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Abstract

The characteristics and the nonlinear dynamics of a
high performance hydraulic actuator produced by ASI
Inc. are described and modeled. When a feedback is
applied for the regulation of output force, a limit cy-
cle is observed. The eristence of the limit cycle can
a priori be attributed to one, or to a combination of,
the four dominant nonlinear effect that were identi-
fied in these actuators. In order to pinpoint its ori-
gin, successive approrimations are made to apply the
describing function principle, so as to predict the on-
set of the limit cycle as function of the feedback gain.
Given the experimental data, this method allows us to
attribute beyond any doubt its origin to the electromag-
netic hysteresis in the valve, which is based on jet-pipe
technology. A multiple term lead-lag controller is de-
signed and implemented to quench the limit cycle and
improve the rise time of the force control by more than
an order of magnitude.

1 Introduction

Among the closed loop behaviors of nonlinear sys-
tems that cannot be explained by linear theory, per-
haps the most important is the self-excited stable os-
cillation called the limit cycle. The influence of a limit
cycle on the steady state performance of a closed loop
nonlinear system is an important matter for engineers.
Aside from exploiting their existence in the design of
oscillators, oscillator servos, or in the purposeful cre-
ation of dithering signals, for the most part one aims
at quenching an existing limit cycle by altering the
damping characteristics of the system, insuring that
enough energy is dissipated during a cycle to preclude
the creation of new one.

Quenching is necessary because it is well known
that an existing limit cycle may persist in the presence
of an external input signal and thereby interfere with
the desired performance of the system. In the ASI hy-
draulic actuator, a limit cycle was observed. We first
recall the dynamics of the system, and the limit cycle
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is characterized in a series of experiments. In order to
determine its cause, the describing function method is
used. Some approximations are necessary to simplify
the system. FEach nonlinearity is studied separately
and their describing functions computed. A lead-lag
controller is designed to eliminate the limit cycle and
improve force control dramatically.

2 ASI Hydraulic Actuator Model

2.1 Physical Description

The ASI hydraulic actuator (Fig. 1) was designed
for robotic applications and has the properties re-
quired for accurate control. To design a robust force
controller, it is useful to have a good model of the sys-
tem. It was possible to formulate an analytical model.
The following is a summary of the results described in
13,4].

It is a force controlled device driven by a high band-
width jet-pipe suspension valve. In this type of valve,
the oil is forced through a flexure member whose open-
ing faces two orifices connected to each side the actu-
ator’s piston. A deviation z, of this member causes a
pressure imbalance on each side of the piston resulting
in an output force. The oil which does not circulate in
the cylinder returns to the pump. This type of valve
has several advantages. There is no friction because
of the absence of contact between the operating mem-
ber and the orifices. The inertia of the moving part is
reduced to a minimum. The valve is piggy-backed on
the actuator, so no intervening hydraulic line dynam-
ics complicates the dynamic response. The bandwidth
is practically determined by the valve and force control
is easily carried out.

The force is measured by a flexure element attached
to the cylinder with a Hall-effect transducer. This
force sensor is a non-zero sensor thus calibration is
required. The actuator is controlled by a host com-
puter via a card containing analog circuitry for sen-
sor signals conditioning and simple linear controllers.
The calibration and the state variables can also be
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assessed digitally through the card [1]. The actuator
itself—valve, cylinder and force sensor—forms a single
package. Its mass of about .5 Kg and the maximum
thrust is about 1,000 N for a nominal supply pressure
of 500 psi.

Figure 1: ASI 7/8” bore Integrated Actuator

2.2 Model

Figure 2 shows the block diagram of the closed loop
model. The system has four nonlinear elements: hy-
draulic damping, valve static characteristic, valve hys-
teresis and friction. Three major linear elements are
added to complete an accurate description of the sys-
tem: valve flexure member, lumped model of fluid dy-
namics, and sensor transfer function.

Hydraulic Damping

Fluid Dyn.
‘ ‘_{"‘”"’ _Sensor Dyn.
' R __l / Sensor

Stiffness

Valve Hysteresis

Figure 2: Block Diagram of the model

Hydraulic damping is mostly due to the cir-
culation of oil through the valve orifices. Figure 3
shows the experimental hydraulic damping effect. It
increases much faster than linearly with the magnitude
of the velocity. When the actuator is backdriven at a
velocity larger than its saturation velocity, fluid cir-
culation forces the valve to open causing the damping
curves to tapper off. A family of hyperbolic tangents
whose magnitudes, scaling and positions with respect
to the origin depend on the valve position z, was fitted
to the experimental data.

