and start compo-
nents, and the bottom right box graphs the magnitudes of
the velocity (dotted line) and acceleration (solid line).

overshooting and looping around. Notice that in this case,
the position and the velocity specifications for both paths
are followed precisely for their entire length, which can
be useful in situations such as where a robot is required
1o deposit material at a constant rate. In the last figure,
7F, settings of m, = 0.6 and 7y = 0.4 are used to produce
a symmetrical transition for which the manipulator speed
is close to constant.

It is reasonable to use the following rules of thumb
when setting preview values. If 75, + 7 = 1 and the
initial and final path velocities are equal, then the space
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(f) Transition profile with 1, = 0.6 and 1, = 0.4
Fig. 7. (continued)

curve will be symmetric about the intersection point.
Generally, as 7, — 0 and 7, — 1, the speed during
the transition will decrease. Specifically, for « = 6, if
mn > 1/2 (or my < 1/2), an overshoot will occur in the
initial (or final) path velocity.

Preview parameters can be implemented as follows.
7y, is controlled by simply changing the time at which
the transition begins. Setting 75, to O requires starting the
transition earlier, while setting 7, to 1 requires starting
it later. 7, is controlled by adding an offset to path x; to

change the time at which it intersects p (see Section 6.3).

5.3. Adjusting the Transition Time Interval

Adjusting the values of 7, and 7, can cause the tran-
sition acceleration to change, and the transition time

calculation must account for this. To determine the ef-
fect, consider again the acceleration associated with two
linear path segments. Setting u = —x v, in (20) and
letting A denote the integral square of the acceleration
magnitude, we get

M =2/35(150 — 15k + £2)||vq?
+120/7 (vq - by + |[bal»). (25)

From the definition of 7, and 7, we have that x,(mw,) =
p and x;(m,) = p, and, because the acceleration can be
measured in any coordinate frame, we assume without
loss of generality that p = 0. Combining these relation-
ships with (17) yields

by = TV — WeVa. (26)

Substituting this into (25) gives an expression for M in
terms of «, 7),, 75, and the initial path velocities:

M =2/35(150 — 156 + &*)||va|* + 120/7 (ms¥1 — ThV2)
(s — Dvy — (7, — Dv2]. @7

Taking the square root of M (and dividing by the unity
time interval for s) gives the root-mean-square accel-
eration, which we wish to compare to the reference
acceleration a,.. However, where is 77 So far, all terms
have been expressed with respect to the time coordi-
nate s; T appears when the necessary coordinate changes
between t and s are applied. First, the input velocity
terms in M/ must be converted from ¢ to s, which re-
quires multiplying each term by 27. Second, the output
acceleration value must be converted from s back to ¢,
which requires dividing by 472, The net expression can
be solved for 7 to yield
VM

T= . (28)
As a side note, it can be shown that M has a minimum
value with respect to 7w, and 75 when 7y, = mp, = lh,
which are the canonical values.

6. An Example Trajectory Algorithm

To illustrate how the ideas in this article are used in prac-
tice, we present a simple trajectory generation algorithm.
For the sake of brevity, a number of simplifications
are assumed. The time taken to travel along a given path
segment is always determined from a desired velocity and
cannot be explicitly specified; it is presumed that a future
motion target is always available; there is no capacity to
interrupt motions; and it is not possible to begin a new
motion while a transition is in progress. A more practical
trajectory generator would need to handle these cases.
The algorithm also ignores details associated with the
discrete time nature of the computation.
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6.1. Motion Interpolation

The example trajectory generator constructs paths by

linearly interpolating between target positions. Each such

interpolation constitutes one motion segment. Let the

current time be ¢, the time the current motion began be

ta, and the target position the manipulator is heading

toward be x;. It should be noted that x; may be changing

in time independently of the trajectory generator, with

a velocity described by v,. Let the difference between

X; and the previous target position (evaluated at time

t.) be dy,, and let the total time required for the motion

segment be op. Then the desired manipulator position x

along the motion segment at each time ¢ is given by
X=x,—[1 = (t —ta)/0p] dpa. (29

d,, is the “drive” vector for the motion segment. Notice

that the manipulator will directly track any variations

m X.

6.2. Estimating the Transition Time

At any given time, the trajectory generator is in one of
two states: cruise, when (29) is used to move toward a
target position, or transition, when the motion toward x,
is replaced with another motion toward the next target
point X,.

