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Abstract— In this paper, the conception and optimization
of a new dual-stage haptic device is described. A particular
attention is given to the choice of encoder. Compact, consumer
grade, but low resolution encoders are particularly used. An
issue arising from this particularity is the deterioration of
the velocity measurement when Finite Difference method is
used. Moreover, when encoders resolution decreases, velocity
estimation becomes noisy. From haptic point of view, this noise
destroys the realism of the rendered force. To deal with this
problem, numerous methods have been proposed to offer a
noiseless estimation. Here, advanced methods such as Low-
Pass Filter, First Order Adaptive Windowing, Kalman Filter
are proposed. Performances of theses methods are verified and
experimentally compared to a conventional finite difference
method. Here, we show that Kalman filter and First Order
Adaptive Windowing offers a good trade-off between estimation
and noise rejection.

I. INTRODUCTION

The human sense of touch operates within four to five
orders of magnitude of external loads and with temporal
scales ranging from persisting signals down to about one
millisecond. This performance enables the elaboration of
percepts such as surface textures, collisions, puncturing, and
so one, arising from the small-scale mechanics of damage
and frictional interactions. This type of tactile sensations is
essential to grasping, probing, and manipulating objects in
our environment. The design and construction haptic devices
able to operate at the limits of human performance remains
a challenge.

Our aim is to construct devices that can operate within
the above mentioned ranges without introducing spurious
signals that are the results of the typical injurious proper-
ties of mechanical systems. Such properties include inertia,
friction, backlash, and structural dynamics [1]. One particular
problem is to achieve the simultaneous production of high
and low forces in a single device. Limitation in this aspect
are due to an in inertia-torque tradeoff in electromagnetic
actuators since a large inertia precludes the possibility to
render small dynamic forces.

An ideal, completely transparent haptic device would have
no mass, infinite bandwidth, and would supply unlimited
forces [2]. One method to approach this ideal is to match
human sensorimotor performance. For instance, the human
finger is able to sense vibrations from DC to only approxi-
mately 1 kHz [3], [4]. A key element is the smallest human
detectable force at a fingertip (Fshd = 10−2N ).

A new type haptic device able to achieve simultaneously
low inertia, high forces and wide temporal bandwidth was
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first introduced in [5], and a complete, compact, and practical
system was described in [2]. The idea behind this concept is
based on a dual-stage architecture employing a large motor
to generate continuous forces and a small motor to produce
the transients. Because the two motors combine their torques
via a viscous coupler that converts slip velocity into force, it
is possible to use velocity feedback to mask the dynamics of
the large motor from the user. The resulting device is highly
transparent and enables users to detect haptic details that are
an order of magnitude smaller than with high-performance
conventional haptic devices. For example, the system was
included in a teleoperation system [6] and used to accurately
feel the interaction forces with a water droplet as perceived
by an ant [7].

The particularity of the design comes from the viscous
clutch. This element allows the output torque to be decoupled
from the inertia of the large motor since the torque is
proportional to the controlled velocity of the large motor.
An issue arising from this approach is the need to accurately
estimate the velocity of the rotating shafts. Note that as
the device aims to render the haptic feedback at 1 kHz,
the controller has to run at least at the same frequency.
The problem of a valid measurement at low speeds may
be overcome by employing super-high resolution position
sensors, but this approach has several drawbacks: These
devices have a high cost, are highly sensitive because of
the optical process and pose an integration problem as those
don’t come as a built-in option with the actuators. This issue
becomes critical during any effort aimed at bringing the
dual-stage haptic device technology to an affordable stage
using consumer grade components, since the sensors are the
dominant source of cost of the whole system.
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Fig. 1. Deterioration of the velocity estimate, at 1 kHz sampling.
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Figure 1 shows how the velocity estimate deteriorates
when encoder resolution decreases from 5 000 to 1 024
increments when using the Finite Differences velocity esti-
mation method. As the number of increments decreases, the
uncertainty associated with each increment increases. The
variation of the estimate precision decreases proportionally
to the encoder resolution.

