
Singularity-Robust Trajectory Generation

John E. Lloyd
Computer Science Dept., University of British Columbia

201-2366 Main Mall
Vancouver, B.C., V6T 1Z4, Canada

lloyd@cs.ubc.ca

Vincent Hayward
Centre for Intelligent Machines, McGill University

3480 University Street
Montréal, P.Q., H3A 2A7, Canada

hayward@cim.mcgill.ca

Revised: September, 2000

Submitted to the International Journal of Robotics Research

Portions of this work were presented at the
1998 IEEE International Conference on Robotics and Automation

Vincent Hayward
Accepted

Vincent Hayward

vincent hayward
Int. J. Robotics Research. 2001. Vol. 20, No. 1, pp. 38--56.

Abstract

A singularity-robust trajectory generator is presented which, given a prescribed
manipulator path and corresponding kinematic solution, computes a feasible tra-
jectory in the presence of kinematic singularities. The resulting trajectory is close
to minimum time, subject to individual bounds on joint velocities and accel-
erations, and follows the path with precision. The algorithm has complexity
O(M logM), whereM is the number of robot joints, and works using “coordinate
pivoting”, in which the path timing near singularities is controlled using the fastest
changing joint coordinate. This allows the handling of singular situations, includ-
ing linear self-motions (e.g., wrist singularities), where the speed along the path is
zero but some joint velocities are non-zero. To compute the trajectory, knot points
are inserted along the path, dividing it into intervals, with the knot density increas-
ing near singularities. An appropriate path velocity is then computed at each knot
point, and the resulting knot-velocity sequence is integrated to yield the path tim-
ing. Examples involving the PUMA manipulator are shown.

1 Introduction
Robotic manipulators, when requested to follow prescribed spatial paths, fre-

quently encounter kinematic singularities which can cause joint velocities (and
higher time derivatives) to become unacceptably large. Singularities often coin-
cide with a workspace boundary, but can occur inside the workspace as well. They
reduce the useful size of a manipulator’s workspace, and render certain types of
operations (e.g., full arm extension using straight line motion) impossible.

While it is sometimes possible to avoid singularities, this complicates the mo-
tion planning process and limits the range of tasks which can be performed. How-
ever, recent work on the singularity problem (Section 2) has indicated that, with
proper time scaling, it is generally possible to follow any prescribed spatial path
near (and at) a singularity, without deviating from the path and without incurring
large joint velocities.

Our paper builds on this result and presents a singularity-robust trajectory gen-
erator, which can take any inverse kinematic solution for a prescribed spatial path
and produce a path timing (i.e., trajectory) which is close to minimum time, sub-
ject to keeping joint velocities and accelerations within prescribed bounds. The
algorithm handles all types of singularities except those involving non-linear self-
motions (Section 3.1), and is efficient and easy to implement. It should also be
possible to extend the algorithm to handle general torque constraints imposed by

2

the manipulator dynamics. An implementation is available from

http://www.cs.ubc.ca/spider/lloyd/singRobustTgen.html:

While the problem of this paper has already been studied with respect to veloc-
ity limits alone (Chiacchio & Chiaverini, 1995), our work is novel in that it also
incorporates acceleration limits. The ensuing problem is somewhat trickier (for
reasons described at the end of Section 2) and requires planning over the whole
path. As such, the algorithm described here is well-suited to form a “black box”
back end to a motion planner or programmer interface. Provided that time scaling
is acceptable, path planning can then be performed by considering only workspace
limits and physical obstacles, with the singularity-robust trajectory generator en-
suring that joint velocities and accelerations are properly bounded whenever sin-
gularities are encountered.

2 Related Work
The most traditional way of handling singularities involves the manipulator Ja-

cobian J, which relates joint velocities _q to the spatial velocity v according to

v = J _q: (1)

At a singularity, J becomes rank deficient, and so inverting (1) to find the v required
to follow a particular path may result in arbitrarily large values of _q. One way of
handling this is to introduce a damping factor into the inverse calculations which
limits the magnitude of _q at the expense of deviating from the desired path (Naka-
mura & Hanafusa, 1986; Wampler II & Leifer, 1988). Because this can result in
motions which are somewhat sluggish, a number of researchers have considered
ways to dynamically compute and optimize the damping parameter (Maciejewski
& Klein, 1989; Kircanski, 1993; Deo & Walker, 1993; Chiaverini et al., 1994).
Other Jacobian-based methods involve removing degenerate degrees of freedom
from J (Aboaf & Paul, 1987), or using JT in place of the inverse (or pseudo-
inverse) of J (Wolovich & Elliott, 1984; Chiacchio et al., 1991).

Somewhat more recently, it has been observed that by considering higher-order
differential behavior, exact path tracking is generally possible at singularities if an
appropriate path timing is supplied. If the path is parameterized by a scalar s, this
entails making _s (and usually higher derivatives) zero at the singular point. Ex-
amples of this for simple robots were shown in (Nielsen et al., 1990; Chevallereau
& Daya, 1994). The idea is equivalent to finding a reparameterization � = f(s)

3

q2

q1

x

y

l1

l2

Figure 1: Planar 2R robot centered at the origin.

such that the path’s inverse kinematic solution q(s) is smooth with respect to �.
In (Kieffer, 1994) it was shown that these reparameterizations always exist for
non-redundant robots if J has a rank deficiency of one and the path’s tangent has
a component in the singular direction. Other reparameterization conditions were
presented in (Chevallereau, 1996; O’Neil et al., 1997). For non-redundant robots,
it can be proven that a smooth reparameterization of the path always exists at any
singularity with a finite root multiplicity (Lloyd, 1998).

Some authors have applied these ideas to on-line robot control. If J is square
and has a rank deficiency of one, then the manipulator’s motion can be controlled
within the (one-dimensional) null space of J (Senft & Hirzinger, 1995; Nenchev
et al., 1996; Chang & Khatib, 1995). Alternatively, information from the manip-
ulator’s Hessian can sometimes be used to solve for _q (Tumeh & Alford, 1988;
Pohl & Lipkin, 1991; O’Neil et al., 1997). In a different approach, it is shown in
(Lloyd & Hayward, 1998) that the reparameterization described in (Lloyd, 1996)
can sometimes be applied to the workspace itself, such that all motions planned
within this transformed workspace have well-behaved joint velocity profiles.

When using the above-mentioned techniques, it can be difficult to place explicit
limits on acceleration, particularly if there are to be no deviations from the path and
a time-efficient motion is desired. The reason why can be demonstrated using the
planar 2R robot in Figure 1, by considering the behavior of joint q2 when the robot
is driven along a straight line into the singularity at the outer workspace boundary
(Figure 2).

4

To avoid overshoot, deceleration
must begin here

(A)

(B)

(C)

Clipped velocity
 profile

t

_q2

_q2

ttdtx

Figure 2: (A) Straight-line motion into the outer boundary singularity (dashed circular
line). (B) Nominal velocity profile _q2(t) resulting when this motion is performed at con-
stant speed (solid line), and when the motion is time-scaled so as to limit _q2 to some maxi-
mum value (dotted line). (C) Effect of removing the discontinuity in _q2(t) by limiting j�q2j.
If this is done directly at the discontinuity (time td), the resulting velocity profile (right-
most dotted line) will cause an overshoot in q2. To avoid this, it is necessary to begin the
deceleration at an earlier time tx (leftmost dotted line), so that q2 is brought to rest exactly
as the singularity is reached. tx must be located so that the areas of the two shaded regions
match.

5

Doing this at constant speed produces a large spike in _q2 (solid line, Figure 2.B).
The high-velocity associated with this spike can be dealt with fairly easily: as the
singularity is approached, one may scale the path velocity _s in direct proportion
to the minimum singular value of J (similar to the method of (Chiacchio & Chi-
averini, 1995)). This has the effect of roughly “clipping” j _q2j to some maximum
value (Figure 2.B, dotted line). However, this is not sufficient to ensure reasonable
robot behavior, since _q2 still experiences a discontinuity (corresponding to a spike
in �q2) when the robot halts at the workspace boundary. It is therefore important to
limit acceleration as well.

The difficulty with this is that limiting j�q2j also affects q2. For instance, suppose
we limit j�q2j directly at the velocity discontinuity, as shown in Figure 2.C. This cre-
ates a controlled deceleration profile, beginning at td, indicated by the rightmost
dotted line. However, this results in q2 overshooting its proper value at the singu-
larity, causing deviation from the prescribed path (as evidenced by the area under
the new velocity profile being larger than that under the original profile). In order
to limit acceleration and preserve the correct joint displacement, it is necessary to
start decelerating at some point tx before arriving at the singularity (as indicated
by the leftmost dotted line in Figure 2.C).

Placing tight limits on acceleration therefore necessitates the use of global tra-
jectory planning. Our algorithm does this using techniques similar to those used
for general time-optimal path-following (Bobrow et al., 1985; Shin & McKay,
1985; Slotine & Yang, 1989), with velocity and acceleration constraints used in-
stead of dynamics-based torque constraints. The resulting algorithm produces near
minimum-time trajectories, in the presence of both ordinary singularities and those
involving linear self-motions (Section 3.1). It is an improvement on some earlier
work (Lloyd & Hayward, 1996) which did not handle self-motions.