When the trajectory generator is in the cruise state, it
constantly estimates the T required for the transition to
the next motion. This is done using the current manip-
nlator velocity v; and an estimate of the posttransition
velocity v;. vy is the sum of the current target velocity
vy, and the velocity with which the targel is being ap-
proached:

V) =V, +dba/(7b-

v, is formed by adding the velocity of the next target
(v.) to a vector in the direction of the next motion whose
magnitude equals the desired travel speed v,.:

V2 = Vo + vp(Xe — X)/[|Xe — X]|

Equations (25), (26), and (28) are then used by the func-
tion estimateTau to produce a value for 7. As explained
earlier, the reference acceleration a, is presumed to be
provided, possibly being updated by a separate algorithm
that accounts for the robot dynamics.

If the actual length of the next path is very short, the
manipulator may not have time to accelerate to the de-
sired travel speed v., and the estimate for ~ will be too
large. To correct for this, a,7% is compared to the esti-
mated path length, and, if it is greater. 7 is reestimated

with a lower prescribed speed of +/||x; — x||/a..

388

6.3. Computing the Next Motion Parameters

Using the estimate for 7, the trajectory generator calcu-
lates the time ¢ at which the transition to the next motion
should begin. The anticipated time of arrival at x, is

ty, = t, + op, and £, precedes £, by an amount specified
by the preview parameter m),:

to =ty + op — 27my.

When t > tg, the transition to the next motion is
started, and the new motion parameters are initialized.
These parameters include ¢, dg, and o, which corre-
spond to t,, dy,, and o, so that the new path towards x,
is computed from

X=xc—[1—(— ts)/U(:] des. (30)

t, and d., must be determined so as to properly respect
the preview parameters. In this case, the “target point” p
of equation (24) is simply the value of the target position
X, at the time ¢;.The new path intersects this target point
at time t,, which is offset from the transition start time
by the preview parameter 7,:

te =g+ 27m,. 3D
d.; is computed so that the new path intersects the target
point at ¢ = t,. Setting £ = ¢, in (30), and remembering
that the target point equals X, at time £, we get

Xblt:th = xc‘t:ts —d.

Evaluating d., requires that x; and x. be determined at
the future times t, and ;. This can be done by extrapola-
tion, using their current velocities and positions. Because

ty = to+2717R, ts = to+277,, and the time of evaluation
is tg, dop can be computed with the formula

dcb = (Xc - Xb) + 27—(’”5"(3 - 7rhvb)-

The travel time for the next motion segment, o, is com-
puted by dividing the magnitude of the drive vector by
the desired path velocity: o. = ||d¢||/v,-. The difference
in velocities, v4, between the old and new paths, which
will be used by the  term during the transition blend, is
reestimated by

Vg =v.+dw/o. — V.

During the transition, the parameter s is computed from
s = (t — 1p)/27. Both the current path x; and the next
path x; are computed using equations (29) and (30), and
the results are blended together using the functions a(s)

and G(s).
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estimateTau (v,)
{ Vy = Ve + Ur(xc -
Vg = V2 — Vv,

x)/Ixe = x|I:

by = mpv, — 7,vy;
M =2/35(150 — 15& + &2)||vq[)?+
120/7 (va - ba + [|ball?);
return (VM /2a,);
}

eachCycle ()
{ if (state == cruise)
{ vi=vi+dua/oy.
T = estimateTau (v, ),
if (.72 > ||x. —x||)

{ 7 = estimateTau (\/||xc — x|{/a,);

}
tg =1, + oy — 277,
if (1 > to)

{ ty =to+ 2rmy;

dey = (xc - xb) + 2T(7rsvc - Whvb):

72 = Ildusll /e
Vg = Ve + dcb/gc — Vi
state = transition;

}
1
I
else
{if (s > 1)
{ x4 — x;
dbu = dcb- Tp = T¢, lg = 1y,
X, ~— next target;
set new v,., Ty, Ty, K values;
state = cruise;
}
}
if (state == cruise)
{x=x = (1= (0= ta)/0s] dia:
!
else

{ s=(0—t)/2r;
X] = Xy — [l — (t — ta)/db] dba;
x2 = xc — [1 = (t — t5)/o]dey:
| x = x; + a(s)(x2 — x1) — kB(s)vy;
1

Fig. 8. Algorithm for computing trajectories.