From haptic point of view, this noise greatly jeopardizes
the realism of reproduced signals since the human tactile
sense is highly sensitive to minute oscillations and the
velocity estimates participate directly in the control signals
sent to the motors.

The objective of the present study to to leverage advanced
algorithms to compensate for the use of consumer-grade
low resolution encoders. Different algorithms are evaluated,
including Finite Difference, Low-Pass Filtering, Kalman
Filtering with triple integration [8], Kalman filtering with
a known model [9], and First Order Adaptive Windowing
(FOAW) [10].

The article first describes the dual-stage haptic device
technology and a new compact design is presented, then deals
with velocity estimation where the aforementioned methods
are described and tested.

II. EXPERIMENTAL SETUP

A. Dual-stage device

The device is based on a dual-stage architecture, similar
in design in hi-fi speakers where low and high frequency
sounds are output on different channels.

A large motor providing high torque is coupled viscously
to a smaller motor with a view to produce the missing
transients, see Fig. 2. The output is effectively the sum of
torques of both motors.

Large motor

Viscous coulper

Small
motor

Handle

Fig. 2. Dual-stage haptic device described in [2]. It is comprised of two
motors and a eddy-current viscous coupler.

The coupler transforms the differential slip velocity of the
large motor into torque. As a consequence, the handle is
decoupled from its effective inertia by slaving the velocity
of the large motor to the desired differential slip velocity.
A feed-forward path is provided through the small motor to
supply the missing transients of the desired input signal. The

small motor has very little friction and inertia, so unwanted
forces can be kept below the human detection threshold.
Readers can find more technical details about this haptic
device in [2].

B. Real time control on Linux system

Fig. 3 illustrates the control sytem architecture where the
controller receives a torque set-point and uses the signals
from the two encoders to generate commands to the motors.

small
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motor

Control

Coupler

power

velocity
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torque
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Fig. 3. Control system architecture.

The large motor operates in closed loop in order to achieve
the desired torque. The control scheme is a polynomial
compensator for optimal regulation and tracking. Moreover,
the small motor was feed directly with the torque error in
order to compensate for the slower response of the large
motor. To achieve low jitter sampled data control, the control
was implemented on a real-time OS with sampling rate set
to 1ï¿œkHz.

C. High transparency

The interface achieved two orders of magnitude of im-
provement in transparency over existing designs measured in
terms of the magnitude of parasitic forces owing to friction
and inertia. The improved transparency allowed participants
to detect details that were ten times smaller in magnitude
than when using a conventional design. However, the cost
of the whole system was high, raising the question of
whether similar performance could be achieved with lower
cost components.

D. Technical improvements

A new design is built in order to improve the robustness
of the device.

In this purpose, the continuous stage is replaced by a
DCX35L GB KL 36V motor with a factory-mounted com-
pact digital encoder, with 1024 increments. For the transient
stage, a DCX22S GB KL 36V motor is used. A 5000
increment hub-disk & encoder (US Digital HUBDISK-1-
5000-197-IE ) are mounted on this stage. (see Fig. 4).

These improvements come with a major drawback because
of the decrease in the resolution of encoders. 1024 incre-
ments encoder does not allow for a precise enough estimation
of the velocity as shown in the previous section if using basic
Finite Difference method at 1 kHz. To deal with this issue,
advanced algorithms such as Kalman filter or FOAW can be
used to compensate the lack of resolution.
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Fig. 4. The enhanced version of the haptic device.

III. VELOCITY ESTIMATION

A. Influence of the velocity measurement on rendered torque

The eddy-current clutch generates a torque proportional to
the slip velocity. As a result, the accuracy of the rendered
torque is proportional to the accuracy of the velocity estima-
tion, and in particular, to the large motor’s velocity since the
transient stage is held by the user’s hand.

In term of haptic interface design, this particularity gives
a possibility to define an acceptable error on the slip veloc-
ity, matching human sensorimotor performances. This error
should be inferior to smallest human detectable force. This
inequality is used as a criterion to determine the quality of
the different algorithms proposed in this work.