3 Algorithm Overview
Note to the reader: a notation summary is given in Appendix G.
Let the spatial path to be followed be described by X(s), where X is a 4 � 4

homogeneous transform matrix and s is a scalar path parameter defined over some
interval [sA; sB]. X(s) is assumed to be continuous. The robot hasM joints whose
values are given by (q1; : : : ; qM)T . The vector of joint coordinates is given by q.
For reasons that will become clear later, it is useful to extend q to include the path
parameter s as coordinate qM+1, so that

q � (q1; : : : ; qM ; qM+1)
T ; qM+1 � s: (2)

6

The algorithm assumes that an inverse kinematic solution for X(s) is provided;
this will be denoted by q(s) (see Section 7.3 for comments about determining this
solution). q0(s) is also required, although this can be computed numerically from
q(s) and q(s+ �) for some small � (which has the advantage of producing values
which are always finite, even at singularities).

Given q(s) and q0(s), the algorithm produces an efficient path timing s(t) for
which the resulting coordinate velocities _q and accelerations �q adhere closely to
the following limits:

j _qjj � Vj ; j�qjj � Aj; (3)

whereVj andAj represent the (possibly different)velocity and acceleration bounds
for each coordinate. Because q includes s as qM+1, these constraints also impose
limits on _s and �s, which will be specifically referred to as Vs and As. These limits
provide control over task velocities and accelerations; they can be set to very high
values if unneeded.

As the robot is made to follow q(s), the velocity and acceleration of each co-
ordinate qj depends on _s and �s, via the chain rule:

_qj = q0j(s) _s and �qj = q0j(s) �s + q00j (s) _s
2: (4)

Near singularities, q0j(s) and q00j (s) may become very large, implying that _qj and
�qj may also become very large for non-zero values of _s and �s (at a self-motion
singularity, qj(s) may even be discontinuous). In such situations, the algorithm
uses the velocity of some joint coordinate, in place of _s, to control the path timing.
This is known as coordinate pivoting, and is described in Section 4. Whichever
coordinate is used to control the path timing, s or otherwise, is called the driving
coordinate, and is denoted by x.

In standard time-optimal path-following procedures (Bobrow et al., 1985; Shin
& McKay, 1985), the timing s(t) is actually produced implicitly by computing _s as
a function of s. The same thing is done here, using the driving coordinate x (whose
identity will vary along the path) in place of s. The algorithm comprises two main
steps:

1. CreateKnots: Knot points si are introduced along the path, dividing it into
a sequence of intervals [si; si+1]. The knots are added by recursive bisec-
tion until each of the intervals satisfies conditions needed for good algorithm
performance (Section 5). The resulting knot density is usually higher near
singularities. A suitable driving coordinate x is determined for each interval.

7

2. AssignVelocities: Appropriate values for _x are calculated at each knot, so as
to produce a near-minimum time motion that closely satisfies j _qjj � Vj and
j�qjj � Aj (Section 6).

After drive coordinate velocities _x have been assigned, the resulting knot-
velocity sequence can be integrated to yield the path timing (Section 7.2). This
is done assuming that �x is constant between knots, making this integration fairly
easy to perform.

3.1 Examples

Our algorithm directly handles both ordinary singularities (i.e., those not asso-
ciated with self-motion) and linear self-motion singularities (i.e., those for which
the self-motion forms a straight line in joint space)�. The so-called “wrist” singu-
larity is probably the most common example of a linear-self-motion singularity.

Both types of singularity can be illustrated by the planar 2R manipulator of
Figure 1, with link lengths l1 = l2 = 1. Our attention will be restricted to the
values of q1 arising from straight-line motions along the x axis, as shown in Figure
3.

Ordinary singularities exist at x = �2, where the x-axis intersects the outer
workspace boundary and the two solution branches defined for x 2 (�2; 2) meet.
A linear self-motion singularity exists at x = 0, where the manipulator folds up on
itself and can spin freely about the q1 axis without affecting the tip’s position.

Now consider a path along the x axis defined by x(s) = s; y(s) = 0, for s �
�2. The solution q1(s) depicted by the solid line in Figure 3 corresponds to the
motion shown in Figure 4.A. At the outer boundary singularities (s = �2), q0

1
(s)

becomes infinite, and so by equation (4) any non-zero path speed _s will result in
infinite values for _q1 and �q1. However, both _q1 and �q1 can be kept bounded if _s is
brought to 0 appropriately at the singularity. Whether this means _q1 will also have
to be brought to 0 depends on the situation. For example, if the robot is brought
to rest at the singularity, then clearly _q1 will have to be brought to 0 as well. On
the other hand, suppose the manipulator reverses direction at the singularity, by
following the path x(s) defined by

x(s) =

8<
:s if s � 2,

4� s if s > 2.

�Self-motions are joint-space manifolds along which the manipulator can execute a finite joint
motion without incurring a change in end-effector position.

8

�2
x

0 2

q1

2�

0

Figure 3: Solution set for q1 (solid and dotted lines) of the planar 2R robot shown in Figure
1, for motion along the x axis. Workspace limits are exceeded for x < �2 or x > 2; the
horizontal dotted lines in these regions indicate the “closest possible” solutions q 1 � �

and q1 � 0 formed by projecting the desired position onto the workspace boundary.

By permitting q1(s) to switch branches at s = 2, we obtain the motion shown in
Figure 4.B. Because _q1 does not then change sign as it passes through the singu-
larity, a timing exists which bounds _q1 without bringing it to 0. A robust trajectory
generator should be able to construct such timings, in which one or more _qj 6= 0
while _s = 0. These timings are difficult to create using _s, which is why we employ
coordinate pivoting.

The vertical dotted line at x = 0 in Figure 3 indicates the solution associated
with the linear self-motion singularity. It is possible to use this to switch solu-
tion branches, by bringing the robot to rest at the singularity, moving along the
self-motion solution, and then resuming along the new branch (Figure 4.C). The
associated q1(s) will contain a discontinuity, which can be handled by our algo-
rithm, resulting in the aforementioned branch-switching behavior. While it is usu-
ally preferable to avoid switching branches in this situation (as in Figure 4.A), task
constraints, such as the presence of obstacles or joint limits, may dictate otherwise.
Also, paths which pass near self-motion singularities may produce solutions qj(s)
which are very steep and thereby numerically appear discontinuous. For these rea-
sons, a robust trajectory generator should be capable of detecting and handling dis-
continuities in qj(s).

9

(A)

(B)

(C)

Figure 4: (A) Motion along the x axis corresponding to the solid line in Figure 3. (B)
Motion out to and back from the outer boundary singularity, in which the q1 solutionbranch
is changed at the singularity. (C) Motion along the x axis in which the q1 solution branch
is changed at the self-motion singularity at the origin.

10

4 Coordinate Pivoting
As described in Section 3, the algorithm uses an alternate driving coordinate x

to control the path timing across intervals where one or more q0j(s) becomes large.
We call this coordinate pivoting.

To formalize this idea, let qi � q(si) denote the value of q(s) at knot i, let
i�q � qi+1 � qi denote the change in q across interval i (which lies between
knots i and i+ 1), and let i�qj denote an individual element of i�q. Then:

Definition 1. The driving coordinate for interval i is that for which ji�qjj=�j is a
maximum, where �j is a normalizing factor (usually 2� for revolute joints or the
workspace diameter for prismatic joints), and is represented by ix.

Within interval i, the coordinates q (including s) are treated as a function q(ix)
of the driving coordinate ix (our ability to do this follows from ensuring that s(ix)
is strictly monotone, as described in Section 5.4). The function q(ix) is approxi-
mated using cubic Hermite interpolation of the interval endpoint values of q and
q0(ix). Interpolation errors are bounded by making sure knots i and i+ 1 are suf-
ficiently close together (Section 5.1). Individual endpoint values of q0(ix) can be
determined from

q0j(
ix) = q0j(s)=

ix0(s): (5)

In the present algorithm implementation, derivatives on the right side of this equa-
tion are computed numerically by taking finite differences between qj(s) and
qj(s+ �) for some small �; this ensures that all numbers remain finite even at sin-
gularities. Because ix is the coordinate with the largest variation over the interval,
we can expect q0j(

ix) to be modestly sized for sufficiently small intervals.
As an example, refer to Figure 3 and consider a motion along the x-axis defined

by x(s) = s. With respect to coordinates s and q1 only, we would expect q1 to
be the driving coordinate in right and left neighborhoods of s = �2 and s = 2,
respectively, and also at s = 0 if q1(s) switches branches along the self-motion.
The driving coordinate elsewhere would be s.

Coordinate pivoting is a central feature of our algorithm. It is analogous to piv-
oting in matrix computations, where one chooses to divide a matrix row or column
by the element with largest magnitude.