The transition ends when s > 1. At this point, the next
target X. becomes the current target x,, and the variables
d,,, oy, and t, assume the values of d.p, 0., and ¢.. X,.
is set to the next future target; new values for the control
variables v,., mp, s, and x are loaded; and the state of
the trajectory generator is set to cruise.

The complete algorithm is shown in Figure 8.

// estimate 7 for desired velocity v,.
// estimate post transition velocity.
// estimate differences in velocity
//  =nd position.

// compute integral square of acceleration
// and use this to estimate 7.

// called once every trajectory cycle.

// estimate current velocity.
// estimate transition time.

// correct for small distances.

// compute next transition start time

//  and then start transition.

// compute start time for next motion,

//  drive vector,

// and total motion time.

// compute velocity difference for blending.

// then transition is over.

// x. becomes next motion target.

// shift drive and time parameters for next motion.
// get next specified target

// and control variables.

// normal interpolation to target.

// compute transition parameter.
// compute motion along path 1.
// compute motion along path 2.
// blend motions together.

7. Handling Rotations

When applied to Cartesian coordinates, the blend paradigm
must handle 3-D rotational paths. Because rotational
operations do not commute, rotations cannot be described
as a vector quantity, and therefore the methods described
so far cannot be applied directly. However, it is possible
to achieve the same effect with rotational operators.
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The basic idea utilizes the decomposition into halr
and start components described in Section 5. The vector
equation (24) can be rewritten as

x(s) = x1(s) + (p — X1(3)) + £5%,(0)

A
+ axa(s) — p) — KkG%:(0).

B

(32)

Because p intersects paths x; and X», then, to a first ap-
proximation, X; is parallel to p — x| and x; is parallel to
x; — p. If parts A and B are now thought of as represent-
ing rotations instead of vectors, this implies that within
each part, the axes of angular velocity and rotation are
parallel. Within A and B, the blend functions may then
be applied using scalar operations on a rotation about a
single axis.

Some definitions are now needed. Let Rot(#, v) be a
function that accepts an angle # and a vector v describing
an axis of rotation and returns the corresponding 3 x 3
rotation matrix.? Let O(R) and vec(R) be the inverse
functions that return the angle and direction vector corre-
sponding to a given rotation matrix R. Assume that the
two rotational paths we wish to blend are given by ma-
trices R (s) and R;(s) and that they intersect at a fixed
orientation R,,. Assume also that the initial angular veloc-
ity of the two paths is given by £, and £2,.

We now need to blend paths R; and R, together in a
manner analogous to (32). Define the difference between
Ri(s) and R, by Ri,(s) = Rl(.s-)*lRp, and the difference
between R, and Ra(s) by Rpo(s) = Ry 'Ry(s). If Ry(s)
and R;(s) are linear (i.e., they have constant angular
velocities), then vec(R,,) is parallel to ; and vec(R,;) is
parallel to €2;. The blended path can now be computed as

R(s) = Ri(s}R4(s) Rp(s), (33)

where

Ra(s) = Rot[a OR,,(s)) + 3| ||, vec(Ri,(s))],
Ri(s) = Rot[a O(Rp2(5) + £3]|Q2||, vee Rpa(s))].

In the nonlinear case, the parallel axis assumptions are
still valid to a first approximation, and all the necessary
boundary conditions of (4) still hold. In the linear case,
(33) turns out to be equivalent to the method for rota-
tional transitions described in Taylor (1979).

Rotational operators can be used to similarly generalize
the other computations used in the algorithm of Section 6.

8. Conclusion

We have presented a method for computing the transition
between manipulator trajectory path segments that is

2. Any three-dimensional rotation can be expressed as a single rotation 8
about some axis ¥.
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tolerant of time variations in those segments. This is
particularly important in cases where the paths are being
updated by real-time sensory information.

In essence, the method decomposes the calculation
into two parts. The first part uses a smooth convex blend
function to combine the paths segments and ensure that
all the necessary boundary conditions are satisfied, with-
out requiring any knowledge of the future. The second
part uses an additional smooth function, combined with
the predictive information provided by the initial path
velocities, to minimize transition acceleration. The blend
functions described here provide continuity up to the sec-
ond derivative. If necessary, higher-order blend functions
could be used to provide continuity for higher derivatives.

If the blended paths are themselves accelerating, and
this acceleration is known to be bounded by A, then the
additional acceleration this introduces into the transition is
bounded by (19/4)A.

