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This paper presents a strategy in multi-manipulator synchroni- 
zation that treats the motions as finite state machines. We use 
the concept of a motion-system as a convenient abstraction for 
programming explicitly coupled motions. Motions, treated as 
processes, can communicate /affect  one another through the 
use of control signals and the dynamics of the system are taken 
into account during the transitions between different motion 
states. Using examples, we show that such a scheme is general 
enough to cover diverse situations as two cooperating arms in a 
multi-manipulator environment, synchronizing motion of the 
feet of a legged robot for simple gaits and synchronizing the 
fingers of an anthropomorphic end-effector for simple grasping 
strategies. 
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1. Introduction 

The mutual synchronization of the various arm 
motions and the synchronization of these motions 
with respect to external events is one major con- 
cern in the area of multi-manipulator control. In 
particular, in order to achieve cooperation in a 
multi-manipulator environment, one must provide 
mechanisms that can ensure accurate and predict- 
able time-space rendezvous between the arms and 
capture these mechanisms into software primi- 
tives. These primitives must also provide means of 
handshaking between the motions of manipulators 
so that one motion can be predicated by the 
outcome of another motion. 

There is, unfortunately, not a lot of work in this 
area. One can, however, find an analogy between 
the multi-robot synchronization problem and that 
of the synchronization of jobs by a multi-tasking 
operating system. The latter problem is better 
understood and more studied. There are well 
established theories and ample results provided by 
computer science in the design of operating sys- 
tems [2]. 
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from Universit6 de Paris XI at Orsay 
in computer  science, in 1978 and 198l, 
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1983, he was at Purdue University, in 
the Depar tment  of Electrical En- 
gineering, the first year as a Visiting 
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Robotique Avanc6e), and the second year as a Visiting Assis- 
tant Professor. There he developed RCCL, a robot control and 
programming system. He then joined CNRS at the LIMSI 
laboratory in Orsay, where he worked as Attach6 de Recherche 
on trajectory planning and spatial reasonning until May 1985. 
He is now Assistant Professor with the Department  of Electri- 
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In general, robot systems have tended to adopt 
some of the simpler concepts of operating sys- 
tems; such as notions like critical section protec- 
tion via atomic events and semaphores [1,8]. While 
simple semaphore interaction can achieve syn- 
chronization in some cases, they would not prove 
useful in truly cooperative, tightly coupled tasks 
where the phenomena have to be analyzed at a 
very fine grain. Semaphores, in effect, attempt to 
decouple the tasks by blocking out other processes 
which, paradoxically, opposes the intended aim of 
having the arms perform tasks together. 

There is also another very important feature 
that distinguishes multi-manipulator systems from 
the multi-tasking operating system metaphor. This 
is that manipulators are physical dynamical sys- 
tems. That is to say, they "remember"  their past. 
Consequently, preview information must be used 
and taken into account in order to meet time-space 
constraints. 

The dynamics of the system are most readily 
apparent in the inertia properties of the robots 
and of their loads. These inertias contribute to 
delay the response of the system. To offset this 
delay, one can use sensors which can provide 
information about the environment with a certain 
amount of preview. One of the justifications for 
such an approach is provided in the context of 
tele-operation. Here, inertia contributes to slug- 
gishness in response that a man-machine  interface 
should account for [3], by means of on-line sensory 
preview. 

However, this type of synchronization is a quite 
general problem that can be found in a variety of 
situations (grasping, walking, etc.). 

1.1 The Notion of Motion System 

Motion systems are convenient abstractions of 
physical situations where manipulators move to- 
gether with kinematic a n d / o r  force relationships. 
A motion system consists of a set of manipulators 
whose kinematic loops share a common "drive 
transform". We recall here that the drive trans- 
form represents a frame transformation intro- 
duced into a kinematic loop in order to achieve 
motion from one position to another. In many 
cases this frame describes the " tool  frame" or 
controlled frame. Initially, the drive transform 
contains the "difference" between the position we 
want to move to and the position we are currently 

at. Interpolating the drive transform linearly down 
to unity, for example, will cause a linear motion in 
cartesian coordinates towards the destination. 