The following notation will be useful in the sequel. The values of ix at the in-
terval end points i and i+ 1 will be represented as

ixi � ix(si) and ixi+1 � ix(si+1):

11

Likewise, the driving coordinate velocity will be denoted by i _x, with values at the
interval endpoints given by i _xi and i _xi+1. The change in ix across the interval will
be represented as i�x � ixi+1 � ixi. The value of the derivative q0(ix) at knots i
and i+ 1 will be represented as

iq0i � q0(ixi) and iq0i+1 � q0(ixi+1);

with individual elements specified by iq0i;j and iq0i+1;j . The change in q0j(
ix) across

the interval will be given by

i�q0j � iq0i+1;j � iq0i;j: (6)

We will also utilize the average values of q0(ix) and q00(ix) over interval i, respec-
tively defined by

iq
0 � qi+1 � qi

i�x
and iq

00 �
iq0i+1 � iq0i

i�x
; (7)

with individual elements specified by iq0j and iq00j .

4.1 Controlling path timing with drive coordinates

Path timing within interval i is controlled by specifying i _x(t), with other veloc-
ities _qj then determined by _qj = q0j(

ix) i _x. The timing produced by the algorithm
employs a constant value for i�x over the interval, implying that i _x(t) is linear.

Because s(ix) is strictly monotone (Section 5.4), i _x does not change sign within
the interval, and so i _x can also be specified as a function of ix. If we do this, then
the constancy of i�x implies that i _x2(ix) is also linear, since

d(i _x2(ix))

d ix
=

d(i _x2(t))

dt

dt

d ix
= 2 i�x

d ix

dt

dt

d ix
= 2 i�x: (8)

Moreover, with respect to the endpoint velocities i _xi and i _xi+1, we have

i�x =
i _x2i+1 � i _x2i

2 i�x
: (9)

If there exist n contiguous intervals with the same drive coordinate x, then the tim-
ing over these intervals can be specified by a function _x2(x) which is linear within
each interval and piecewise-linear over the whole interval set.

12

4.2 Maintaining velocity continuity

To preserve velocity continuity, the drive coordinate velocities i�1 _x and i _x for
intervals i� 1 and i must match appropriately at knot i. Within intervals i� 1 and
i, _q is determined by

_q = q0(i�1x) i�1 _x and _q = q0(ix) i _x;

respectively. Continuity of velocities at knot i therefore requires that

i�1q0i
i�1 _xi =

iq0i
i _xi: (10)

Now, if q0(ix) is continuous at knot i (which it will be unless i is a corner; Section
5.6), and if we define Ci � i�1x0(ix), then by the chain rule

i�1q0iCi =
iq0i: (11)

From equation (10) it then follows that _q will be continuous at knot i if and only
if i�1 _xi and i _xi satisfy

i�1 _xi =
i _xi Ci: (12)

5 Knot Creation
The algorithm begins by inserting a nominal number of equally spaced knots

along the path. Additional knots are then added by recursive bisection until each
of the following conditions are satisfied for each interval:

(a) The path error is within prescribed bounds;

(b) Joint differences i�qj are within prescribed bounds;

(c) Joint derivative differences i�q0j are within prescribed bounds;

(d) The (interpolated) function s(ix) is strictly monotone within the interval.

The next four sections detail each of these conditions and explain their rele-
vance to algorithm performance.

13

5.1 Bounding the path error

Condition (a) ensures that in interpolating q(ix) across the interval, we do not
deviate from X(s) by more than some prescribed tolerance. This is a standard
problem in path generation, and is handled using the same sort of test described
in (Taylor, 1979): Let K(q) be the manipulator forward kinematic function (re-
turning a 4� 4 homogeneous end-effector transform) and let

xh �
ixi + ixi+1

2

be the mid-interval value for ix, with corresponding coordinate and path parameter
values given by q(xh) and s(xh). Then the spatial displacement betweenK(q(xh))
and X(s(xh)) is used to estimate the interpolation error. If this displacement is
described by a 4 � 4 homogeneous transform, according to

Rh ph
0 1

!
� K(q(xh))

�1 X(s(xh));

and the tolerances for translational and rotational errors are �p and �r, then Condi-
tion (a) is met when

kphk � �p and k logRhk � �r (13)

(using the notation of (Murray et al., 1994), where logRh is a 3-vector representing
the direction and magnitude of the rotation implied by Rh).

5.2 Bounding coordinate differences

Condition (b) helps ensure that the algorithm’s path timing closely respects
each coordinate’s individual velocity constraint j _qjj � Vj . It also helps ensure
that the path solution will be close to minimum-time.

We first consider the former criterion. By properly assigning path coordinate
velocities i _x, the algorithm ensures that j _qjj � Vj is satisfied exactly at each knot
point (Section 6). But what about within the interval between knot points? If �qj
happened to be constant over the interval, then _qj(t) would be linear, would there-
fore never exceed its endpoint values, and j _qjj � Vj would be satisfied over the
whole interval. This means we might expect the velocity constraints to be closely
adhered to if �qj is nearly constant over the interval. It turns out that near-constancy
of �qj is implied by Condition (c). More precisely, we show in Appendix A that for
intervals where qj(ix) is strictly monotone (which will be true for most intervals

14

when the knots are sufficiently close together), the bounds associated with con-
ditions (b) and (c) imply that j _qjj � 5=4Vj , and so velocity limits are guaranteed
within 25% over the whole interval. In practice, the behavior is much better, since
the treatment in Appendix A relies on conservative assumptions.

Now consider the second criterion (that the resulting path timing be close to
minimum time). Because �qj is approximately constant across any interval (by Con-
dition (c), described below), then if ji�qjj is too large, it may be necessary to keep
j�qjj well below its maximum value Aj in order to honor the velocity constraint
j _qjj � Vj . This effect can be prevented by reducing the size of i�qj: for situations
where qj(ix) is monotone within interval i, it can be shown (Appendix B) that if
� _qj equals the change in velocity across the interval, then the corresponding av-
erage acceleration �qj satisfies

j�qjj �
1

2

j� _qjj2
ji�qjj ; (14)

where �qj is defined in terms of the _qj endpoint values (_qi;j and _qi+1;j) and the in-
terval transit time i�t:

�qj =
_qi+1;j � _qi;j

i�t
: (15)

Now if �qj is approximately constant over the interval, it will be close to �qj . Con-
sequently, for any velocity change where j� _qjj � Vj=2, we can expect j�qjj will be
able to reach Aj if

ji�qjj �
V 2
j

8Aj

: (16)

This is the check used for Condition (b).

5.3 Bounding derivative differences

Condition (c) limits the local curvature of each qj(ix), which helps ensure that
the algorithm’s path timing closely adheres to each coordinate’s individual accel-
eration constraint j�qjj � Aj . It also helps justify the algorithm’s assumption that a
constant drive coordinate acceleration i�x across an interval will produce a roughly
constant value for �qj .

If �qj(t) were constant within the interval, then it would equal the average ac-
celeration �qj defined by equation (15). Otherwise, let

Eaj � max
t
j�qj � �qj(t)j (17)

15

characterize the maximum deviation, within the interval, of �qj from its “ideal”
value �qj . Then by assuming that qj(ix) is approximately quadratic, it can be shown
(Appendix C) that

Eaj < 2 ji�q0jj ji�xj: (18)

By limiting ji�q0jj according to

ji�q0jj �
Aj

4Ax

; (19)

where Ax is the maximum value for ji�xj, we can ensure that

Eaj � Aj=2; (20)

and so �qj is guaranteed not to deviate from �qj by more than 50% of Aj . In prac-
tice, because inequality (18) relies on conservative assumptions, performance is
generally much better than this.

If qj(ix) contains an inflection point within the interval, then ji�q0jj may not
give a good indication of the local curvature of qj(ix). Because of this, we have
found it better to check the following two inequalities in place of (19):

jiq0i;j � iq0jj �
Aj

8Ax

(21)

and

jiq0i+1;j � iq0j j �
Aj

8Ax

: (22)

Together, both these inequalities imply satisfaction of (19) and are the checks used
for Condition (c).

5.4 Ensuring drive coordinate monotonicity

By requiring s(ix) to be strictly monotone, Condition (d) ensures that we don’t
reverse direction along the path as an artifact of interpolating q(ix) within the in-
terval. It also implies that ix will be monotone with respect to s, justifying our
assumption that within an interval q can be treated as a function of ix.

In cases where ix = s, Condition (d) is trivially true. Otherwise, s(ix) will be a
cubic interpolated function of ix, like every other coordinate. For notational ease,
let is0i � s0(ixi) and is0i+1 � s0(ixi+1), and let

is0 � si+1 � si
i�x

(23)

16

represent the average value of s0(ix) within the interval. It can then be shown (Ap-
pendix D) that s(ix) is strictly monotone if

jis0i � is0j < jis0j and sgn(is0i) = sgn(is0) (24)

and

jis0i+1 � is0j < jis0j and sgn(is0i+1) = sgn(is0): (25)

Satisfaction of both (24) and (25) are the checks used for Condition (d).

5.5 Knot creation summary

Each interval is recursively bisected until all the checks for conditions (a)
through (d) are met. For purposes of the algorithm, it is useful to regroup these
checks into four tests, as described in Table 1. In particular, Tests L and R collect

Test name Associated checks

Test A (13)

Test B (16)

Test L (21), (24)

Test R (22), (25)

Table 1: Tests for knot creation.

the checks involving information local to the left and right of the interval, respec-
tively, which facilitates the handling of corners or discontinuities, as described be-
low.

