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Abstract

We present an efficient structure for the computation of robot
dynamics in real time. The fundamental characteristic of this
structure is the division of the computation into a high-priority
synchronous task and low-priority background tasks, possibly
sharing the resources of a conventional computing unit based
on commercial microprocessors. The background tasks compute
the inertial and gravitational coefficients as well as the forces
due to the velocities of the joints. In each control sample pe-
riod, the high-priority synchronous task computes the product
of the inertial coefficients by the accelerations of the joints and
performs the summation of the torques due to the velocities
and gravitational forces. Kircanski et al. (1986) have shown
that the bandwidth of the variation of joint angles and of their
velocities is an order of magnitude less than the variation of
the joint accelerations. This result agrees with the experiments
that we have carried out using a PUMA 260 robot.

Two main strategies contribute to reduce the computational
burden associated with the evaluation of the dynamic equa-
tions. The first involves the use of efficient algorithms for the
evaluation of the equations. The second is aimed at reducing
the number of dynamic parameters by identifying beforehand
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the linear dependencies among these parameters, as well as
carrying out a significance analysis of the parameters’ contri-
bution to the final joint torques.

We selected an iterative procedure for the computation of
the inertial and gravitational coefficients (Featherstone 1984;
Renaud 1985, Izaguirre and Paul 1986), and a recursive iter-
ation for the computation of the velocity torgues (Khalil et al.
1986). In our experiments with a PUMA 260, we obtained a
set of 52 linearly independent parameters from an initial set of
78 parameters. Identification of the parameters revealed only
23 parameters to be significant.

These reductions permit the calculation of the inertias and
gravitational coefficients, for the PUMA 260 without load, with
98 muldtiplications and 70 additions and calculation of the ve-
locity torques with 140 multiplications and 110 additions. In
the case of an arbitrary load at the end effector, calculation of
the inertias and gravitational coefficients requires 190 multi-
plications and 150 additions and that of the velocity torques,
200 multiplications and 170 additions. Velocity torques, inertial
coefficients, and gravitational coefficients can be computed in
the background in 20 ms using an Intel 8087 microprocessor.
The synchronous task requires only six multiplications and six
additions per joint.

The actual code used to evaluate this dynamic model is
entirely computer generated from experimental data, requiring
no other manual intervention than performing a campaign of
measurements.
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1. Introduction

The inverse dynamics equations of a robot express the
generalized forces or torques to be applied at the differ-
ent joints of the manipulator as functions of the desired
position, velocity, and acceleration of these joints. The
well-known computed torque control scheme is based on
calculating the generalized forces from a model of the
manipulator. These forces can be used as signals to be
added as feed-forward terms in a conventional feedback
control loop in order to linearize and decouple the sys-
tem, thus generally improving performance. The equations
expressing these forces may be written in the following
form:

Fy = Dy + Lo * §s + Z Dij * G

j=1j#i
+ZDijk*q'z‘*4k+Di + Fyi x g
1,5,k
+ F; * sgn(g;), 1)

where D;; is the effective inertia at the joint 7, D;; is

the coupling inertia between joints 4 and j, D, are the
Coriolis and centrifugal coefficients at the joint ¢, D; is
the gravitational force at the joint ¢, [,,; is actuator inertia,
Fg; is the viscous friction, F; is the Coulomb friction, F;
is the generalized force at the joint ¢, ¢; is the velocity of
the joint ¢, and §; is the acceleration of the joint 1.

This control scheme requires the evaluation of the dy-
namic equations in real time—that is, within the sample
period of a digital controller. For this purpose, a great
deal of research has been aimed at reducing the com-
plexity of these equations. However, the problems of the
automatic generation of equations and identification of
the constant parameters in the equations (functions of the
moments of the links, frictions, dampings, and inertias on
the motors) are problems related in a practical fashion.

In this article, we address these three problems, making
appropriate references to previous works; explain our
contributions; and show the results obtained from our
experiments with the PUMA 260 robot.

2. Overview of the Inverse Dynamics
Computation

We now review the work that has been done in the past
from the point of view of implementation complexity and
parameter identification for the inverse dynamic equations
of robot manipulators.

2.1. Complexity of the Inverse Dynamics Calculation

There are two main approaches to derive the required
equations: the Lagrange formalism and the Newton-

Euler formalism. The Lagrangian approach, developed
by Uicker (1968), has been used by several researchers,
including Khan and Roth (1971), Paul (1972), and Bejcsy
(1974). The principal disadvantage of this formulation is
the complexity in the order O(n*) caused by redundan-
cies in the calculation. A simplification using a forward
recursion on the velocities and accelerations of the joints
and a backward recursion on the generalized forces was
introduced by Hollerbach (1980; 1983). This approach
simplified the computation substantially, reducing the
complexity to a linear function of the number of joints—
i.e., O(n). Unfortunately, this method cannot compute
the dynamics coefficients that depend only on the joint
angles. It thus encounters the same problem encountered
by the Newton-Euler computation. Megahed (1984) cal-
culated the dynamic equations based on the Lagrange
equations and the dynamic coefficients. The complexity
achieved is in the order of O(n), requiring approximately
1000 multiplications and 700 additions for a general ma-
nipulator with six degrees of freedom.