The conceptual advantage of a motion system 
is that it can be viewed as a unit. For example, 
sending a S leep  signal to a motion system would 
freeze all the manipulators comprising the motion 
system; a Go signal would awaken them all 
simultaneously. Thus synchronization is implicitly 
achieved between the arms :involved in a motion 
system. 

A motion system is specified by giving a set of 
closed kinematic loops. Each loop contains the 
coordinate frame of one robot, so that one can 
solve for the transform representing the robot. 
The loops may share any number of frames (e.g. 
common frames of reference), but must share a 
common drive transform. 

By breaking a motion system, one allows the 
manipulators to move independently, while merg- 
ing two motion systems causes the arms to move 
in tandem. The facilities provided by the G o /  
Sleep/End signals furnish the necessary means 
to perform these operations. These facilities are 
provided by a software package called Kali [4], a 
major redesign of the RCCL system [6]. 

1.2 Trajectory Generation 

In their complete generality, trajectories con- 
tain many types of information and must take into 
account such concerns as the desired position and 
force set-points, velocities, arrival times, tracking 
accuracy as well as factors induced by the dy- 
namics of the robot and the joint motors. To 
simplify the problem somewhat, we make several 
assumptions about the nature of the trajectory, 
First of all, it is assumed that during path seg- 
ments, the main variables of concern are scheduled 
arrival time or velocity. During the transition from 
one segment to another, because of the change in 
velocity, we relax the constraints on the velocity 
and position, allowing the trajectory to wander off 
the desired path. If we insist on following the path 
exactly, then the manipulator must be brought to 
a stop at the transition point, possibly violating 
timing or acceleration constraints if insufficient 
lead time is allowed. 

These trajectories must be computed with re- 
spect to possible time-varying frames (e.g. in 
tracking moving objects) and we assume that these 
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frames behave in a similar fashion. That is to say, 
their trajectories consist of segments of approxi- 
mately constant velocity separated by occasional 
periods of acceleration. 

Finally, the trajectory generation takes into 
account the dynamics of the system and 'preview' 
information during the transition periods. The time 
it takes to change velocity from one path segment 
to a new velocity in the next path segment is 
determined on line by the dynamics of the robot 
(including, possibly, a load that could be shared 
by several manipulators) and limited by the maxi- 
mum torques that the joint motors can provide in 
order to meet the requisite acceleration. With pre- 
view information, one can initiate the transition 
before the actual transition point so that, taking 
into account the dynamically determined transi- 
tion-time, we can meet and arrive at the through- 
point without over- or under-shooting. The result- 
ing path is obtained by blending path segments 
together [5]. 

2. Trajectory, Generator as a Finite State Machine  

To achieve synchronization with the above as- 
sumptions and constraints, we extent the analogy 
with the operating system model, going beyond 
simple semaphore handshaking. Here, we consider 
a motion as a finite state machine which can 
change states either through internally generated 
changes or by externally applied signals. This is 
really an extension of the crude finite state behav- 
ior of semaphores - they, in effect, create two 
states: Running and Waiting. In many cases, 
however, it is desirable to have a 'sleeping' state. 
In this state, the drive transform is frozen, freezing 
the relatiue motion of the manipulator. That is to 
say, if the manipulator were approaching a mov- 
ing object, putting it to sleep would cause the 
manipulator to maintain the same relative dis- 
tance from the moving object. 

Because of the third state, we decided to do 
away with semaphores and instead use control 
signals to affect the state of the manipulator. Such 
an approach, in addition to greatly increasing the 
flexibility of the system, fully transforms the 
behavior of the motion-system into one of a finite 
state machine. 