It is straightforward to show that repeated bisection will eventually ensure sat-
isfaction of all tests, provided thatX(s), q(s), and q0(ix) are continuous. However,
while X(s) is continuous by assumption, discontinuities may sometimes arise in
q(s) or q0(ix), generally at singularities. The handling of these is described in the
next section, while the complete knot creation procedure is summarized in Algo-
rithm 1.

5.6 Discontinuities and corners

Special treatment is required whenever discontinuities arise in q(s) or q0(ix)
(with the latter referred to as corners).

17

Both possibilities are illustrated in Figure 3. For a motion along the x axis de-
fined by x(s) = s and y(s) = 0, q1(s) will contain corners at s = �2 (where the
regular solution branches meet the special “out of workspace” solutions defined
by q1(s) � 0 or q1(s) � �), and a possible discontinuity at s = 0 (depending on
whether or not solution branches are switched using the self-motion).

Corners are detected and handled as follows. Let i�s � si+1�si be the change
in s across an interval. If, during recursive interval bisection, i�s falls below a
threshold �s, then if Test L (Section 5.5) fails, knot i is declared to be a corner, while
if Test R fails, knot i+ 1 is declared to be a corner. If knot i is a corner, it implies
that q(ix) has different left and right derivatives there, and equation (11) no longer
holds. Instead, i�1q0i and iq0i are both recomputed independently, using adjacent
curve information, as shown in Procedure 1. Because q0(ix) is discontinuous at
any corner i, both i _xi and i�1 _xi must be set to 0 there in order to maintain velocity
continuity.

proc makeCorner(i) �
if i > 1 then // if not first knot:

i�1q0i := 2 i�1q
0 � i�1q0i�1 // compute left derivative

fi
if i < K then // if not last knot:

iq0i := 2 iq
0 � iq0i+1 // compute right derivative

fi
C := C [i. // add i to list of corner points

Procedure 1: C denotes the set of corner points and K gives the total number of knots.

Discontinuities in q(s) are detected when i�s falls below �s and Test B is still
not satisfied. When this happens, q is redefined within the interval as a linearly
interpolated function of ix:

q(ix) := qi +

ix� ixi
i�x

!
i�q:

Additional evenly-spaced knots are added to the interval to ensure the satisfaction
of Test B. The exact interpolation procedure for interval i, called linearInterp(i),
is described in detail in Appendix E.

The handling of discontinuities is what permits the algorithm to function prop-
erly at linear self-motion singularities. If a discontinuity is caused by a non-linear

18

proc createKnots() �
Start by creating n equally spaced knots
i := 1;K := n

C = f1;Kg // first and last knots treated as corners
while i < K do

if i�s > �s and (A), (B), (L), or (R) fails then // bisect
Add new knot at s = (si + si+1)=2
K := K + 1; reindex knots > i

else
if (B) fails then // some qj(s) is discontinuous

linearInterp(i)
fi
if (L) fails then // some qj(ix) is discontinuous at i

makeCorner(i)
fi
if (R) fails then // some qj(ix) is discontinuous at i+ 1

makeCorner(i+ 1)
fi
i := i+ 1

fi
od
for i := 1 to K � 1 do

if i 2 C and i+ 1 2 C then
linearInterp(i) // add extra knot between adjacent corners

fi
od.

Algorithm 1: Knot creation procedure. A, B, L, and R refer to the test conditions defined
in Section 5.5, and K is the total number of knots. The first knot 1 and the last knotK are
treated as corners. The final loop uses linearInterp() to insert an additional knot between i
and i+ 1 if they both happen to be corners; otherwise, because i _xi and i _xi+1 will both be
set to zero, and i�x is constant, motion across the interval would not be possible.

19

self-motion solution, then linear interpolation across the discontinuity will result
in a motion that wanders off the path. If such non-linear self-motions are antici-
pated, and path deviations are unacceptable, then the algorithm should be modified
to either abort on discontinuities, or perform an appropriate non-linear interpola-
tion that tracks the self-motion solution.

6 Velocity Assignment
After the path has been subdivided, the algorithm computes appropriate val-

ues for the driving coordinate velocity i _xi at each knot. This is done so as to pro-
duce a near-minimum-time motion that adheres closely to the individual velocity
and acceleration limits for each coordinate (3). The resulting timing satisfies each
j _qjj � Vj exactly at each knot and each j�qjj � Aj for an approximate average of
�qj between knots. As a result, the velocity and acceleration constraints are closely
satisfied over the entire path. As mentioned in Section 3, these constraints apply
to extended coordinates and so also include limits on _s and �s.

Rather than determining i _x directly, it is easier to compute the coordinate en-
ergy ie, defined by ie � 1=2

i _x2. This is because, as discussed below, the accelera-
tion constraints j�qjj � Aj give rise to linear constraints on ie. For a given value of
ie, the corresponding i _x can be recovered using

i _x = sgn(i�x)
p
2 ie; (26)

which follows from the monotonicity of ixwith respect to s (Section 5.4). It should
be noted that ie is a purely mathematical energy, not a physical one.

The coordinate energy values at the left and right endpoints of interval i are
given by

iei � 1=2
i _x2i and iei+1 � 1=2

i _x2i+1:

Of course, since i�1 _xi = i _xiCi (equation (12)), determining iei is equivalent to
determining i�1ei, and it is easy to see that

i�1ei =
ieiC

2

i and iei =
i�1ei=C

2

i : (27)

Now, in computing coordinate energy values, the basic idea is to make each iei
large (corresponding to a rapid motion) while maintaining velocity continuity and
observing the velocity and acceleration constraints.

First, recall from Section 5.6 that if i is a corner point, then maintaining velocity
continuity requires that i _xi = 0 and therefore iei must be set to 0.

20

Second, consider each coordinate’s velocity constraint j _qjj � Vj . To satisfy
this exactly at each knot i requires

iei � Bi; where Bi � 1

2
min
j

Vj
iq0i;j

!2

: (28)

This will also lead to the velocity constraint being closely satisfied within the in-
terval, as discussed in Section 5.1.

Third, for each coordinate’s acceleration constraint j�qjj � Aj , we use an ap-
proximate average of �qj within interval i. To simplify notation, let x � ix, and
observe from equation (9) that

�x =
iei+1 � iei

i�x
: (29)

Now we assume that within the interval, q0j(x) and q00j (x) are both approximately
equal to their average values given by equations (7), so that from the chain rule we
get

�qj � iq0j �x+ iq00j _x2: (30)

Because our timing computations employ a constant value for �x across the interval,
it is easy to show that the corresponding average value of _x2 is given by

i _x2i +
i _x2i+1
2

= iei +
iei+1:

Using this to replace _x2 in (30), and replacing �x with (29), turns the constraint
j�qjj � Aj into

�Aj �

iq00j �

iq0j
i�x

!
iei +

iq00j +

iq0j
i�x

!
iei+1 � Aj:

This means that the pair (iei; iei+1) must lie between two parallel lines in the iei-
iei+1 plane.

The intersection of all such acceleration constraints for each coordinate j, com-
bined with the non-negativity of iei and iei+1 and the constraints iei � Bi and
iei+1 � Bi+1C

2
i+1 implied by (28) and (27), forms a convex polygonal region Ei

in the first quadrant of the iei-iei+1 plane (Figure 5). By choosing the drive co-
ordinate velocities for knots i and i + 1 so that the corresponding values of iei

21

0 2 4 6 8

2

4

6

8

iei

iei+1

Figure 5: Region Ei in the i
ei-iei+1 plane (gray) formed by the intersection of velocity

and acceleration constraints.

and iei+1 lie within this region, we ensure satisfaction of each coordinate’s veloc-
ity constraint j _qjj � Vj exactly at i and i + 1, and each coordinate’s acceleration
constraint j�qjj � Aj for the approximation of �qj given by (30).

Given the constraints imposed by the region Ei, we now consider how to assign
iei and iei+1 so as to generate a near-minimum-time motion. Let ie � (iei; iei+1).
A value of ie that is associated with a minimum-time motion should be associ-
ated with a minimal transit time across the interval. Since the interval transit
time is inversely proportional to i _xi + i _xi+1, it can be minimized by maximizing
F �

q
iei +

q
iei+1. Ideally, then, (iei; iei+1) should be as close as possible to the

point ie� � (ie�i ;
ie�i+1) within Ei that maximizes F . Because F has only one global

minimum at the origin, ie� must lie on the boundary of Ei, and so can be found by
examining the edges of Ei.

At first glance, it might appear that we can simply set each iei to ie�i . Unfor-
tunately, this won’t work, because iei also corresponds to the element i�1ei in the
pair i�1e associated with the previous interval, and so setting iei := ie�i may con-
flict with the requirement i�1e 2 Ei�1. Instead, energies must be assigned using
the following three step procedure:

22

1. Initialization: Each iei is set to the minimum of ie�i and the value correspond-
ing to i�1e�i (note that this may imply ie 62 Ei). Also, iei is set to 0 at every
corner (to prevent velocity discontinuities).

2. Forward Pass: Each knot is examined in increasing order. If ie 62 Ei, and
this can be corrected by lowering the value of iei+1, we do so.

3. Reverse Pass: Each knot is examined again in decreasing order. If ie 62 Ei,
and this can be corrected by lowering the value of iei, we do so.

