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Discrete-Time Adaptive Windowing for Velocity Estimation
Farrokh Janabi-Sharifi, Vincent Hayward, and Chung-Shin J. Chen

Abstract—We present methods for velocity estimation from dis-
crete and quantized position samples using adaptive windowing.
Previous methods necessitate tradeoffs between noise reduction,
control delay, estimate accuracy, reliability, computational load,
transient preservation, and difficulties with tuning. In contrast, a
first-order adaptive windowing method is shown to be optimal in
the sense that it minimizes the velocity error variance while maxi-
mizes the accuracy of the estimates, requiring no tradeoff. Variants
of this method are also discussed. The effectiveness of the proposed
technique is verified in simulation and by experiments on the con-
trol of a haptic device.

Index Terms—Adaptive windowing, best-fit, control enhance-
ment, discrete-time position, filtering, haptic interface, velocity
estimation.

I. INTRODUCTION

NUMEROUS control systems require on-line velocity esti-
mation from a discrete-time position signal. Examples in-

clude velocity control of manipulators [9], visual servoing [6],
implementation of stiff virtual walls for force reflecting inter-
faces [4], as well as most guidance and tracking systems. Pre-
vious methods for real-time velocity estimation include: finite
difference and inverse-time methods, filtered derivative, alpha-
beta trackers, and Kalman filtering. All these methods share fun-
damental tradeoffs between: noise reduction and control delay;
accuracy of the estimate and its reliability; as well as regarding
the computational load. They also all might need tuning.

We describe here a class of adaptive finite impulse response
(FIR) velocity estimation techniques which are optimal in the
sense of minimizing the error variance while maximizing the
accuracy of estimates, requiring no tradeoff. These techniques
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possess noise filtering properties but preserve the velocity tran-
sients. This is exemplified by applying the technique to the con-
trol enhancement of a haptic device in order to significantly in-
crease the size of the region of allowable control gains.

II. V ELOCITY ESTIMATION

A position signal is sampled with period . is the
true position at time , and is the measurement
with error . The error may be due to quantization (encoders,
digital converters) and other sources. In many cases, it is valid
to assume that the error is bounded. In the absence of additional
information, the error can be conservatively considered to have
a zero mean bounded uniform distribution (e.g., the case of pure
quantization), such that . This implies that

(1)

The problem we consider is to find an estimatefor
from measurements , with to be the size of window.
Used online, an estimation algorithm should reduce the effects
of noise and minimize delay to avoid compromising the phase
margin in closed-loop control. These objectives are in conflict
with fixed filters. Moreover, the estimation should be computa-
tionally effective. A measure of performance used in this paper
is the size of regions of allowable gains for PD control. Given
a fixed computational resource, the higher the achievable sam-
pling rate (the simpler the estimator), the larger the gains may
be chosen.

A. Finite Difference and Inverse Time Methods

The finite difference method (FDM) uses Euler approxima-
tion

(2)

This method asymptotically breaks down at high sampling rates
when high time-resolution is needed for feedback control. As
becomes smaller, the position increments decrease but the noisy
component does not and is correspondingly amplified.

With the inverse-time approach [7], estimates of the velocity
are obtained by dividing the interpulse angle from an encoder by
the time between successive pulses. In this case, the opposite
problem occurs, the basic quantum estimate of depends
inversely on the position resolution and the scheme breaks down
for high position resolution.
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B. Kalman Filter

Another approach is to describe the system by discrete sto-
chastic dynamical equations and to apply Kalman filtering (KF)
[1]

(3)

(4)

Here . The acceleration is dropped if a
double integrator model is used.and are the state transition
and observation matrices, respectively. In [1], it is shown that
standard deviation of the velocity estimation with the triple in-
tegrator is two to four times better than in the case of the double
integrator. We will use the triple integrator model for our simu-
lations