Hydraulic damping has a determining effect on
performance since when the velocity is small, the valve
opening has a direct impact on force output resulting
in high bandwidth force control. When the velocity is

Valve Pos. (x107° m)

Damping Force: Fy (N)
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Figure 3: Hydraulic Damping

in the part of the curve where the damping increases
exponentially, the stability is increased.

The valve static characteristic is the relation-
ship between force and valve opening. For jet-pipe
valves, it depends on the geometry and relative posi-
tion of the orifices. For this design, it is linear until
maximum opening is reached, then the actuator sat-
urates. The valve static characteristic is shown Fig-
ure 4.

Force (N)
$ 5 % o ¥ 888

3 2 1 B 0 T T

Valve Position (x107° m)

Figure 4: Valve Static Force Characteristic

Hysteresis results from the electromagnetic circuit
which drives the valve operation. A plot of hysteresis

is given Figure 5. T
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Figure 5: Valve Hysteresis

Solid friction is derived from the contact between
the seals and the walls. It was simply modeled by
Coulomb friction and stiction. It wac found that frice-
tion is close to 7 N and stiction is 27 N when pushing
on the piston and 15 N when pulling.
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The linear characteristics of the valve and the
sensor are due to the flexure pipe and to the force
sensor attached to the cylinder. The model includes
also the lumped fluid dynamics. Some other linear
elements could result from some other parts of the
system but only those three major ones were retained.
The identified dynamics of the valve, the fluid, and the
force sensor are given by a 10th order transfer function
with two delays. The resulting model is quite precise
and was experimentally verified [2].

The open loop bandwidth was found to be 20 Hz.
Of course, open loop control is impractical because of
the presence of hysteresis and friction. The closed loop
bandwidth is about 100 Hz and decreases for higher
input amplitudes due to the nonlinear elements, hy-
draulic damping and valve characteristic in particular.

3 Limit Cycle Existence

3.1 Preliminary Experiments

A limit cycle is defined as an isolated closed curve
in the phase plane. The trajectory has to be both
closed, indicating the periodic nature of the motion,
and isolated, indicating the limiting nature of the cycle
with nearby trajectories converging or diverging from
it. We first verified the existence of a limit cycle and
not a simple stability limit due to resonance. Figure
6 shows a typical step response with a high propor-
tional gain. The shape of the curve indicates clearly
that the phenomenon is a limit cycle, with sustained
oscillations at around 90 Hz. The oscillations are sta-
ble, even if the piston motions are severely perturbed
or damped externally, and the oscillations are almost
perfectly sinusoidal. The question is now to determine
under what conditions a stable limit cycle occurs.

moi‘ ‘.:4\“,;“7‘}‘ RAAREARARRRRAREAE N
o “l,x‘mimnl\l LR LN
T

o

Force (N)
&5_‘&‘—___18—

o Time (s)

] o (S 03 04 03

Figure 6: Step response with high gain

A limit cycle must be input dependent: the limit
gain and frequency depend on the magnitude of the
step input which starts the cycle. Figure 7 shows (with
the piston locked at mid-stroke) that when the input
increases the gain which gives rise to the onset of os-
cillation becomes higher while the frequency decreases
from 95 Hz to 75 Hz for a range of 0-600 N. The in-
put dependency of the limit cycle is thus established
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Figure 7: Limit cycle as a function of input

and related to the fact that the closed loop frequency
response depends on the input.

These preliminary experiments revealed two major
points. Firstly, the limit cycle does not appear ran-
domly but instead can be precisely reproduced under
well specified conditions. Secondly, the nonlinearities
of the system can all be involved at the onset of the
limit cycle, however in the steady state, the effect of
each non linearity must be studied. To carry out that
study, we used the describing function method.

4 Describing Function Method

Frequency response method is a powerful tool for
the analysis and design of linear control systems. It
is based on describing a linear system by a complex-
value function of the frequency. Some of the strengths
of this method lie in the graphical representations used
to understand the behavior of a system and to de-
sign controllers, but it cannot be directly applied to
nonlinear systems. Yet, for some nonlinear systems.
an extension of the frequency response method, called
the describing function method, can produce good ap-
proximations for analysis and prediction of nonlinear
behaviors. It can be used reliably for a number of
applications such as predicting sub-harmonics, jump
phenomena and limit cycles. A describing function
is defined as the ratio of the fundamental compo-
nent of the output of a nonlinear device to the am-
plitude of a sinusoidal input signal. In general, the
describing function depends on the amplitude and fre-
quency of the input signal and is complex because
phase shift may occur between the input and the
fundamental component of the output. We assume
that the input to a nonlinear element is given by:
m(wt) = Asinwt. In general, the steady state output
of a nonlinear device can be represented as a Fourrier
series: n(wt) = Ny sin{wt+¢1)+ Nosin(2wt+@a)+- - -
We only consider the fundamental component, which
in the present case is experimentally justified since
the shape of the signal is nearly sinusoidal. The de-
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scribing function becomes: N(A,w) = Nj/Ael¢t,

The describing function has several interesting
properties. When the nonlinearity is single-valued
(such as saturation, dead-band ...) there is no phase
shift in the output fundamental, N(A,w) is real and
independent of the frequency w. In the case of a
nonlinearity with memory, corresponding to a double-
valued function (such as hysteresis or backlash), there
will be a phase associated with the describing func-
tion. The Nyquist criterion can be extended to the
describing function method.