A schematic illustration of the procedure is shown in Figure 6. In effect, it behaves
like a discrete version of the standard time-optimal path-following algorithms (Bo-
brow et al., 1985; Shin & McKay, 1985; Slotine & Yang, 1989). That it produces
an admissible result is shown by the following theorem:

Theorem 1. Every coordinate energy pair ie produced by the above three-step
procedure satisfies ie 2 Ei.
This is proven in Appendix F. A continuous-case version of the same procedure,
which is less practical to implement but handles all constraints exactly and is prov-
ably minimum-time, is described in (Lloyd, 1995).

The complete velocity assignment procedure is summarized by Algorithm 2.
In the actual implementation, we need to consider that intervals i and i + 1 may
have different driving coordinates, meaning that i+1ei+1 must be converted to iei+1,
and vice versa, using iei+1 = i+1ei+1C

2
i+1 (from equation (27)).

7 Discussion
7.1 Complexity

For this analysis, since q(s) is considered an algorithm input, we start by ignor-
ing inverse kinematic costs and assume that q(s) can be determined at any s with
a complexity proportional to the number of joints M . It can then be shown that
each of the tests used in createKnots() has a complexity proportional to M . Since
the knots themselves are created by recursive bisection subject to these tests, the
overall complexity of createKnots() is therefore O(KM), where K is the number
of knots.

For the procedure assignVelocities(), this begins by creating a region Ei at each
knot. Each Ei has O(M) edges, corresponding to M +1 velocity and acceleration
constraints, and so can be constructed in O(M logM) time (Preparata & Shamos,
1985). The initialization of each iei then requires computing ie�, which can be done

23

0

0

0

(A)

(B)

(C)

x

e

x

e

x

e

xi xi+1

Figure 6: Energy assignment over a set of intervals with an identical driving coordinate
x � i

x. (A) Initial energy assignments are made, resulting in a piecewise-linear energy
function e(x). (B) Moving from left to right, the forward pass (solid line) reduces i

ei+1

whenever this will correct ie 62 Ei. The effect is to “clip” the slope of e(x) in places where
e
0(x) is “too positive”. (C) Moving from right to left, the reverse pass (solid line) reduces

i
ei whenever this will correct ie 62 Ei. This “clips” the slope of e(x) in places where e0(x)
is “too negative”.

24

proc assignVelocities(K) �
for i := 1 to K do // INITIALIZATION

if i 62 C then // knot is not a corner:
iei := min(i�1e�i=C

2
i ;

ie�i) // regular initialization
else

iei := 0 // zero velocity at corner
fi

od
for i := 1 to K � 1 // FORWARD PASS

y := maxf� : (iei; �) 2 Eig
if y < iei+1 // can ensure i

e 2 Ei : : :
iei+1 := y // : : : by lowering i

ei+1

fi
od
for i := K � 1 to 1 do // REVERSE PASS

y := maxf� : (�; iei+1) 2 Eig
if y < iei // can ensure i

e 2 Ei : : :
iei := y // : : : by lowering i

ei

fi
od.

Algorithm 2: Complete velocity assignment procedure, using coordinate energies. K is
the number of knots, and C is the set of corner points. Knots 1 andK are treated as corners.
As there is no intervalK, we simply define K

eK � K�1
eK andCK � 1. Note that iei+1 is

actually stored as i+1
ei+1, so to obtain i

ei+1, we need to compute i+1
ei+1C

2
i+1, and when

assigning y to i
ei+1, we need to set i+1ei+1 := y=C

2
i+1.

25

by inspecting each edge of Ei and so takesO(M) time. Lastly, the computation of y
in the forward and reverse passes of assignVelocities() is equivalent to intersecting
Ei with a line segment and so also takes O(M) time, implying that assignVeloci-
ties() has an overall complexity of O(KM logM).

The total algorithm complexity is thus O(KM logM). If we also consider in-
verse kinematic costs, and these have a complexity C(M) which is greater than
M logM , then the total algorithm complexity becomes O(KC(M)).

7.2 Integration

The actual path timing is produced by integrating the coordinate energy profile
produced by the algorithm. Because a constant drive coordinate acceleration is
employed within each interval, the energy profile is piecewise-linear, and so this
integration is quite easy to perform. Suppose we begin within interval i, at some
initial value ixb of the driving coordinate ix, and we wish to determine where along
the path we will be after some additional time T . The acceleration i�x is given by
equation (29), and so the initial energy ieb at ixb is given by

ieb =
iei+1 � i�x (ixi+1 � ixb):

By using equation (26) to recover velocities, we can compute the time �t remain-
ing before reaching the end of the interval (at knot i+ 1):

�t =
2 jixi+1 � ixbjq
2 iei+1 +

p
2 ieb

:

If �t � T , then the final position is still within interval i, with a value of ix given
by

ix = ixb +
i _xbT + 1=2

i�xT 2:

Otherwise, if �t > T , we set T := T � �t and ixb := i+1xi+1 and repeat the
calculation on interval i+ 1.

7.3 Determining kinematic solutions

For input, the algorithm requires an inverse kinematic solutionq(s) for the path
X(s). This is particularly easy to produce when the manipulator is non-redundant
and has a closed-form kinematic solution. Moreover, such closed-form solutions
can sometimes be extended to provide artificial “best-possible” solutions when the
path leaves the manipulator workspace (as in the example of Figure 7).

If a closed-form solution is not available, q(s) can still be determined by iter-
atively solving equation (1). While this requires special treatment at singularities,

26

the problem is much easier than computing an admissible trajectory, because there
is no need to be concerned about acceleration limits. Instead, it suffices to simply
adjust the step size along the path so as to keep the resulting incremental changes
in q sufficiently small, as per the methods described in (Chiacchio & Chiaverini,
1995). It would be reasonable to combine such an iterative solution procedure with
the knot selection process described in Section 5, though we have not yet done this.

8 Experiments
The algorithm has been implemented and tested using a wide range of experi-

ments involving PUMA and planar 2R manipulators. Three experiments with the
PUMA are shown here.

Each example involves a spatial path that encounters a singularity at one or
more points. “Stick figure” animation is used to illustrate the corresponding robot
motion. The path parameter s is equal to the translational distance along each path,
and nominal motions are undertaken with a maximum translational velocity and
acceleration of Vs = 400 mm/s and As = 2500 mm/s2. Two sets of velocity pro-
files _qj(t) are plotted for each example, the first being “raw” velocities showing the
effects of the singularities when the path is followed at constant speed, and the sec-
ond “controlled” velocities showing the results of the path timing produced by our
algorithm. To help judge the algorithm’s performance, these plots are augmented
with a horizontal dotted line indicating Vj for each coordinate, along with a diago-
nal dotted line indicating the maximum slope corresponding to Aj. The controlled
velocity plots also show _s(t) (which equals the translational velocity) to show how
the path speed is reduced near singularities.

For all examples it should be noted that the controlled velocity profiles will be
“stretched out” relative to the raw profiles, because the path timing produced by the
algorithm slows the manipulator down. This means that features in the controlled
profiles will generally be delayed relative to their counterparts in the raw profiles.
To help the reader match appropriate features, those portions of each profile which
are associated with a singularity are shaded gray.

In the first example (Figure 7), the PUMA follows a parabolic path which
leaves and then re-enters the workspace. Where the nominal path lies outside the
workspace, the manipulator tracks it as closely as possible by following its projec-
tion onto the workspace boundary (our ability to compute this projection relies on
the special geometry of the PUMA and may not be feasible for other manipulators).
Tracking the path at constant speed results in large spikes in _q2(t) and _q3(t) around
the “elbow” singularities encountered at the workspace boundary. Application of

27

the algorithm, with Vj = 100�=s andAj = 350�=s2 for each robot joint, results in a
timing where these spikes are replaced with properly conditioned velocity profiles.

The second example (Figure 8) illustrates a situation, described in Section 3.1,
where joint velocities do not have to be brought to rest at the singularity, even
though motion along the path must stop. The PUMA is driven along a straight-
line path into the outer workspace boundary with the elbow “up”, and then pulled
back along the same path with the elbow “down”. If done at constant speed this re-
sults in very large spikes in _q2(t) and _q3(t). These are replaced with well-behaved
velocity profiles by applying the algorithm with Vj = 150�=s and Aj = 500�=s2

for each robot joint. Because _q2 and _q3 do not change sign, they do not have to be
brought to rest.

In the third example (Figure 9) the PUMA is driven along a parabolic trajec-
tory that brings it close to its “ready” position. This involves a triple singularity,
encompassing the “elbow”, “shoulder”, and “wrist” singularities, as evidenced by
a discontinuity in _q1(t), a large spike in _q3(t), and even larger spikes in _q4(t) (other
joints are also affected but not shown). The spikes in _q4 correspond to a pair of
discontinuities in q4(s) produced by the self-motion singularity of the wrist. Ap-
plication of the algorithm, with Vj = 180�=s and Aj = 500�=s2 for each robot
joint, resolves all the velocity profiles satisfactorily.

Knots Maximum Error Compute time (ms)

Figure (K) mm degrees createKnots assignVelocities total

7 131 1:3� 10�4 6� 10�19 19.8 9.2 29.0

8 68 2:3� 10�5 5� 10�18 8.9 4.9 13.8

9 80 7:8� 10�3 3� 10�9 24.6 12.8 37.4

Table 2: Computation statistics for the examples shown.