(5)

is defined as the identity matrix and
represents the process noise.and the measurement noise
are assumed to be zero mean white Gaussian. The covariance
matrix of , is defined as

(6)

where is the Kronecker delta. is viewed as a surrogate
for either acceleration (double integrator) or its derivative (triple
integrator) and therefore can be written as .
Since actual motions are not well characterized by a stationary
random process,must be taken as a parameter to be adjusted.
The variance for the measurement erroris given by (1). Since
the covariance matrix of measurement noise is a scalar, we rep-
resent it by . The discrete-time Kalman filter is then described
by

Prediction:

Gain:

Update:

(7)

The Kalman filter provides optimal (minimum variance,
unbiased) estimation of state with the given observations

when the model for system dynamics and
the measurement relation are perfect. When they are imperfect,
the filter can learn the wrong state and the state estimation
might diverge. Adaptive fading Kalman filter (AKF) can be
used to eliminate the effect of older data using a forgetting
factor in the error covariance equation [14]

(8)

Since the performance critically depends on, we use an op-
timal algorithm for computing it [14]. For our model, ( )
is controllable and ( ) is observable. Therefore is
positive definite. and , are positive definite, and can be

Fig. 1. Effect of window length on the variance of velocity.

made positive definite by adding a small positive scalarto its
diagonal elements, is row-wise full-ranked, so the optimal
forgetting factor can be computed by

trace (9)

where

(10)

The Kalman filter using the triple integrator model of (5) re-
quires at least operations which might not be suitable for
real-time applications. Also, tuning of the process noise covari-
ance matrix is cumbersome and different operational conditions
require retuning. Finally, the convergence of Kalman filter is
not always guaranteed. Since the alpha–beta trackers comprise
a specialized form of double integrator Kalman filter [10], they
will not be further discussed in this paper.

C. Fixed Filter Methods

The idea is to assume that the noisy position signal can be sep-
arated into spectral components: a low-pass frequency compo-
nent from which a velocity estimate can be reliably derived and
a noisy component which must be filtered out. Fixed low-pass
filters, such as Butterworth filters, evaluate the weighted sum
of the filtered and raw velocity estimates from finite difference
method [16], denoted by and , respectively

(11)

where and are the filter coefficients. As the order of the
filter increases, the filter approaches an ideal low-pass filter.

The design of fixed causal filters always faces fundamental
tradeoffs between time lag, phase distortion, attenuation, and
cutoff precision. Typically, they involve tuning for each applica-
tion and operating condition, especially in closed loop since the
filter becomes part of the system transfer function. Furthermore,
the signal is filtered the same way the noise is: rapid changes in
the input signal are attenuated, resulting in a poor transient re-
sponse.

III. A DAPTIVE WINDOWING TECHNIQUES

Adaptive windowing is now discussed in the case of first-
order fits.

A. First-Order Adaptive Windowing

It was seen that the Euler approximation applied to two
position samples is moreprecise if they are far apart. This
observation is graphically conveyed by Fig. 1. The larger the
window length, the smaller the variance of the velocity is.
This is equivalent to averaging the lastvelocity estimates,
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, with obtained from the finite difference
method (2)

(12)

Provided that the signal is well represented by its samples, in-
creasing the window size is equivalent to decreasing the sam-
pling rate. A large window introduces time delay and also re-
duces the estimationreliability.

In order to tradeprecisionagainstreliability, the window size
should be selectedadaptivelydepending on the signal itself. The
window size should be short when the velocity is high, yielding
more reliable estimates and faster calculation; it should be large
when the velocity is low so producing more precise estimates.

Noise reduction and precision put a lower bound on the
window size, while reliability provides an upper limit for
the window length. In other words, a criterion should be
established to determine whether the slope of a straight line
approximates reliably the derivative of a signal between two
samples . It can then be used to find the longest
window which satisfies the accuracy requirement, solving a
min–max problem.