Although the blend paradigm is mainly designed for
dealing with path uncertainties, it also provides a natural
way to join motion segments whose paths are computed
in different coordinate systems. For instance, it is con-
venient to “blend” together a motion computed in joint
coordinates with one computed in Cartesian coordinates,

We have also found that if we decompose the trajectory
blend into “halt” and “start” components, then it is possi-
ble to define two preview parameters, 7, and m;, that can
be set to various values in the range [0, 1] to control the
spatial shape of the transition curve.

Appendix: Proof of the Bound on Blended
Acceleration

The proof of Theorem 1 requires the following lemmas:

LEmMMa 1. Let y(£) be a path in space, let ¥(f) be its
velocity, and define vy = y(#p). If ||§(¢)]] < B, then

¥ — voll < Bt — tyl.
Proof. From basic kinematics, we know that
t
¥y(t) = v +/ ¥(7)dr.
ty

Rearranging, taking norms, and applying the triangle
inequality under the integral yields

t t
130 voll = | [ scrart < [ larl,
in to
from which the result follows. m|

LemMMa 2. Let y(t) be a path in one dimension, with
y(0) = H(0) = 0, and define its velocity at some time
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T > 0 by vy = g(7). Then, if |§(t)| < B and vy > 0, y(7)
is bounded by

1/2vyr — 1/A(BT* —v}/B) < y(T) (34)
< 1/2Vf7'

+1/4(B7* —v}3/B).

Proof. We will prove the upper bound first. Because
7(0) = 0, we know from Lemma | that

y(t) < Bt for t>0. (35

Applying the same lemma with ¢y set to T yields the
additional constraint

[9(®) — vg| < Blt — 7],
which for ¢ < 7 implies that
9 < B(r —t) + vy. (36)

Constraints (35) and (36) are equal at the point t = o =
1/2(t + vy/B). For t < o, (35) dominates, and for

t > o, (36) dominates. y(7) can be determined from the
piecewise integral

y(r) = /O Y(t) dt + / y(t) dt.

Applying the appropriate constraints under the integral
sign gives

y(T)S/ Btdt+/ [B(r —t) + vyl dt,
0 a

and integrating and expanding the value of o yields the
upper bound.

To prove the lower bound, consider the change of
coordinates defined by

z(t) = y(r — £) — y(7) + vyt
The first and second derivatives of z(t) are

(t) = —§(r ~ ) + vy
) = §(r — 1)

From this we can verify that z(0) = 0, #(0) = 0, () =
vy, and |£(¢)] < B. This in turn implies that the upper
bound in (34) holds for z. Then, for, t = 7, we have

(1) = —y(r)+vy7 < 1/20p7 + 1/4(B'r2 — v}/B),
which can be solved for y(7) to yield the lower bound. O

Proof of Theorem 1: First, scale the time coordinate to
use s in place of £, so that y(s) = y,(s) + a(s)(yz(s) —
y1(s)). Because s = t/T, the acceleration bounds are

modified to ||¥1(s)]], [|[¥2(s)|| < AT?. Next, define x(s) =
¥a(s) = y2(s) — yi(s) and take the second derivative of

y(s) to get

¥(s) = §1(8) + a(8) X(3) + 2a(s8) X(s) + d(s) x(s), (37)

where
a(s) = 30(s* — 25° + %),
&(s) = 60(2s> — 3s% + s).

Note that ||%|| < 2AT?. For convenience, define A, =
2AT?, so that |[§1(s)], [y2(s)]| < 1/24,.

For notational simplicity, the explicit dependency of
variables on s will be omitted from most of the remaining
discussion.

Applying norms to (37) yields

9] < Il + ax|| + [ 2% + x| (38)

The first term on the right side is bounded by

91 + o] = [|(1 — )¥1 + aFa|
<(I-0)l/24, +al/24,
< Ag/2,

as v and 1 — « are both > 0 for s € [0, 1].
We next need to establish a bound for ||2ax + dx||.
Denote this term by F, so that

Iyl < Az/2 + F. (39)

F will be bounded by bounding F2. This will be done by
formulating bounds that apply for any particular value of
s, and then finding the maximum of these bounds for all
s €[0,1].