All examples used the path error tolerances �p = 0:01 mm and �r = 0:1�, and
the knot-velocity profiles were integrated using a sample time of 50 ms. The num-
ber of knot points, maximum translational and rotational path errors, and required
computation times are shown in Table 2. The path errors describe the maximum
deviation of the realized path from the desired path X(s) (or its projection onto
the workspace boundary, in the first example). Computations were done on a 350
MHz Pentium II workstation. All code is written in C++ and speed improvements
are still possible.

28

actual path
 followed

_q2

_q3

t

V2

V3

A2

A3

Vs

_q2

_q3

_s

t

As

V2

V3

A2

A3

Figure 7: Parabolic path, in a horizontal plane centered at the shoulder, which leaves and
then re-enters the workspace. Actual path follows the workspace boundary when neces-
sary. Upper plots show _q2(t) and _q3(t) when this motion is done at constant speed, while
lower plots show the (stretched out) velocities produced by algorithm time scaling. Gray
shading shows those parts of each profile which corresponds to a singularity. Horizontal
dotted lines show the velocity limits V j and the diagonal dotted lines show the maximum
slopes corresponding to Aj . The plot of _s illustrates the slowing-down near the singulari-
ties.

29

_q2

_q3

t

V3

V2

A2

A3

Vs

V3

V2

_q2

_q3

_s

A2

A3

As

t

Figure 8: Motion out to and back from the PUMA workspace boundary. Upper plots show
_q2(t) and _q3(t) when this motion is done at constant speed. Lower plots show results after
algorithm time scaling has been applied. By changing configurations at the singularity, it
is possible to maintain a finite joint speed while transiting the singularity, even though the
speed along the path (indicated here by _s) is brought to 0.

30

t

_q1

_q3

_q4

A1

A3

A4

V1

V3

V4

_q1

_q3

_q4

t

_s

A1

A3

A4

As

V1

V3

V4

Vs

Figure 9: A parabolic motion taking the PUMA to the triple singularity near the “ready”
position. Upper plots show _q1(t), _q3(t), and _q4(t) when this motion is done at constant
speed. The extremely large spikes in _q4 are due to the self-motion at the wrist singularity.
Lower plots show results after algorithm time scaling has been applied.

31

These results, typical of other tests, indicate that the algorithm does in fact pro-
duce a timing which closely follows the constraints j _qjj � Vj and j�qjj � Aj , while
also being near to minimum time. The latter statement can be verified by noting
that in the resulting velocity profiles, one or more coordinates is always close to
saturation with respect to either its velocity or acceleration constraint.

9 Conclusion
A singularity-robust trajectory generation algorithm has been presented which

takes as input a specific path X(s) and a corresponding kinematic solution q(s),
and produces a path timing (trajectory) which is close to minimum-time, subject to
explicit individual constraints on velocity and acceleration for each joint. All types
of singularities are handled except for those involving non-linear self-motion. The
algorithm is computationally efficient, and has been verified through both analysis
and experiment. Because no particular assumptions are made about how q(s) is
produced, it should be applicable to a wide range of manipulator and mechanism
types.

We have introduced the idea of coordinate pivoting, in which the fastest chang-
ing coordinate x is used locally to control the path timing. All other coordinates
then have well-behaved derivatives with respect to x, which facilitates computa-
tion and analysis.

The algorithm works by inserting knots along the path, using recursive bisec-
tion, until the intervals between successive knots meet certain required conditions,
generally resulting in higher knot densities near singularities. Appropriate drive
coordinate velocities i _xi are then determined for each knot, by computing the corre-
sponding coordinate energies iei. This is done using a three-step procedure, which
tries to maximize the travel time associated with adjacent knot energies iei and
iei+1, while making sure that they remain within a convex polygonal region Ei so
as to respect velocity and acceleration constraints. The resulting knot-velocity se-
quence can then be integrated to yield the path timing.

From a practical viewpoint, we believe that the problem of singularity-robust
trajectory generation along fixed paths is now close to being solved. Further study
of computational issues, including accuracies and tolerances, would be useful,
and the algorithm should be extended to handle non-linear self-motions. Also, at
present the computation of q(s) is not an integral part of the algorithm; it would
be reasonable to change this so as to integrate Jacobian-based computation of q(s)
with the knot selection process. Similarly, the algorithm currently produces a near
minimum-time trajectory for a fixed input q(s); no attempt is made to improve

32

the timing by modifying q(s), such as by changing branch selections at singular-
ities, although such a feature could certainly be added. Modifications to produce
smoother trajectories (for which the accelerations are continuous) may also be de-
sirable.

Our trajectory generator makes arbitrary spatial paths containing singularities
as realizable as trapezoidal-velocity trajectories for joint-interpolated motion. By
providing a more general definition of Ei, it should also be possible to take into
account the manipulator’s dynamics, thereby applying this algorithm to the general
time-optimal path-following problem.

Acknowledgement

This work was supported by the Institute for Robotics and Intelligent Systems (IRIS) of
Canada’s Centers of Excellence Program (NCE), and by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). We wish to thank the reviewer of an earlier
paper who made several helpful suggestions and pointed out that non-linear self-motions
require special treatment.

References
Aboaf, Eric W., & Paul, Richard P. 1987 (Mar. 31 –Apr. 3). Living with the Singularity of

Robot Wrists. Pages 1713–1717 of: Proceedings of the IEEE International Confer-
ence on Robotics and Automation.

Bobrow, J.E., Dubowsky, S., & Gibson, J.S. 1985. Time-optimal Control of Robotic Ma-
nipulators Along Specified Paths. International Journal of Robotics Research, 4(3),
3–17.

Chang, K. S., & Khatib, O. 1995 (Aug.). Manipulator Control at Kinematic Singularities:
A Dynamically Consistent Strategy. Pages 84–88 of: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Chevallereau, C. 1996 (Apr.). Feasible Trajectories for a Non-Redundant Robot at a Sin-
gularity. Pages 1871–1876 of: Proceedings of the IEEE International Conference
on Robotics and Automation.

Chevallereau, C., & Daya, B. 1994 (May 8-13). A New Method for Robot Control in
Singular Configurations with Motion in any Cartesian Direction. Pages 2692–2697
of: Proceedings of the IEEE International Conference on Robotics and Automation,
vol. 4.

Chiacchio, Pasquale, & Chiaverini, Stefano. 1995. Coping with Joint Velocity Limits in
First-Order Inverse Kinematics Algorithms: Analysis and Real-Time Implementa-
tion. Robotica, 13(5), 515–519.

Chiacchio, Pasquale, Chiaverini, Stefano, Sciavicco, Lorenzo, & Siciliano, Bruno. 1991.
Closed-Loop Inverse Kinematics Schemes for Constrained Redundant Manipulators
with Task Space Augmentation and Task Priority Strategy. International Journal of
Robotics Research, 10(4), 410–425.

33

Chiaverini, Stefano, Siciliano, Bruno, & Egeland, Olav. 1994. Review of the damped
least-squares inverse kinematics with experiments on an industrial robot manipula-
tor. IEEE Transactions on Control Systems Technology, 2(2), 123–134.

Deo, A. S., & Walker, I. D. 1993 (May 2-6). Adaptive Non-linear Least Squares for Inverse
Kinematics. Pages 186–193 of: Proceedings of the IEEE International Conference
on Robotics and Automation, vol. 1.

Kieffer, Jon. 1994. Differential Analysis of Bifurcations and Isolated Singularities for
Robots and Mechanisms. IEEE Transactions on Robotics and Automation, RA-
10(1), 1–10.

Kircanski, Manja V. 1993 (May 2-6). Inverse Kinematics Problem Near Singularities for
Simple Manipulators: Symbolical Damped Least-Squares Solution. Pages 974–979
of: Proceedings of the IEEE International Conference on Robotics and Automation,
vol. 1.

Lloyd, John E. 1995 (Jan.). Robot Trajectory Generation for Paths with Kinematic Sin-
gularities. Ph.D. thesis, Department of Electrical Engineering, McGill University,
3480 University Street, Montreal, Canada, H3A 2A7.

Lloyd, John E. 1996 (Apr.). Using Puiseux Series to Control Non-redundant Robots at Sin-
gularities. Pages 1877–1882 of: Proceedings of the IEEE International Conference
on Robotics and Automation.

Lloyd, John E. 1998. Desingularizationof Non-Redundant Serial Manipulator Trajectories
Using Puiseux Series. IEEE Transactions on Robotics and Automation, 14(4), 590–
600.

Lloyd, John E., & Hayward, Vincent. 1996 (Apr.). A Discrete Algorithm for Fixed-path
Trajectory Generation at Kinematic Singularities. Pages 2743–2748 of: Proceedings
of the IEEE International Conference on Robotics and Automation.

Lloyd, John E., & Hayward, Vincent. 1998 (May). Removing the Singularities of Se-
rial Manipulators by Transforming the Workspace. In: International Conference on
Robotics and Automation.

Maciejewski, Anthony A., & Klein, Charles A. 1989. The Singular Value Decomposi-
tion: Computation and Applications to Robotics. International Journal of Robotics
Research, 8(6), 63–79.