As described shortly below, simple test can ensure that a
straight line passing through covers all interme-
diate samples given an uncertainty band defined by the peak
norm of the noise . All the estimates in the set

,
are probable, so a method must be found to pick one optimally,
since its existence is ensured constructively. The smaller that
set (the larger ), then the more precise is any one of them,
provided that this estimate explains the data reliably.

The first proposal is “end-fit first-order adaptive windowing”
(end-fit-FOAW). The solution can be stated as finding a window
of length where such that

(13)

where , given that

and
(14)

The optimality of the approach is justified by the following
proposition.

Proposition 1: If a position trajectory has a piecewise con-
tinuous and bounded derivative, and if the measurement noise is
uniformly distributed, the proposed method minimizes the ve-
locity error variance and maximizes the accuracy of the esti-
mate.

Proof: Consider a position trajectorythat has piece-wise
continuous and bounded derivative. Denote the time deriva-
tive at instant as . If the measurement noise is uniformly
distributed, from (12), it follows that

or

(15)

Fig. 2. PDF of velocity for window of lengthn.

which implies a probability density function (PDF) of the trian-
gular form (Fig. 2) for the velocity with

(16)

Therefore, the largest possiblewill minimize the variance
for the velocity error. Moreover, the slope of the line passing
through the points and is the estimate of the maximum
likelihood, .

The end-fit-FOAW estimator works as follows:

Step 1) Set .
Step 2) Set as the last sample and as the th
before .
Step 3) Calculate , slope of the line passing through

and from (14).
Step 4) Check whether the line passes through all
points inside the window within the uncertainty band
of each point.
Step 5) If so, set and GOTO Step 3). Else
return the last estimate.

The end-fit-FOAW estimates the velocity using two position
measurements. This causes undesired overshoots if the window
size is small. To provide additional smoothing a best-fit estimate
using all the samples in the window can be used instead. Then,
the velocity estimate is the slope of a least-square approxima-
tion which minimizes the error energy, and hence is a natural
choice.

The Best-fit-FOAW solution is the same as end-fit-FOAW
solution except that in Step 3) above,is calculated from

(17)

Similarly, it can be shown that the best-fit-FOAW is subop-
timal. The quality of velocity estimation by best-fit-FOAW can
be further improved. In a yet another heuristic variant, best-fit-
FOAW-R, the window length determination is based on best-fit-
ting lines on increasingly longer windows. So Step 3) uses (17).

B. Auxiliary Smoothing

It should be noted that the reliability criterion can be relaxed
to account for the effects of outliers. An outlier is a rare event
in the signal. A simple method to make the filter more robust to
outliers is to stop the window growth if at least two consecutive
sample fall out of the fit.



1006 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 6, NOVEMBER 2000

Fig. 3. The original and the noisy trajectories shifted by one unit.

Fig. 4. The responses of FDM without and with a second-order Butterworth
filter: sampling rate= 100 Hz, cutoff frequency= 20 Hz (FDM and Butterworth
filtering trajectories have been shifted 20 and 40 units/s, respectively).

Fixed filters do not distinguish between the signal and un-
wanted noise: they attenuate the signal in the same way as they
attenuate the noise component, masking the transients. One al-
ternative ismedian filteringto preserve signal discontinuities
while eliminating fine irregularities and outliers [15] because no
averaging occurs. The window size needs not be large (a typical
value is 5) for effectiveness.

IV. SIMULATION

The performance of the proposed methods is now compared
with the other techniques. Evenly distributed noise (5%) was
added to a position signal sampled at 100 Hz for a test posi-
tion trajectory comprising velocity steps, that is, acceleration
impulses, see Fig. 3. Matlab was used for the simulations.

A. Fixed Filter versus FOAW

The effect of a second-order filter with cutoff frequency of
20 Hz can be seen on Fig. 4 by comparison to plain FDM and

Fig. 5. The responses of FDM, end-fit-FOAW, and best-fit-FOAW (end-
fit-FOAW and best-fit-FOAW results have been shifted 20 and 40 units/s,
respectively).

to the exact velocity profile, where noise is attenuated with the
cost of estimation lag. Higher cutoff frequencies are limited by
the Nyquist rate.