Motions are requested by the controlling pro- 
gram and sent to the motion generator through a 

queue. There is one queue assigned to each motion 
system. In a motion system, at all times, we keep 
track of three motion requests in its motion queue: 
the motion that has just been completed (mA), the 
current motion (roB), and the pending motion 
(mC). The motion mA, as well as all previous 
motions, is in the Termina ted  state and is im- 
mune from any further state changes. The pending 
motion, mC, is in the Cons ide red  state and all 
subsequent motions are in the Q u e u e d  state. In 
the normal course of events, the current motion 
the motion of interest, roB, is in the Running 
state. Once we have reached the destination of 
roB, a state change is triggered internally; mB 
becomes Termina ted  and gets shifted back to 
become mA, mC becomes the current Running  
motion mB and a new Cons ide red  motion mC is 
popped off the motion queue. 

State changes, however, can also be explicitly 
induced by signals applied by the user. The End 
signal applied to the current motion mB causes it 
to terminate prematurely and immediately begin a 
transition into the next motion inC. A Sleep  
signal applied to the current motion would cause 
its drive transform to stay constant and remain 
that way, in the S leep ing  state, until the motion is 
awakened with the Go signal or prematurely 
terminated with an End signal. 

Note that all state changes go through a transi- 
tion period whose duration reflects the dynamic 
manipulability of the motion system. In each state, 
the drive transform is assumed to have an ap- 
proximately constant velocity; during the transi- 
tion period, blending is used to ensure a smooth 
interpolation between the two xelocities. The con- 
straints on the duration of this period of transition 
are: the dynamics of the manipulators and the 
load in the motion system (the dynamics compris- 
ing the gravitational, velocity and inertial forces) 
and the maximum torques that the joint motors 
can supply (in effect the maximum physically 
achievable accelerations). 

According to the desired behavior, the user 
must also provide a preview factor. With no pre- 
view, the transition is initiated at the moment  of 
the state change and the resulting trajectory will 
overshoot. With preview, one can look ahead and 
initiate a transition before the expected time of 
the state change; with a 100% preview factor, the 
end of the transition period coincides with the 
time of the state change. Finally, the user can also 
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Fig. 1. Finite state model of a motion. Unlabeled arrows denote implicit state changes. 

specify the profile of the acceleration, as a fiat 
step, a ramp or something in between which will 
have an impact on the trade-off between path 
wander and transition duration. 

The finite state model of the motion generator 
is illustrated on Fig. 1. 

For instance, the robot can be in the Running 
state. By applying the S leep  signal to the motion, 
it will change state to Drowsy and an internally 
triggered event will cause it to change state to 
Sleeping,  This state causes the robot to freeze in 
mid-flight - the manipulator's drive transform is 
kept constant so the manipulator will continue to 
maintain the same relative position with respect to 
its goal. While the manipulator is Sleeping,  if a 

Go signal is applied then the motion will proceed 
to the Awakening state which will internally trig- 
ger another transition back into the Running state 
from where the manipulator will resume its inter- 
rupted motion. On the other hand, applying an 
End signal to a S leeping  motion will cause it to 
change state to Ended  from where, once again. 
the Ended  motion will trigger a transition into the 
Terminated  state, causing a new motion request 
to be popped from the queue 

We shall illustrate four possible scenarios, giv- 
ing the position as a function of time. In Fig. 2 we 
have a normal, uninterrupted motion from A to 
B. If no external signals are applied to the motion. 
then we can expect it to follow the trajectory 

Posilion 

...- "'. 

I 
i I ' i  
I I 

I r 

1.4 IB t~ • 

Time 

Fig. 2. Uninterrupted motion from A to B, then C. 
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Fig. 3. The motion from A to B is Ended so the manipulator moves directly to (7". 

shown; during the transition phase between mo- 
tion A and motion B, we have a transition time 
that is computed, based on the dynamics of the 
motion system and a preview time that is supplied 
by the user. 

In Fig. 3, however, we illustrate the case where 
the End signal is applied to same motion, from A 
to B. By applying the End signal to the motion 
system, the user indicates that she or he wants to 
forget about moving to B and go immediately to 
position C. Thus, the motion now will follow the 
path indicated by the arrows. 