To determine this error, let ω denote the velocity, ∆ω
the acceptable velocity error, ∆ω0 the smallest acceptable
velocity error, k the Just-noticeable difference in haptic
force, b the damping coefficient of the clutch, D the handle
diameter and F shd the smallest human-detectable force at
the fingertip. Equation 2, illustrated in figure 5, estimates
the minimum tolerance of this error and equation 3 defines
the tolerance range.

∆ω = ωk + ∆ω0 (1)

∆ω0 =
1

b
× Fshd ×

D

2
(2)

∆ω = ω × k + Fshd
D

2b
(3)

TABLE I
NUMERICAL VALUES FOR b, D, Fshd AND k

Parameter Value
b 0.96 mN.m/rad.s
D 70 mm

Fshd 10−2 N (according to [5], [11])
k 5% (according to [12], [13])

Using the values given in table I and 2, the smallest
acceptable velocity error is ∆ω0 = 0.36 rad/s.

Fshd

D/2

b

W0

Tc

Eddy current forces
Angular Velocity

Torque

Force

Fig. 5. Force transmission from the large motor to the user’s finger through
the viscous coupler.

TABLE II
SMALLEST MEASURABLE VELOCITY.

No. increments Smallest velocity (rad/sec) Force resolution (mN)
1 638 400 0.0038 0.104

81 920 0.077 2.11
5 000 0.31 8.5
1 024 1.53 42

In addition to this value, the range estimated via 3 is used
to asses the quality of the methods used in this article, as
pointed further in figures 6 and 7.

B. Finite difference

The Finite Difference method estimates the velocity by
comparing the current position to the previous one at each
iteration. This algorithm is sometimes called the Lines per
Period estimator [14] because the velocity is estimated by
counting the number of encoder lines detected during a
sample time following the equation 4.

ω(t) =
θ(t) − θ(t− 1)

Ts
(4)

where Ts, is the sampling time and θ is the position
output from the encoder. This algorithm is precise for high
velocity as the differences between θ(t) and θ(t−1) become
significant.

For this method, the achievable resolution is linked to the
number of increments and the sample rate by the equation
5. Smallest achievable measurement is a single increment
during a sampling period Ts. In the case of a quadrature
encoder the resolution is 4 times number of increments Ninc

as reported in equation 5.

∆ωmin =
2π

Ninc × 4 × Ts
(5)

Smallest measurable velocity for different encoders with a
sampling rate of 1 kHz are listed in table II. The force
resolution represents the smallest renderable force, calculated
using the viscous coefficient of the clutch.

As the tableII shows, the smallest acceptable velocity
reported in subsection III-A cannot be reached when finite
difference method is used with for example on a 1024

531



increments encoder. Furthermore, the noise in the speed
estimation resulting from this method deteriorates the realism
of the haptic feedback as variations are far superior to human
detection threshold.

C. Low-Pass Filter

As shown in Fig 1, the previous method introduces noise
in low speeds. The most intuitive solution to filter this high
frequency noise is to use a Low-Pass Filter. The filter takes
as input the Finite Difference calculation and the cutoff
frequency is chosen in order to filter without suppressing
too much information, around the sampling frequency of the
controller. High frequencies, where the most of the noise
spectra is located gets rejected, giving a smoother estimation
of the velocity. However, this method introduces perceptible
delay in system’s response and decreases the stiffness that
can be rendered by the haptic device, as depicted in Fig.
7. Moreover, the high frequency range contains also haptic
information which gets lost in filtering.

D. First Order Adaptive Windowing

the First Order Adaptive Windowing (FOAW) method
is an interesting alternative to low-pass filter and can be
used to filter the noise while avoiding to suppress the
information [10]. This algorithm estimates the velocity by
fitting on a limited number of samples. The number of
samples is dynamically calculated trough a margin on the
noise estimate. The fitting can be carried out by different
techniques, with little impact on the results in the present
case. The best-fit-FOAW further improves the quality of the
velocity estimation, being less prone to overshoots.