Consider a closed loop system with unity feed-
back cascading a nonlinear block N(A4,w) with a
linear one G(jw), its characteristic equation is:
1+ G(jw)N(A,w) = 0. Self-sustained oscillations of
amplitude A and frequency w will appear if: G(jw) =
~1/N(A,w). This leads to two nonlinear equations
(the real part and the imaginary part) in the two vari-
ables A and w. There are usually a finite number
of solutions, but since it is generally difficult to solve
these equations analytically, graphical approaches are
used. Both sides of G(jw) = —~1/N(A4,w) are plotted
in the complex plane to determine the intersection of
the two curves. If the two curves intersect, then a limit
cycle should appear and the corresponding values of A
and w are the solution. In order to apply the describ-
ing function analysis to our system we must simplify
it, although methods exist to deal with problems with
several nonlinearities (see [3], [4], [6]), these methods
are either difficult to apply to a real system, or quite
restrictive. For example, J. Gouws and J.J. Kruger
describe in [4] a very interesting method to analyze
stability conditions of system with two nonlinearities,
but the proposed procedure implies that we can mod-
ify the block diagram of the system to put it into a
special form, which is not possible here. It was then
decided to make approximations in order to study one
nonlinear element at a time.

4.1 Simplification of the System

The force static characteristic is single valued and
would require, for example, an integrator to generate
instability. If we remain in the linear part, we can re-
place it by a simple gain, so it is unlikely to cause a
limit cycle. The damping was first thought to be negli-
gible. If the velocity remains small enough the damp-
ing is low. The velocity during a limit cycle was mea-
sured for several positions of the piston, inputs and
proportional gains. It was quickly realized that limit
cycles could be created under conditions that would
cause the hydraulic damping to vary drastically dur-
ing one cycle, often spanning the entire range of the
family of curves on Figure 3. Damping is not negligi-
ble and can vary according to the valve position from
0 to 1,200 N. The hysteresis and friction were also
kept and all those three nonlinearities were studied
separately. To simplify the system, other approxima-

tions were made. Firstly, the bandwidth of the fluid
dynamics, D(z) is around 1000 Hz and its phase is
small until 400 Hz. It was replaced by a pure gain
since the frequency range of interest is 10 Hz to 200
Hz. Approximate models of the nonlinear elements
were derived to apply DFM to friction, damping and
hysteresis.

Friction and damping have similar effect on the
system and their effects were first investigated. Stan-
dard approximate models of the nonlinear elements
were used. The describing functions of standard non-
linearities are well known [7], and are not recalled here.
A simplified system was built with the hysteresis and
the valve characteristic replaced by single gains. The
transfer function is then:

F, S(s)H(s)
Faes 1+ S(s)H(s) + S(s)sD(A)

where S(s) is the force sensor transfer function, H(s)
is the transfer function lumping all other linear el-
ements and D(A) the describing function of either
damping or friction. Applying the extension of the
Nyquist theorem to this system it can be stated that
a limit cycle will appear if:

-1 S(s)
D(A) ~ 1+ 8(s)H(s)’

The Nyquist plot of the right hand side of the equa-
tion was plotted Figure 8. The plot of the inverse of
the describing function of both damping and friction
evidently stick to the real axis and cannot intersect
the Nyquist plot of the transfer function except for
some extreme gains. The effect of friction and damp-
ing can therefore only be marginal. Damping was not
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Figure 8: Nyquist plot of RHS (friction and damping)

really expected to generate a limit cycle but the case
of friction is different. As shown by W.T. Townsend
in {8], the effect of friction on limit cycles is rather
complex. The stiction (which was not taken into ac-
count here because it only appears at zero velocity
and does not change significantly the shape of the
describing function) can cause force to enter a limit
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cycle. Coulomb friction, on the other hand, can ex-
tend the system stability bounds but may lead to an
input dependent stability. However, in Townsend’s
experiments, a PI controller was used which added a
memory effect through the integrator. In our case a
simple proportional controller can cause the system to
enter limit cycles. Moreover, during a limit cycle, the
piston velocity varies greatly, and the piston is well
lubricated and so the friction is reduced. These re-
sults show that Coulomb friction and damping cannot
maintain a limit cycle even if they can play a role in
kicking it off. Indeed, when an experiment is initi-
ated, the piston is not well lubricated and friction and
stiction dominate and can give an impulse containing
energy at all frequencies which starts the limit cycle.