The two next cases both illustrate a Sleep 
signal being applied to the motion from A to B. 
Once the motion is Sleeping, it will remain so 
indefinitely until it is Awakened with a Go signal 
or is Ended with an End signal. If a motion is 
Awakened then it will continue its motion to- 
wards B as if nothing had happened. If the Sleep- 
ing motion is Ended then, as in the case above, 
the motion towards B will be aborted and the 
motion system will wake up and go directly to C 
(see Fig. 4 ) 

Note that in all the state transitions, one com- 
putes the transition durations based on the dy- 
namics of the robot and the desired change in 
velocity, while blending ensures that the transi- 

tions are indeed smooth. Thus at run time, the 
actual scheduling may vary, but the relevant con- 
straints are always enforced. In addition, in every 
transition, including those induced by Go, Sleep 
and End signals, the user has control over the 
preview. This, in effect, means that the user can 
cause these signals to have a delayed effect. For 
example, if a robot, equipped with a range sensor, 
is approaching a table, the user can supply a 100% 
preview and send a Sleep signal ahead of time so 
that the robot will fall asleep just as it comes to 
the level of the table. 

Finally, this finite state model of a motion begs 
comparison with the job control used by Unix i 
where processes can be in states such as Runnable, 
Stopped, Waiting, Sleeping or Idle, etc, Further- 
more, a change of state of a process can be 
triggered by internal events (such as completion of 
the job) or by an externally induced events (such 
as completion of the job) or by an externally 
induced event (provided by Unix signals). In Unix, 
all processes can be identified by a unique process 
id; here the motions all have unique motion id's. 

1 Unix is a trademark of AT & T 
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3. Software and Hardware Considerations 

The first implementation of Kali consists of a 
multi-processor system described as follows. Five 
Heurikon single board computers with the 
Motorola MC 68020 and floating point coproces- 
sor communicate over a common VME backplane 
via a dual ported shared memory. The develop- 
ment is done in C and programs are created on a 
SUN workstation under Unix connected to the 

VME backplane via Ethernet. To off load VME 
bus traffic, we have selected a system which fea- 
tures the VSB secondary bus. The VSB bus serves 
to access the shared memory for all asynchronous 
communications. Further details of the hardware 
requirements and implementation are presented in 
[51. 

Modern software engineering methods suggest 
the use of message passing mechanisms to imple- 
ment complex software real-time application [7]. 

Posil ion 

, " , , .  

," ..... Motion S l e e p i n ~  i ~ 

", ; : , 
I I t r I 
I I I I[ 

Preview! \ Preview , \ ' \ 
For i Transition For li" I Tra;,si~i .... I ~ ~ "  

I Sleep t I Time  , • I . o , Aw~k~;c,,,C Ti,.~ ', V 
I I I I I I J I I i I I 
I r I I ~ t 

] I I ~ 1 I I 

I I I I 1 I Time 
a , l I I ' ~ i 

t. 4 Motion Motion tf-; l(,  
Put to Sleep Awi~kened 
(Sleop signal) (Go signal) 

Posit ion 

..." "'-.... 

Motion Sleeping ... . . . . X  

Preview \ Preview I \ I t ~ N 
For Transition For ~ l ' r  anSl~ io,, i ~ " / 
Sleep Ti .... Ending i Ti .... , 

i 

i I ] 
b I ~ t Time t I I 

i i i 

t .4 Motion Motion 1 t~ ¢ 
Put to Sleep Ended 
(Sleop signal) (End ~,/gnal) 

Fig. 4. In the first case, the mot ion from A to B is put  to SI t~p  and, after some time, A w a k e n e d  with a Go  signal: I n  the  second 
case, the sleeping motions is applied a End signal, the manipulator then proceeds directly toward C. 
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However, our application has stringent timing re- 
quirements - trajectory setpoints are generated at 
rates varying from 20 to 100 Hz. Thus our option 
was to implement the entire trajectory generation 
algorithm, including the synchronization mecha- 
nism described here, as a single synchronous pro- 
cess bound to a clock interrupt. Since modern 
CPU's such as the MC 68020 with floating point 
coprocessors are capable of computing the trajec- 
tories for several "motion systems", we have made 
no attempt at distributing these computations over 
several processors, therefore diminishing the com- 
munication overhead. In addition, some vendors 
have announced single board computers five times 
faster than those we currently use. Since all code is 
in C this guarantees effortless upgrade in perfor- 
mance. We nonetheless envisage to make a use of 
true message passing mechanisms in subsequent 
versions of this project. 