Murray, R. W., Li, Z., & Shastry, S. 1994. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, Boca Raton.

Nakamura, Yoshihiko, & Hanafusa, Hideo. 1986. Inverse Kinematic Solutions with Singu-
larity Robustness for Robot Manipulator Control. Transactionsof the ASME: Journal
of Dynamic Systems, Measurement, and Control, 108(3), 163–171.

Nenchev, D. N., Tsumaki, Y., Uchiyama, M., Senft, V., & Hirzinger, G. 1996 (Apr.).
Two Approaches to Singularity-Consistent Motion of Nonredundant Robotic Mech-
anisms. Pages 1883–1890 of: Proceedings of the IEEE International Conference on
Robotics and Automation.

34

Nielsen, Lars, de Wit, Carlos Canudas, & Hagander, Per. 1990 (Sept. 10-12). Controlla-
bility Issues of Robots near Singular Configurations. Pages 283–290 of: Advances
in Robot Kinematics, 2nd International Workshop.

O’Neil, K. A., Cheng, Y. C., & Seng, J. 1997. Removing Singularities of Resolved Motion
Rate Control of Mechanisms, Including Self-Motion. IEEE Transactionson Robotics
and Automation, 13(5), 741–751.

Pohl, Eric D., & Lipkin, Harvey. 1991 (June 19-22). A new method of robotic motion
control near singularities. Pages 405–410 of: Fifth International Conference on Ad-
vanced Robotics (91 ICAR).

Preparata, Franco P., & Shamos, Michael I. 1985. Computational Geometry. An Introduc-
tion. Springer-Verlag, New York.

Senft, V., & Hirzinger, G. 1995 (May). Redundant Motions of Non-Redundant Robots - A
New Approach to Singularity Treatment. Pages 1553–1558 of: Proceedings of the
IEEE International Conference on Robotics and Automation.

Shin, Kang G., & McKay, Neil D. 1985. Minimum-Time Control of Robotic Manipulators
with Geometric Path Constraints. IEEE Transactions on Automatic Control, AC-
30(6), 531–541.

Slotine, Jean-Jacques, & Yang, Hyan S. 1989. Improving the Efficiency of Time-Optimal
Path-Following Algorithms. IEEE Transactions on Robotics and Automation, RA-
5(1), 118–124.

Taylor, Russell H. 1979. Planning and Execution of Straight Line Manipulator Trajecto-
ries. IBM Journal of Research and Development, 23, 424–436.

Tumeh, Zuheir S., & Alford, Cecil O. 1988 (Apr. 24-29). Solving for Manipulator Joint
Rates in Singular Positions. Pages 987–992 of: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation.

Wampler II, C. W., & Leifer, L. J. 1988. Applications of damped least-squares methods to
resolved-rate and resolved-acceleration control of manipulators. Transactions of the
ASME: Journal of Dynamic Systems, Measurement, and Control, 110(31), 31–38.

Wolovich, W. A., & Elliott, H. 1984 (Dec.). A Computational Technique for Inverse Kine-
matics. Pages 1359–1363 of: Proceedings of the 23rd IEEE Conference on Decision
and Control.

35

A Adherence to Velocity Limits
We restrict our analysis to intervals where qj(ix) is strictly monotone. Now

consider _qj(t) as the interval is traversed. Let _qcj(t) be the “ideal” trajectory that
would result if �qj were constant during the traversal. It turns out that knot creation
conditions (b) and (c) imply the difference between _qj(t) and _qcj(t) is bounded:

Lemma 1. Over an interval on which qj(ix) is strictly monotone,

j _qj(t)� _qcj(t)j �
q
Eajji�qjj;

where Eaj is defined by equation (17).

Proof: For notational simplicity, we will suppress the subscript j and let q � qj .
Without loss, it will be assumed that i = 0, with q0 and q1 denoting the values of
q at the left and right interval endpoints, and �q � q1� q0 denoting the change in
q across the interval. The strict monotonicity of q(ix) implies that �q is non-zero
and that its sign matches that of _q(t) throughout the interval. Without loss, assume
that�q > 0, so that _q � 0.

The monotonicity of q(ix) also implies that _q(t) can be parameterized by q in-
stead of by t. Furthermore, by the same derivation as in equation (8), we note that
the derivative of _q2(q) is 2�q. For _qc(q), �q is constant and therefore equal to the
average acceleration �q (equation 15), and so

_q2c (q) = _q2
0
+ 2(q � q0)�q ; (31)

where _q0 � _q(q0). Now, for _q2(q) corresponding to any other trajectory, let D be
the maximum magnitude of the derivative of _q2(q)� _q2c (q). By equation (31) and
the definition of Ea (equation (17)), it is clear that D = max q j2�q � 2�q j = 2Ea.
Then from the mean value theorem and the fact that _q2(q) = _q2c (q) at q0 and q1, it
follows that

j _q2c (q)� _q2(q)j � 2Ea(q � q0)

and

j _q2c (q)� _q2(q)j � 2Ea(q1 � q):

Noting that�q = q1 � q0, we obtain

j _q2c (q)� _q2(q)j ��qEa: (32)

36

Now, because _qc � 0 and _q � 0, j _qc � _qj � j _qc + _qj, which implies

j _qc(q)� _q(q)j2 � j _qc(q)� _q(q)jj _qc(q) + _q(q)j = j _q2c (q)� _q2(q)j
and therefore

j _qc(q)� _q(q)j �
q
�qEa:

Combining this with inequalities (16) and (20) associated with knot creation
conditions (b) and (c), and noting the result is independent of whether _q is param-
eterized by q or by t, yields

j _qc(t)� _q(t)j � Vj=4:

Then since j _qc(t)j � Vj (because _qc(t) is linear on the interval and _qj � Vj is
satisfied at the interval end points), it follows that

j _q(t)j � 5=4Vj :

B Proof of Inequality (14)
Let the values of _qj at the left and right interval endpoints be denoted by _q0j

and _q1j. From basic kinematics, the average acceleration �qj over the interval then
satisfies

�qj =
_q2
1j � _q2

0j

2 i�qj
: (33)

Because qj(ix) is assumed to be monotone, and ix is itself monotone with respect
to s and hence t, _qj must have the same sign as i�qj throughout the interval. In
particular, _q0j and _q1j must both have the same sign, and so

j _q1j + _q0jj � j _q1j � _q0jj:
Since the change in velocity across the interval is given by � _qj = _q1j � _q0j , we
then have

j _q21j � _q20jj = j�_qjjj _q1j + _q0jj � j�_qjj2:

Substituting this into j�qjj as given by equation (33) leads directly to inequality (14).

37

C Proof of Inequality (18)
Let x � ix be the driving coordinate for interval i. For notational simplicity,

assume without loss that i = 0, so that xi = x0 and xi+1 = x1. Also, let �x �
x1 � x0, and assume that x0 = 0, so that �x = x1. Let the value of q0j(x) at the
interval endpoints be denoted by q0

0j � q0j(x0) and q0
1j � q0j(x1). Finally, assume

that the interval transit begins at time t = 0.
Our analysis will rely on the approximation that qj(x) is quadratic over the in-

terval, implying that q00j (x) is constant and so can be denoted simply by q00j . Since
x0 = 0, qj(x) is then given by

qj(x) = qj(0) + q0
0jx+ 1=2 q

00

j x
2: (34)

Because our timing computations employ a constant value of �xwithin the interval,
we have

x(t) = _x0t+ 1=2 �xt
2: (35)

If qj happens to exhibit a constant acceleration �qj across the interval, then this will
be equal to the average acceleration �qj as defined by equation (15). In general,
however, �qj(t) is not constant, and we represent the difference between �qj and �qj(t)
by

�qEj(t) � �qj � �qj(t): (36)

Expanding �qj(t), using the chain rule in conjunction with equations (34) and (35),
gives

�qj(t) = q0j(x)�x+ q00j _x
2

= [q00j + q00j (_x0t+ 1=2 �xt
2)]�x+ q00j (_x0 + �xt)2: (37)

Because qj(x) is assumed quadratic, q00j = (q01j � q00j)=�x. Also, applying the
chain rule to (15) and letting �t � i�t gives

�qj =
q01j _x1 � q00j _x0

�t
:

Also, because �x is constant, we have

�x =
_x21 � _x20
2�x

and �t =
2�x

_x0 + _x1
:

38

Combining these with (36) and (37) yields

�qEj(t) =
(q0

1j � q0
0j)(_x1 � _x0)F (t)

8�x3

where

F (t) � 3(_x0 � _x1)(_x0 + _x1)
2t2 � 12�x _x0(_x0 + _x1)t+ 4�x2(2 _x0 + _x1):

(38)

Hence �qEj(t) is a quadratic function of t. Examination shows that this function
has a single extremal point at t = tc = � _x0=�x. Now since _x(t) = x0 + �xt, we
see that _x(tc) = 0. But since �x is constant and _x is of uniform sign within the
interval (Section 5.4), _x cannot be 0 inside the interval, hence tc cannot be inside
the interval, and so the maximum and minimum values of �qEj(t)within the interval
must occur at the endpoints, corresponding to

�qEj(0) =
(q01j � q00j)(_x1 � _x0)(2 _x0 + _x1)

2�x
;

�qEj(�t) = �(q01j � q00j)(_x1 � _x0)(_x0 + 2 _x1)

2�x
: (39)

Now, because _x is of uniform sign, we have that j2 _x0+ _x1j and j _x0+2 _x1j are both
less than 2j _x0 + _x1j. In conjunction with the extremal values given by (39), this
leads to

j�qEj(t)j <
2jq0

1j � q0
0jjj _x21 � _x2

0
j

j2�xj
< 2jq01j � q00jjj�xj = 2ji�q0jjj�xj:

By equation (17), Eaj = max t j�qEj(t)j, and so inequality (18) follows directly.