Hysteresis: Similar to friction and damping, a
simplified model of the hysteresis was used and the
describing function computed. Several simplified sys-
tems were used to study the effect of hysteresis, for
example, a constant force was subtracted to account
for the effect of damping and friction but the best re-
sults (as far as matching the experimental data) were
given by the transfer function:

F, _ H(@)S()Y(4)
Faes 1+ H(s)S(s)Y(A)

where Y'(A) is the describing function of the hysteresis.
By applying the extended Nyquist theorem, a limit
cycle will appear if:

-1

4 " H(s)S(s).

The Nyquist diagrams of H(s)S(s) and —1/N(A) were
plotted together for various values of the proportional
gain. Figure 9 shows an example. When the gain is
high enough an intersection certainly occurs which can
predict the existence of a limit cycle. The two curves
first intersect one another for Kp = 8 at a frequency
of 130 Hz. When we increase the gain, the frequency
of the intersection point decreases and the amplitude
of the limit cycle increases.
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Figure 9: Nyquist plot of hysteresis, Kp=15.

4.2 Discussion

The predicted frequency is higher than found in the
experiments. Considering the numerous approxima-
tions made in this study, this is hardly surprising. The
discrepancy is nonetheless never greater than a factor
of two, and the result is qualitatively correct: when
the gain increases, the frequency decreases. However,
it was found that the amplitude of the limit cycle did
not increase as dramatically as predicted by the the-
ory. This is easily explained by the fact that we ne-
glected hydraulic damping which has the property of
increasing rapidly with the magnitude of the velocity
and therefore has an amplitude self-regulating effect.

It was concluded that the existence of stable and
repeatable limit cycle could reliably be attributed to
the electromagnetic hysteresis in the valve, excluding
all other observed nonlinear elements, although they
probably all play a transient role at the onset of the
cycles. Moreover, the limit cycle is not due to an
instability of the feedback loop leading sustained os-
cillations with amplitudes nearing saturation.

Since limit cycles are considered to be a nuisance for
the purpose of these actuators, in the next section, we
show that a simple linear controller can be designed to
quench them unconditionally and to improve the force
control rise time by more than one order of magnitude!

5 Force Control

A step response with proportional control is shown
Figure 10 with Kp = 3. The rise time is around
0.045 and the overshoot is about 20 percent. In an
attempt to combat the effect of hysteresis with a sim-
ple linear control, it was proposed that this effect was
equivalent to introducing a phase lag at the critical
crossover frequency. No rigorous design method was
used, but from the previous observation, a trial and
error method was attempted. To compensate for lag,
a lead compensator of the form K(aTs+1)/(Ts+1)
(a = 130, ¢maz = 80° for maximum action in the re-
gion 60 to 100 Hz) was put on the error path for a more
damped response. A lag term with a 0.5 s time con-
stant was cascaded to get the desired accuracy at low
frequency. Such lag terms were found to produce ex-
cellent results for friction compensation in lubricated
mechanical systems. The resulting compensator pro-
duced a step response shown Figure 11. The rise time
from 10% to 90% is 0.01 s and the overshoot is about
14%, while the steady state error is less than 2N (1
part in 500).

Then we proceeded to adding more lead terms. A
second order lead controller was experimented with
and then a fourth order one. After some tuning to
avoid actuator saturation for high desired inputs, the
compensator produced the result shown Figure 12.
Limit cycles could not be made to appear under any
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condition and the performance results are summarized
in the table 1.

These interesting results can be explained by the
robustness properties of elementary lead-lag compen-
sators. In effect, more than 180° of phase lead action
is applied over two decades by a four term lead. The
obvious tradeoff is the high energy demand in the er-
ror signal versus the admissible dynamic range of the
actuator. A more rigorous proof of the validity of the
method may involve the use of the small gain theo-
rem [9,10]. It is hoped that the methods described in
this paper can be adapted to other robotic actuator
systems having comparable characteristics.

Step Response, proportional gain (K, = 3)
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Figure 10: Step response with proportional control
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Figure 11: Step response with lead-lag control
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Figure 12: Step response with 4th order lead
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Prop. | L-L 4th order
Rise Time 10 to 90% | 0.04s | 0.01 s | 0.007 s
Overshoot 20% [ 14% 0%
Settling Time 0.18s | 0.08 s | 0.04s
Steady State Error 6N <2N | «<2N

Table 1: Summary of Force Control Results
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