The trajectory generation process can handle 
several motion systems using a sort of "multitask- 
ing" analogous to operating systems. Each motion 
is associated with a "record" which contains the 
various applicable constraints. Whenever a motion 
is requested, such a record is created and assigned 
a unique identification number like a process id. 
The record is then stored in a circular buffer so it 
will remain accessible as long as needed. Thus an 
elementary motion can be thought of, to pursue 
the analogy, as a computer process with which it is 
associated. Given the identification number, the 
application program is able to send control signals 
to this process to perform the required synchroni- 
zation. Sending signals is actually implemented by 
writing entries in the motion records. These en- 
tries are defined to be atomic variables at the 
hardware level. Thus an application program can 
read the current state of a particular motion 
without the need for explicit critical section pro- 
tection. 

Although a number of distributed processes are 
required to run the entire control algorithms, only 
two are relevant to this discussion: the user pro- 
cess, which contains all directives that make up a 
"robot  program" and runs asynchronously with 
respect to the trajectory generator, and the trajec- 
tory generator, which contains all the algorithms 
to convert information available from the robot 
program and from external sensors into setpoints 
suitable to be tracked by feedback control. 

The user process requests motions via the 

aforementioned records asynchronously with the 
actual robot motions; therefore it is capable of 
controlling several simultaneous "threads" of mo- 
tions as illustrated by the examples in the next 
section. 

4. Examples 

In this section, we give various examples that 
demonstrate the usefulness of this motion syn- 
chronization system for a wide number of applica- 
tions. 

4.1. Two Arms 

Many useful examples can be found in the 
synchronization of two manipulators. The easiest 
way to synchronize two arms is to have them 
belong to the same motion system; often, how- 
ever, the arms do not share the same drive 
transform but one still desires such features as 
common departure or arrival times for the two 
independent motions. This is most easily achieved 
by having motions put themselves to Sleep. While 
they are asleep the motion states are repeatedly 
examined to see if the other motion is ready (i.e. is 
mB).  When they both become so, they wake them- 
selves up and can proceed towards the destination 
with the same departure time. In addition, just 
before the motions wake themselves up, several 
other useful functions can be performed. For in- 
stance, if we want to enforce a common arrival 
time, we can assign the same segment time or 
same arrival time. Going one step further, one can 
first see which arm is further from the destination, 
have it move at maximum velocity and let the 
closer arm have a motion segment time based on 
the expected time of arrival of the first arm. 

Another example considers a situation where 
one robot passes an object to another robot. One 
strategy resembles the example shown above; the 
robots, using Sleep, synchronize themselves to 
start to move towards each other at the same time 
with a fixed arrival time. Then. using preview 
based on the expected time of arrival at the ren- 
dezvous point, they End themselves so they meet 
for an instant and then depart again without 
overshooting and hitting each other. Another 
strategy would have the two robots move towards 
some pre-determined rendezvous point. If one 
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arrives too soon, it would put itself to Sleep and 
wait for the other arm to arrive. When the transfer 
of the object is detected, as perhaps, by a force 
sensor, then, as before, the motions End them- 
selves and a new motion is popped from the 
queue. See a "Kali"  code outline in Appendix A. 

4.2. Cycfical Synchronized Motions." Walking 

wards the three hold points to grasp the object is 
requested. We assume that the position of the 
object is not known exactly, so the motion end is 
predicated upon force sensor readings. The grasped 
object is then swiveled around the z-axis. An 
outline of the code to perform a simple task is 
given in Appendix B. 