D Proof of Monotonicity Tests
We show here that relations (24) and (25) together imply that the cubic Hermite

interpolation s(ix) across interval i is strictly monotone.
First, note that the bisection process implies that i�s is never 0, and there-

fore, by equation (23), sgn(is0) is unambiguously �1. Without loss, assume that
sgn(is0) = 1, so that satisfaction of (24) and (25) implies is0i > 0 and is0i+1 > 0.
For convenience, drop the preceding superscripts i, letting �x � i�x, s0i � is0i,

39

s0i+1 � is0i+1, and s0 � is0, and also let s00i � s00(xi). Because s(x) is determined
by cubic Hermite interpolation, s000(x) is constant and can be represented simply
as s000. Then s0 and s0i+1 are given by

s0 =
si+1 � si

�x
= s0i + 1=2 s

00

i�x+ 1=6 s
000�x2

and

s0i+1 = s0i + s00i�x+ 1=2 s
000�x2:

Solving these two equations for s000 and s00i yields

s000 =
6(s0i + s0i+1 � 2s0)

�x2
(40)

and

s00i = �2(2s0i + s0i+1 � 3s0)

�x
: (41)

Also, from s00i+1 = s00i + s000�x, we obtain

s00i+1 =
2(s0i + 2s0i+1 � 3s0)

�x
: (42)

Now, s(x) must be strictly monotone within interval i if s0(x) does not have a zero
there. Given that

s0(x) = s0i + s00i (x� xi) + 1=2 s
000(x� xi)

2;

s0(x) will have no zeros anywhere if the discriminant of this equation is negative:

s00i
2 � 2s000s0i < 0:

Substituting in equations (40) and (41), and solving for s0, this becomes

s0i + s0i+1 �
q
s0is

0

i+1

3
< s0 <

s0i + s0i+1 +
q
s0is

0

i+1

3
: (43)

Now assume that the rightmost inequality of this expression does not hold, so that

s0 �
s0i + s0i+1 +

q
s0is

0

i+1

3
:

40

By substituting this into equations (41) and (42), we get

s00i � �
2(s0i �

q
s0is

0

i+1)

�x
; s00i+1 �

2(s0i+1 �
q
s0is

0

i+1)

�x
:

Since s0i and s0i+1 are both positive (by assumption), the above inequalities can be
shown to imply that s00i and s00i+1 cannot have opposite signs. But this means that
s0(x) can not have a root within interval i, since s0i and s0i+1 both have the same sign
and s0(x) is quadratic. Therefore, we need only consider the leftmost inequality of
(43). Now, because s0i and s0i+1 are both positive, the inequalities in (24) and (25)
can be expressed as

0 < s0i < 2s0 and 0 < s0i+1 < 2s0:

It can then be shown that these constraints are more than sufficient to satisfy the
leftmost inequality of (43), and so s(x) is strictly monotone within interval i.

E Interpolation Procedure
Procedure 2, given below, linearly interpolates across interval i in the event of

a discontinuity in one or more qj(s).
By construction, ix remains the driving coordinate for each newly introduced

subinterval, with q0(ix) constant and given by the original value of i�q=i�x.
Derivatives at the original interval endpoints i and i+ 1 at normally not changed,
unless these points are corners, in which case the right derivative at i and/or the
left derivative at i+ 1 is also set to i�q=i�x.

F Proof of Theorem 1
The proof rests on the following observation. Since each interval’s admissible

energy region Ei is convex and contains (0; 0), if some pair ie � (iei; iei+1) satisfies
ie 2 Ei, then �ie 2 Ei for all � 2 [0; 1].

Now refer to the procedure. By construction, it is easy to see that energy values
are only lowered, never raised, and that

iei � ie�i and iei+1 � ie�i+1;

where (ie�i ;
ie�i+1) =

ie� 2 Ei. In particular, when ie is examined during the forward
pass, its initial value will be given by (�1 ie�i ; �2

ie�i+1), for �1 2 [0; 1] and �2 2
[0; 1]. If ie 62 Ei, the forward pass tries to correct this by lowering iei+1. First,

41

proc linearInterp(i) �
n := max

j

$
8Ajji�qjj

V 2
j

%
// number of new knots needed

if n = 0 then n := 1 fi // make sure n at least 1
�q := i�q;�x := i�x // save for use below
if i 2 C then // i is a corner:

iq0i := �q=�x // update right derivative at i
fi
if i+ 1 2 C then // i+ 1 is a corner:

iq0i+1 := �q=�x // update left derivative at i+ 1

fi
K := K + n; reindex knots > i

for k := i+ 1 to i+ n do // create and insert new knots
Add new knot k, with qk := qi +

k�i

n+1
�q

kq0k :=
k�1q0k := �q=�x // set derivatives at k

od.

Procedure 2: Linear interpolation across a discontinuity in qj(s). The variable n is the
number of equally-spaced additional knots needed to ensure satisfaction of Test B, as en-
forced by inequality (16). Requiringn � 1 means that at least one new knot will always be
added, guaranteeing that motion will still be possible if both original endpoints are corners.
K denotes the total number of knots.

suppose that after the forward pass, ie 2 Ei, and let the resulting value of ie be
denoted by i~e � (i~ei; i~ei+1). When interval i is examined again during the reverse
pass, iei+1 may be even lower, so that ie will be given by (i~ei; �3 i~ei+1) for �3 2
[0; 1]. Then since i~e 2 Ei, we know that (�3 i~ei; �3 i~ei+1) 2 Ei, and so there exists
at least one value to which the reverse pass can lower iei (if necessary) in order to
ensure that ie 2 Ei.

On the other hand, suppose that after the forward pass ie 62 Ei. ie will then be
unchanged and still equal to (�1 ie

�

i ; �2
ie�i+1). Moreover, �1 > �2 (since otherwise

the forward pass could have ensured ie 2 Ei by lowering iei+1 to �1 ie�i+1). When
interval i is examined by the reverse pass, iei+1 may be still lower, so that ie will
be given by (�1 ie�i ; �3

ie�i+1) for �3 2 [0; �2]. Then since ie� 2 Ei, we know that
(�3

ie�i ; �3
ie�i+1) 2 Ei, and so there again exists at least one value to which the

reverse pass can lower iei (if necessary) in order to ensure that ie 2 Ei.

42

G Notation
M Number of manipulator joints.
J Manipulator Jacobian.
q Joint coordinates, plus s as coordinate M + 1.

_q, �q Velocities and accelerations of q.
qj , _qj , �qj Individual elements of q, _q, and �q.

X(s) Desired spatial path.
q(s) Joint solution for the desired path.

s Path parameter.
si Path parameter knot point.

Vj , Aj Coordinate-specific bounds for j _qjj and j�qjj.
Vs, As Bounds for j _sj and j�sj.

i�q, i�qj Change in q and qj across interval i.
ix Driving coordinate for interval i.

i _x, i�x Velocity and acceleration of ix.
ixi, ixi+1 Value of ix at interval endpoints i and i+ 1.
i _xi, i _xi+1 Value of i _x at interval endpoints i and i+ 1.

qi Value of q at knot i.
iq0i,

iq0i+1 Value of q0(ix) at interval endpoints i and i+ 1.
iq0i;j ,

iq0i+1;j Value of q0j(
ix) at interval endpoints i and i+ 1.

i�q0j Change in q0j(
ix) across interval i.

i�x, i�s Change in ix and s across interval i.
iq

0, iq00 Average value of q0(ix) and q00(ix) over interval i.
iq0j ,

iq00j Average value of q0j(
ix) and q00j (

ix) over interval i.

�qj Average value of �qj while transiting interval i.
i�t Transit time for interval i.

�p, �r Maximum desired translational and rotational path errors.
is0i,

is0i+1 s0(ixi) and s0(ixi+1).
is0 Average value of s0(ix) within interval i.

� _qj Change in _qj across interval i.

Eaj Maximum deviation of �qj from �q j over interval i.
Ci Value of i�1x0(ix) at knot i.
�s Tolerance in s for locating corner points.

43

C Set of corner points.
K Total number of knot points.
ie Coordinate energy 1=2

i _x2.
iei, iei+1 ie at interval endpoints i and i+ 1.

Bi Upper bound on iei required to meet velocity constraints at knot i.
Ei Polygonal region formed by constraints on values of iei and iei+1.
ie The two-tuple (iei; iei+1).

ie�i ,
ie�i+1 Values of iei and iei+1 that maximize the transit time of interval i.
ie� The two-tuple (ie�i ;

ie�i+1).

44