The filter functions as follows:
1) Set i = 1
2) Set yk as the last sample and yk−i as the ith before

yk.
3) Calculate bi, slope of the line passing through yk and

yk−i from equation 6.

bi =

i

i∑
j=0

yk−j − 2

i∑
j=0

jyk−j

Tsi(i+ 1)(i+ 2)/6
(6)

4) Check whether the line passes through all points inside
the window within the uncertainty band of each point.

5) If so, set i=i+1 and GOTO step 3. Else the speed is
returned, ω = bi.

The algorithm suppress effectively high variations and in-
troduces only a small latency. The acceptable error margin
should be similar to human detection threshold. Fig. 7 shows
that the delay introduced is negligible, especially compared
to low-pass filtering.

E. Kalman Filter

Kalman filtering is a predictive approach, based on the use
of a mathematical model of the system. The accuracy of the
model is directly linked to the quality of the filter. The system
is described by discrete stochastic dynamical equations [9].

{
ẋ(t) = Ax(t) +Gw(t)

y(t) = θ(t) = Hx(t) + e(t)
(7)

Two different models are compared. The first one is basic
triple integration between the acceleration , velocity and
the position, without taking into account the mechanical
parameters of the system. The second model is based on
a faithful identification of these parameters.

1) Triple integrator: In this model the state vector x is
the angular position, the velocity and acceleration [10], [8]:

x(t) =

 θ(t)
ω(t)
γ(t)

 (8)

The model 9 where the position is derivated twice to sequen-
tially estimate the velocity then acceleration can be written
as 

ẋ =

 0 1 0

0 0 1

0 0 0

x+

 0

0

1

w
y =

[
1 0 0

]
x+ e

(9)

The discrete equations are:{
xk+1 = Axk +Gwk

yk+1 = Hxk + ek
(10)

A =

 1 Ts
T 2
s

2
0 1 Ts
0 0 1

 , H =
[

1 0 0
]

(11)

withG the identity matrix in this case.
The process noise wk =

[
w1 w2 w3

]T
and the mea-

surement noise ek are assumed zero mean white Gaussians.
The covariance matrix of wk is Qk = diag[ 0 0 q ].

The variance on the measurement error is a scalar denoted
r.

Let x̂k,l be the estimate of x at the time k knowing x at the
time l. P is the error covariance matrix. The discrete-time
Kalman is then described by

Prediction: x̂k,k−1 = Ax̂k−1,k−1

Pk,k−1 = APk−1,k−1A
T +Qk

Gain: Kk = Pk,k−1H
T [r +HPk,k−1H

T ]−1

Update: x̂k,k = x̂k,k−1 +Kk[yk −Hx̂k,k−1]
Pk,k = Pk,k−1 −KkHPk,k−1

(12)
The resulting model has a smoother variation because the

fast dynamics of the acceleration are filtered. In case of large
variations the filter will privilege the real-time measurements
and for small variations it will rely on the model.
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2) Realistic model: The previous model doesn’t take into
account the intrinsic parameters of the device. Its mechan-
ical model can be written trough generated and resistive
torquesTm and Tc:

Jγ = Tm − Tc

Tm = Kt × I, Tc = b× γ (13)

Vm = L
dI

dt
+ IR+Ktγ

With J the inertia of the large motor, Ktthe torque con-
stant, I the set-point current, R the motor internal resistance
and b the damping coefficient of the clutch. Taking the same
state vector x then previously, the system is expressed as:

x(t) =

 θ(t)
ω(t)
I(t)


ẋ =

 0 1 0
0 −b

J
Kt

J

0 −Kt

L
−R
L

x+

 0
0
1
L

V (14)

y =
[

1 0 0
]
x+ e

In the setup, the motor is powered with a current amplifier,
thus the current is known and is directly injected in the
model, instead of predicting it using the voltage:

xk+1 = Axk +BIk +Gwk

yk+1 = Hxk + ek

A =

 1 Ts 0
0 1 − b

J Ts
Kt

J Ts
0 0 0

 (15)

B =

 0
0
1

 , H =
[

1 0 0
]

The discrete-time Kalman filter is then the same as
described in (12) with the exception of the first equation
expressed with Ik, the current sent to the motor.

x̂k,k−1 = Ax̂k−1,k−1 +BIk (16)

The realistic model, in comparison to the triple integration,
would exhibit lesser latency because of the prediction of the
motors response through the current input. This behavior is
clearly visible in Fig. 7.