This example involves the control of a statically 
stable walking robot with six legs. The gait can be 
described by two motion systems; each comprises 
three legs so that at any point in time, three legs 
support the robot in a stable position. The syn- 
chronization of the motions involves the following 
factors: First of all, one constraint is that the feet 
touches the ground with zero velocity, without any 
overshoot, to avoid stomping. To obtain that ef- 
fect, proximity sensors would avoid to have to rely 
on passive compliance, because preview time 
would be available. Once three feet have made 
solid contact with the ground, they should trigger 
the other three legs to lift up and move forward. 
Accurate transitions must occur so that the veloc- 
ity at the end of the transition is zero and the 
position is at ground level, with no overshoot. 
Next, once contact has been made with the ground, 
the other set of three feet lift up and move for- 
ward. Meanwhile, the feet touching the ground 
move backwards. If the feet do not slip, this will 
have the effect of propelling the robot forward. If 
either motion in the two motion systems com- 
pletes before the other, then it puts itself to Sleep 
and waits for the slower one to catch up and End 
it. Similarly, detecting contact with the ground 
will trigger one of two signals - if the other set of 
legs is asleep then this motion will End them as 
well as itself; otherwise the motion will put itself 
to sleep and wait. 

4. 3. The Motion of Fingers 

The concept of a motion system can be quite 
convenient in instances such as controlling a 
multi-fingered hand. In such cases, using sema- 
phores can be quite a headache but a motion 
system simply, effectively and explicitly achieves 
synchronization by having the fingers share their 
drive transform. Thus a single move request would 
queue a single motion involving all the fingers. 
First, a simultaneous move of three fingers to- 

5. Conclusion 

The motion synchronization scheme that we 
present has several advantages, the chief of which 
is its generality. The examples shown above indi- 
cate the wide variety of tasks that can be handled. 
The two main ideas introduced here are the con- 
cept of a motion system and that of the finite-state 
machine for robot motions. In addition, to account 
for the 'real-time dynamism' of the system, we 
compute transition times between the state 
changes, based on the the dynamics of the mani- 
pulators and loads. Finally, the code that imple- 
ments this has been written as part of the Kali 
multi-robot programming and control system, and 
is presently running in a simulation mode. Work is 
under way at McGill University to install this 
code on a multi-processing real-time operating 
system environment. 
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A ndix A 

#include " r e l e v a n t . h "  

main() 
{ 

Link *pO, *pl ,  *rvO, * rv l ;  
Transform a l i c e ,  r a l p h ,  
d r y _ a l i c e ,  dry r a l p h ,  
pO_pt,  p l _ p t ,  
r v_p t ;  

/* pointers to kinematic loops */ 
/* The two manipulators */ 

/*  The i r  d r i ve  t r a n s f o r m s  */  
/* Two p o s i t i o n s  */  
/* The rendez -vous  p o i n t  */ 

/* 

** Creation of the kinematic loops describing the Positions of the two 

** m a n i p u l a t o r s ,  Alice and Ralph,  at  t h e i r  s t a r t  p o s i t i o n s .  Note 
** t h a t  they have d i f f e r e n t  d r i ve  t r a n s f o r m s ,  so they w i l l  move 
** i n d e p e n d e n t l y .  "mmg" and "cmg" are  b u i l t - i n  f u n c t i o n  f o r  the  
** ' M a n i p u l a t o r  Motion G e n e r a t o r '  and the  ' C a r t e s i a n  Motion 
** G e n e r a t o r ' .  "NoFun" i n d i c a t e s  t he  t r a n s f o r m  i s  not  bound to any 
** function. 
*/ 

/* 

pO = ploop(~alice, mmg, ~drv_alice, cmg, ~pO_pt, NoFun, NULL); 

pl = ploop(&ralph, mmg, /xlrv_ralph, cmg, ~1_pt, NoFun, NULL); 

** Assign Alice to MotionSystem #0 and Ralph to MotionSystem #1 

** and move to the initial points. 
*/ 

/*  

*/  

move(~mO, pO); 
move(~ml, p l ) ;  