Next, the End-fit-FOAW performance is compared with that
of FDM (Fig. 5). The velocity noise is rejected considerably,
there is almost no time lag, and the transients are preserved.
The best-fit-FOAW further improves the quality of the velocity
estimation, being less prone to overshoots.

B. Kalman Filter versus FOAW

The performance of FOAW was compared to that of KF on
the same data. The triple integrator model of (4), (5) was used
and the system states were predicted and updated by (7). The
variance was calculated from (1) to be 20.110 unit.. The
first three measurements were used to initialize the vector.
Using (1) and (2), it can be observed that the error covariances
of and are and , respectively. Similarly,
the acceleration estimate can be found to be . Conse-
quently, our initial error covariance is

(18)

The Kalman filter estimates for different values were com-
puted. It was found that provides the best compro-
mise between overshoot and delay. From Fig. 6, best-fit-FOAW
gives superior estimations although the filter was tuned for this
trajectory. The performance of adaptive fading Kalman filtering
(AKF) for velocity estimation was also compared with that of
FOAW. The same value of was used. Fig. 6 in-
dicates that the adaptive fading filter leads to smoother results.
However, FOAW-based velocity estimates are still superior.

C. Effect of Auxiliary Smoothing

The final test was to compare the performance of the
best-fit-FOAW with that of best-fit-FOAW-R, and to study the
effect of median smoothing. Another position signal was gen-
erated by sampling at 600 Hz and adding an evenly distributed
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Fig. 6. The response of the three filters (the responses of KF and AKF have
been shifted 20 and 40 units/s, respectively).

Fig. 7. Time transient performance of best-fit-FOAW methods.

noise ( ). An upper bound for the window size is set
to be 15 to prevent excessive delays. Fig. 7 shows that both
FOAWs preserve the transients but best-fit-FOAW-R estimates
the velocity more accurately.

The position signal was then preprocessed by a median
smoother. This further improved the velocity estimates as in
Fig. 8. Median velocity smoothing after the estimation, as shown
in Fig. 9, provides a slight advantage. It was noted that median
smoothing of the velocity given by best-fit FOAW produces
similar quality when compared to best-fit FOAW-R without
median-smoothing. Best-fit-FOAW with median-smoothing
(on velocity and/or position) may be used instead of best-fit
FOAW-R to obtain comparable estimation quality.

V. EXPERIMENTAL CASE STUDY

The proposed techniques have numerous applications, e.g., to
haptic devices. These are mechanical devices that provide force
feedback to enrich the interaction between a human operator

Fig. 8. Effect of median position-smoothing.

Fig. 9. Effect of velocity-smoothing.

Fig. 10. Experimental setup.

and a machine. Some examples are human-computer interfaces
[13], telerobotics, and gaming industries [12]. A virtual wall
modeled by a spring with a stiffness constant () and a damper
with a damping coefficient ( ) is often taken as a benchmark
test [3]. Such a case can be generally depicted in a block dia-
gram as shown in Fig. 10. The virtual dampingin the model
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provides passivity to the wall to combat the effect of sampling
[5]. The differentiation operation, a high-pass filter, amplifies
the damping noise and limits the possible values ofand .
Minsky et al. [11] found empirically the stability condition for
virtual wall implementation to be of the form

(19)

In [2], using the Padé approximation,was found to be 2/3 if
the digital loop has one delay and a zero-order-hold. This shows
that if is large, must be large too. A noisy estimate of the
velocity will limit and therefore as well.