If, for some value of s, x and x are both 0, then F
is also 0, and so we do not need to consider this case
further. Otherwise, if X is 0 and x is not 0, then let & be
a fixed unit vector in the direction of x at that particular
value of 5. Let = be the component of x along this vector.
We then have z = ||x||, # = 0 (because x is 0), and
# < A, (because ||X|| < A;). Hence, for any value of
s > 0, x is constrained by the upper bound of Lemma 2
with vy set to 0, so that

<1 /4Az52,
which implies

F? = |26x + ax|)? = ||ax|]? < (1/4a A8 (40)

Now assume that x and X are both nonzero. Let & be
a fixed unit vector in the direction of x for a particular
value of 5. Let Xx,, be the projection of x onto @, and
define x; = x — x,,. From these definitions, F2 can be
expanded to

F2 = |26 4 é@x, || + |Jax, | @1
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Note that ||%, ||, |[%. || < [|%] < Ag. Consider the x|
term first: because by construction there is no velocity
component along X, its magnitude is limited by the
same bound in (40), and so

llax, ||2 < (1/4é Ags?)?. (42)

Now consider the other term. By construction, both x
and x,, are parallel to 4. Letting » and x,, denote the
components of these vectors along @i gives

26 + dix,, || = (2aw + dz, ).

By construction v > 0, and & = ||X,|| < A,, and therefore
the bounds of Lemma 2 hold for x,, for any value of
s > 0. Denote these bounds by r,; and x,,,, so that

Ty = 1/2vs — 1/4(A,s" —v?/AL) 43)
< 2y < 1208+ 1/4ALs* — 17 /AL = Zyu.

Now, because &,y < x, < Ty, it can be deduced that
|2¢w + dzy| < max (|2¢v + dzy|, 260 + dayy)-
Combining this with (41) and (42) gives

F? < max [(26v + dzy) + (1/4 aA,5%),
(2dew + Gy ) + (1/4aALs7)2]. (44)

Note that this bound also subsumes the bound in (40) for
the case where x = 0, so we can deal exclusively with
(44).

Now from Lemma 1, and the fact that v > 0, we know
that v = [A,s for some { € [0, 1]. Substituting this into
the expressions for v, x., and z,, in (44) gives

F(s)* < AL max[L(s, 1), U(s, )], (45)

where

L(s,0) = 2ads + 1/2as*[1 — 1/2(1 — Y2 + (1/4 éis?)?,
U(s, 1) = 2ads + 1/2as [0+ 1/2(1 — 9] + (1/4 é&s%)%

U and L are both polynomials in s and [, and we now
wish to find their maximum values in the region s,{ €
[0, 1}.3

Starting with U(s,[), we first examine the global crit-
ical points where OU/8l = dU/ds = 0. There are
17 of these, but only one that is interior to the region
s,1 € [0, 1], for which the value of UV is a= 2.74. Next, we
examine critical points on the region boundaries. Taking
s=0o0rs=1gives U(0.{) = U(1.1) =0, so this can be

3. This was done with the help of Mathematica, a symbolic algebra pro-
gram distributed by Welfram Research, Inc.. 100 Trade Center Drive,
Champaign, llinois 61820-7237, USA.
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ignored. Taking [ = O or [ = | yields U(s,0) or U(s, 1),
which are both polynomials in s. The maximum of both
of these occurs for U(s, 1) at s = 1/2 and has a value of
225/64.

For L(s,[), there are also 17 global critical points, for
which three satisfy s,! € (0, 1), and the largest of these
values is = 0.98. The equations of the region boundaries
are the same as those for U(s,1), and so these do not
need to be considered again.

The largest value is hence 225/64. Substituting this
back into (45), taking the square root of both sides and
combining with (39) yields

()] < (19/8)A;. (46)

Finally, transforming s back to ¢ gives
@) = [1§()/T2[1 < (19/4)4,

which establishes the bound.

To demonstrate that the bound is tight, consider a one-
dimensional case where the two paths are accelerating
away from each other as fast as possible. Recalling that
A, = 2AT?, define y (s) = yi(s) = —1/4A4,s* and
y2(s) = ya(s) = 1/4A,5% x(s) then becomes z(s) =
1a(s) — y1(s) = 1/2A,5%, and X(s) becomes i(s) = Ags.
Substituting these values for z into (37) yields

ii(s) = i1(s) + a(s)i(s) + 26d(8)A,s + ac(5) Azs®.

At s = 4, where a(Ch) = A, &) = 15/8, and
(1) = 0, we have

§(1) = §1() + 122 + 15/8A,.

Now, if at s = 1/ the acceleration of y; is suddenly
reversed so that §;(12) = 1hA,, we get

G2 = (19/8) A,
which is equal to the bound (46). a
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