/*  

** The k inemat ic  loops  d e s c r i b i n g  the p o s i t i o n  at the r endez -vous  p o i n t .  
*/  

rvO = ploop(~alice, n~ng, ~drv_alice, cmg, ~rv_pt, NoFun, NULL); 
rvl = ploop(~ralph, n~ag, ~drv_ralph, cmg, ~rv_pt, NoFun, NULL); 

/* 

** Move to r~he rendez-vous point 
*/ 

move(~mO, rvO); 

move(&ml, rvl); 
/* 

** Since the  mot ions  are not  s y n c h r o n i s e d  ( they  have d i f f e r e n t  d r i v e  
** t r a n s f o r m s ) ,  we use  the  " w a i t ( ) "  f u n c t i o n  to  make sure  t h a t  
** the  ~rms do indeed meet at  the r e n d e z - v o u s  p o i n t .  I f  one a~m 
** s x r i v e s  a t  the  rendez-vous  p o i n t  b e f o r e  the  o t h e r ,  i t  p u t s  i t s e l f  
** to  s l e e p  and wakes i t s e l  up when the  o t h e r  arm a r r i v e s  too .  
* /  

wa i t ( rvO,  r v l ) ;  

Do o t h e r  mot ions ,  e . g .  go beck to  the  o r i g i n a l  p o i n t s .  
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move(~mO, pO); 
move(&ml, p l ) ;  
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/* 

*/ 

The "wait" function i s  called from the user level. It adds two 

motions to each queue and binds the first to the 

interrupt-level function "_wait()". The function "_wait" does 

the actual work of synchronising the motions; "wait()" just 

sets things up for it. 

long idO, id l ;  
i n t  s t a t e _ f l a g  = O; 

/* the id"s of the motions to be synchronized */ 

/* state flag */ 

void wait(lO, ii) 

Link *i0, *ii; 
{ 

void _wait(); /* I n t e r r u p t  l e v e l  f u n c t i o n  */ 

mO.specs.control = Go; 
mO.specs.fO = _wait; 

idO = movereq(~mO); 

/* Tie the function _wait to the motion. */  
/* Queue the motion for motion system #0 */ 

ml.specs.control = Go; 

ml.specs.fO = _wait; /* Do the same for motion system #I 

idl = movereq(aml); 
/* 

** Put two motions to act as ''buffers'' 
*/ 

mO.specs.control = Go; 

movereq(~mO); 

ml.specs.control = Go; 

movereq(&ml); 

state = i; 

*/ 

/* 

*/ 

The interrupt level function "_wait". If the motion associated with 

idO becomes active (i.e. mB) before the motion associated with idl 

does, then it puts itself to sleep and wakes itself up when the other 

motion catches up. And, vice versa. 

void _wait(iddO, iddl) 

long iddO, iddl; 
{ 

if (flag == 0) { 
return ; 

} 
/* ignore  */ 
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*/ 

m* 

./ 

*/ 

Case I: Both motions have arrived and are ready! 

We kill the bogus motions and proceed. 

i f  ( f l a g  kk ( m O . e . m B - > i d  == idO)  k~ ( m l . e . m B - > i d  == i d l )  

k~ ( c u r r e n t _ s y s t e m  == kmO)) { 

m O . e . m B - > c o n t r o l  = End;  

m l . e . m B - > c o n t r o l  = End;  

f l a g  = O; 

return; 
) 

Case 2: Motion System #0 is ahead of time---We put it to Sleep. 

if (flag == 1 k~ mO.e.mB->id == idO 

mO.e.mB->control = Sleep; 

f l a g  = 2;  

r e t u r n ;  
} 

&k m l . e . m B - > i d  < i d l )  

Case 3: Motion System #I is ahead of time---We put it to Sleep. 

i f  ( f l a g  == 1 kit m O . e . m B - > i d  < idO 

m l . e . m B - > c o n t r o l  = S l e e p ;  

flag = 2; 

r e t u r n ;  
} 

m l . e . m B - > i d  == i d l )  
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Appendix B 

main() 
{ 

L i n k  * f l l ,  * f 1 2 ,  * f 1 3 ;  