A two-degree-of-freedom haptic device, the Pantograph [8],
was used for the experiment on achievable gains forand
(Fig. 10). The position signal was fed back to the input of a
discrete-time PD controller. The output is a torque command
applied to a device which can be closely approximated by an
inertia (very little friction and structural dynamics). The signal
was left noisy (not more than eight stable bits out of 12). For cer-
tain values of and , the system entered stable limit cycles,
for other values, the system becomes unstable. Stability and
noise tests are conducted and are described below. The lower
bound of the useful region is given by the amount of damping

that is required for each to avoid a limit-cycle oscillatory
behavior. The upper limit indicates the values ofwhich cause
the noise to exceed a prescribed threshold for eachtoo. The
onset of limit cycles was determined by applying an impulsive
disturbance to the position of the device. The interior composite
region outlines the useful region: a region where gain selections
are at the same time free of limit cycles and free of noise. The
results are presented in the style of [3].

In the first three plots (Fig. 11), three velocity estimation
techniques (FDM, end-fit-FOAW, and best-fit-FOAW) are com-
pared against each other, showing the effects of the sampling
frequency on the system performance. In the next three plots
(Fig. 12), the same performance regions for each algorithm are
shown but varying the frequency (300, 800, 1500 Hz).

The following observations can be made.

1) Both FOAWs perform much better than FDM, especially
when the sampling frequency is high. This is seen from
the first three plots in Fig. 11. FOAW estimators raise
the upper limit of for all ’s with an exception for
some ’s at the lowest frequency, 300 Hz. This can be
explained by the fact that FDM approximates the true ve-
locity well enough at low sampling rates.

2) For any sampling rate, these regions are enlarged with the
use of FOAW estimators (with the largest area for the
best-Fit-FOAW). This, in essence, shows the effective-
ness of the FOAW algorithms. In general, a higher sam-
pling rate results in larger errors and therefore, the effect
of noise is more severe which consequently decreases the
area of the usable region.

3) FOAW estimators yield an effective rejection of noise,
and therefore result in a higher upper value of, as com-
pared to FDM. It also makes the system less susceptible
to noise, especially at high frequencies, as shown in the
flattening of upper bound at 1500 Hz in the three plots
of Fig. 12.

(a)

(b)

(c)

Fig. 11. Stability-noise regions forK and B with different estimation
algorithms at (a) 300 Hz, (b) 800 Hz, and (c) 1500 Hz.

4) FOAW’s do not introduce instabilities due to delay
since the lower limits of the composite regions remain
unchanged at a fixed sampling frequency as in plots of
Fig. 11.

5) The lower bound of the useful region is lowered with in-
creasing sampling rates which demonstrates the necessity
of better estimators to combat the effects of noise as seen
in plots of Fig. 12.

VI. CONCLUSION

The proposed methods demonstrated improved accuracy,
time-transient, and control enhancement over existing tech-
niques. The effectiveness of the proposed methods has been
verified by simulation results and also by real-time experi-
mental results in the control of a haptic device. It was concluded
that, among the proposed methods, if the computational cost
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(a)

(b)

(c)

Fig. 12. Stability-noise regions forK andB at 300, 800, and 1500 Hz, for (a)
FDM, (b) end-fit-FOAW, and (c) best-fit-FOAW.

is not a concern, best-fit-FOAW-R will provide more accurate
velocity estimation. Otherwise, best-fit-FOAW with median
smoothing may be used instead of best-fit-FOAW-R to give a
quality velocity estimation.

It was also mentioned in the introduction that finite-different
methods break down at low velocities (respectively, high rates)
while inverse-time methods break down at high velocities (re-
spectively, low rates). FOAW adapts to the signal so at low ve-
locities it resembles the inverse-time method (since it measures
the intervals between events which are far apart in time but close

in space), while at high velocities it resembles the finite-differ-
ence method (since it measures events which are far apart in
space but close in time). FOAW can also be considered from the
view point of its transfer functions. When the velocity is high it
is a filter of minimum order and when it is low it is a filter of
maximum order which is lower pass.
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