F. Discussion

A second encoder is mounted on the large motor (US
Digital EM2 hubdisk with 5000 increments) to provide
the reference measurement. The different algorithms are
implemented in Scilab on a Linux Real Time environment.
They are executed simultaneously hence they operate on
the same input signal. To ensure that the control does not
privileges one particular algorithm, the closed loop set-point
is the speed measured by the reference encoder.
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Fig. 6. Response to a step current. Only the neighborhood of the initial
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Fig. 7. Velocity estimation in permanent regime

The response of the different algorithms are depicted in
Fig. 6 and 7, with the confidence interval defined in III-A
obtained with the reference encoder.

The response time is an important criterion for the device.
The beginning of the response to a step current is shown
in figure 6. The Low-Pass filter and the Triple integrator
Kalman exhibit both a significant visible latency. Otherwise,
other algorithms have similar results.

Figure 7 illustrates the estimation on the permanent
regime, on a 15ms period. Finite Difference estimation ex-
hibits significant oscillations with some of the measurements
outside the interval. These would result on a perceptible
vibration on the haptic feedback. The low-pass filter is clearly
not adapted as it does not respect the confidence interval.
The Kalman filter with triple integrator produces irons out
the variations of the finite difference, but it is not accurate
enough although better than the low-pass filter. In practice
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this error results on an increased perceptible inertia, coupled
to the delay of the signal as shown in Fig. 6. The Kalman
Filter with the realistic model and the FOAW both fit well
in the confidence range. The Kalman Filter with a realistic
model produces slightly better results, noticeable on further
portions of the signal not shown here.

Figure 8 summarizes the average distance from the confi-
dence interval on a logarithmic scale, in the transient regime
and the whole experience. These values are normalized such
that the Finite Difference is considered the worst at 100%.
FOAW and the Kalman filter with realistic model stand out
as best candidates.

The drawback of the Kalman Filter is the requirement
on accurate identification of mechanical parameters and
produces the best estimation in accuracy without introducing
any delay. Nevertheless, this also introduces a dependance on
the identified parameters; for example the viscous coupler
heats up significantly during operation and its dumping co-
efficient is modified. This introduces an error in the Kalman
estimation and is an eventual weakness of this approach.
On the contrary, FOAW gives an estimation practically as
good as the Kalman filter, without the sensitivity to intrinsic
parameters nor their variations.

IV. CONCLUSION

The device presented here uses a viscous clutch to sum the
output torque of large motor, which produces the permanent
part of the haptic feedback, with a smaller one which fills
in for the transients. As the large motor’s output torque is
transmitted through its velocity, an accurate estimation is
required in both high and low speeds for a high quality haptic
perception. Nevertheless, the control of the device runs at
1 kHz sampling fir the same reason. As a consequence, a
faithful measurement of the velocity requires an encoder with
a relatively high number of increments. These components
are considered rather exotic and difficult to integrate in a
cost-effective scheme.

The approach pursued here proposes to estimate the veloc-
ity on a encoder with a small number of increments, typically
1024, as it can be industrially integrated into the actuator.
Several estimation techniques are implemented and com-
pared. Among these, the Kalman filter using a realistic model
with the prior identification if mechanical parameters gives
satisfactory results. The error of the estimation is beyond the
human detection threshold. However an eventual variation
on the parameters, especially on the coupler, introduces a
non negligible error on the estimation. The workaround to
this issue would be to include the behavior of the coupler
into the model ans estimate its dumping coefficient along
the velocity, or toi rely on e temperature measurement on
the coupler. FOAW method, on the other hand prodices an
estimation nearly as good as the Kalma filter without these
complications.

These two algorithms are shown to accurately estimate
the velocity on a 1024 increments encoder, running at 1kHz.
Form a user point of view the haptic perception is the same
quality then the previous prototype.
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