T r a n s f o r m  f i n g e r 1 ,  f i n g e r 2 ,  f i n g e r 3 ,  d r i v e ,  

h o l d 1 ,  h o l d 2 ,  h o l d 3 ,  o b j e c t ;  

Transform rot_increment, rot_decrement; 

long id; 
i n t  i ;  
e x t e r n  l o n g  m o v e 3 ( ) ;  /*  t h i s  r o u n t i n e  h a n d l e s  a m o t i o n  w i t h  3 l o o p s  * /  

/* 

• * C r e a t i o n  of  r o t a t i o n  m a t r i c e s  r e p r e s e n t i n g  0 . 1  r a d i a n s  r o t a t i o n s  a r o u n d  

• * t h e  z - a x i s .  
, /  

r o t _ i n c r e m e n t  : r o t _ t o _ r o t m ( 0 . 1 ,  z u n i t ) ) ;  

r o t _ d e c r e m e n t  : r o t _ t o _ f o r m ( - 0 . 1 ,  z u n i t ) ) ;  
/* 

• * C r e a t i o n  o f  t h e  k i n e m a t i c  l o o p s  t h a t  d e s c r i b e  t h e  p o s i t i o n  o f  t h e  f i n g e r s  

• * when t h e y  a r e  g r a s p i n g  t h e  o b j e c t .  Note  t h a t  t h e y  a l l  s h a r e  %he same 

• * d r i v e  t r a n s f o r m .  
*/ 

fll : ploop(~fingerl, mmg, ~Irive, cmg, 8aholdl, NoFun, ~object, NoFun ); 
f12 = ploop(afinger2, mmg, &drive, cmg, Lhold2, NoFun, ~object, NoFun ); 

f13 = ploop(afinger3, mmg, ~drive, cmg, ~ahold3, NoFun, &object, NoFun ); 

k i l l _ o n _ c o n t a c t ( m o v e 3 ( f l l ,  f 1 2 ,  f 1 3 ) ) ;  

for (i=O; i<I0; i++) { 
holdl.r = tr_mult(holdl.r, rot_increment); 
hold2.r = tr_mult(hold2.r, rot_increment); 
hold3.r = tr_mult(hold3.r, rot increment); 

move3(fll, f12, f13); 
} 

f o r  ( i = O ;  i < 1 0 ;  i + + )  { 

h o l d l . r  = t r _ m u l t ( h o l d l . r ,  r o t _ d e c r e m e n t ) ;  

h o l d 2 . r  = t r _ m u l t ( h o l d 2 . r ,  r o t _ d e c r e m e n t ) ;  

h o l d 3 . r  : t r _ m u l t ( h o l d 3 . r ,  r o t _ d e c r e m e n t ) ;  

move3(fll, f12, f13); 
} 

v o i d  k i l l _ o n _ c o n t a c t ( m o t i o n _ i d )  

long motion_id; 
{ 

extern MotionSystem *current_system; 
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extern Boolean made_contact(); 
static long id_of_interest; 

i f  ( c u r r e n t _ s y s t e m  := NULL) { 
/ *  

** R o u t i n e  was c a l l e d  f r o m  t h e  u s e r  l e v e l - - - R e m e m b e r  

** t h e  m o t i o n  i d  f o r  f u t u r e  r e f e r e n c e .  
* /  

i d _ o f  i n t e r e s t  = m o t i o n _ i d ;  
} 

else { 

i f  ( c u r r e n t  m o t i o n - > r e B - > i d  :=  i d  o f _ i n t e r e s t )  { 
/*  

** R o u t i n e  was c a l l e d  f r o m  i n t e r r u p t  l e v e l  a n d  we a r e  s e r v i c i n  E 

, ,  t h e  m o t i o n  we a r e  i n t e r e s t e d  i n .  I f  c o n t a c t  ( w i t h  t h e  o b j e c t )  

** i s  d e t e c t e d  t h e n  we k i l l  t h i s  m o t i o n .  
* /  

i f  (made c o n t a c t ( ) )  { 

current_motion->mB->control : End; 
) 

) 