Featherstone (1984), following a spatial notation, and
Renaud (1984), following a tensorial notation, have re-
duced the computation of the dynamic coefficients using
the Lagrangian method and the notation of the “com-
pound link.” We used the theorem of “conservation
of momentum” (Izaguirre and Paul 1986), achieving
equivalent results in the calculation of the inertial and
gravitational coefficients. Basically, the computation con-
sists of the calculation of the moments of the “compound
link” 7 (the link formed by the links ¢ through the last
link) as a function of the moments of the “‘compound
link™ i + 1. This recursion leads to large savings in the
calculations and provides a systematic method for calcu-
lating the dynamic coefficients. The complexity resulting
from this approach is O(n?) if the entire dynamic model
is computed and O(n?) if only the inertial and gravita-
tional coefficients are calculated.

The second approach, the Newton-Euler method,
consists of calculation of the generalized forces by using
Newton’s law to calculate forces and Euler’s law to cal-
culate torques. One of the first methods of calculation of
the generalized forces was developed by Likins (1971).
Luh et al. (1980) developed an algorithm using a
forward recursion for the velocities and acclerations
of the joints and a backward recursion for the calcula-
tion of the generalized forces. The complexity of the
algorithm is O(n), and only 800 multiplications and
600 additions are required for a general six-degree-of-
freedom manipulator. Khalil et al. (1986), based on this
previous work, reduced the computation by regrouping
common terms. The dynamic equations can be calcu-
lated by this algorithm in 540 multiplications and 480
additions in the case of a general six-degree-of-freedom
manipulator.
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2.2. Computational Structures for the Inverse Dynamic
Equations

Different approaches have been developed for the com-
putation of dynamic equations in real time. Luh et al.
(1980), based on the Newton-Euler method, computed the
dynamic equations for the Stanford manipulator in 4.5 ms
using floating point assembly language in a PDP-11/45.
Raibert (1977) used look-up tables to compute the dy-
namic equations. A total of 460 multiplications and 260
additions were required to calculate the equations of a
general six-degree-of-freedom manipulator, reducing the
complexity of the Newton-Euler method by a factor of 2.
Lin and Luh (1982) described a procedure for scheduling
subtasks among a group of six microprocessors, one per
Jjoint, in order to compute the Newton-Euler equations.
Their estimation indicates that 320 multiplications and
280 multiplications are required to compute the dynamics
of a six-degree-of-freedom manipulator.

Orin et al. (1985) introduced a structure of control by
dividing it into 10 different tasks, arriving at the conclu-
sion that the longest task is the one that computes the
inverse dynamics. Lathrop (1983) has studied the par-
allel computation of the inverse dynamics. A pipelined
architecture reducing the Newton-Euler computation by
two orders of magnitude was proposed. The latency to
compute the dynamics of a six-degree-of-freedom ma-
nipulator became of the order of 15 multiplications and
43 additions. The Newton-Euler parallel implementation
reduced the complexity to a logarithmic expression on the
number of joints. Only 11 multiplications and 28 addi-
tions are required to compute the manipulator dynamics.
Also, a systolic pipeline implementation is possible, re-
ducing the latency to only four floating-point operations.
The disadvantage of this method lies in the difficulty of
implementation, because custom-designed very large scale
integration (VLSI) devices are required, increasing the
cost of the product. We will introduce later a solution
based on microprocessors, which has the advantages of
an easy implementation, maintaining at the same time the
required speed of computation and the accuracy in the
calculation of the equations.

2.3. Hdentification of the Robot’s Parameters

The constant parameters of the dynamic equations depend
on the masses, centers of gravily, and inertias of the links,
as well as on the inertias and frictions of the motors. Fer-
reira (1984) realized that the torques could be expressed
as a linear function of these parameters. He also pointed
out that many parameters were linearly dependent and
that it was necessary to eliminate these dependencies.
However, no algorithm was suggested to achieve this. In
his experiments, he identified the parameters using the

348

torque measured in the first joint of the robot THS, using
a Kalman filter.

An et al. (1985) identified the parameters of a direct-
driven arm by using a least-squares method to fit the
measured torques along a given trajectory. The joints’
position and torque along the trajectory were measured,
estimating the velocity and acceleration. However, the
problem of the elimination of the linearly dependent para-
meters was not mentioned, although it may introduce
erroneous estimation of the parameters. Nevertheless, the
fit seemed good. Khosla and Kanade (1986) presented
an algorithm to estimate the linear dependencies in the
dynamic model. Olsen and Bekey (1986) identified the
constant parameters in simulation, but special cases were
considered to identify different parameters. Finally, Arm-
strong et al. (1986) estimated the parameters of a PUMA
560, disassembling the robot to directly measure the vari-
ous inertial parameters. They were also able to perform a
significance analysis in order to reduce the complexity of
the model.

The next section presents an identification method
based on fitting the measured torques over different tra-
jectories, removing the linear dependencies, and at the
same time performing a significance analysis, which re-
duces the computation considerably.

3. Our Approach

We now present a new approach, based on conventional
microprocessors, to compute the inverse dynamics in

real time. The scheme is based on the division of the
computation into a high-priority synchronous task and

a background task (Izaguirre and Paul 1985, 1986). The
background task updates the inertial and gravitational
coefficients, as well as the generalized forces resulting
from the velocities of the joints. The synchronous task
computes the final generalized forces by multiplying

the inertial coefficients by the acceleration of the joints,
adding at the same time the gravitational and velocities
forces. This computational scheme agrees with the exper-
iments that have been done by Kircanski et al. (1986).
Trajectories for the PUMA 560 robot have been calcu-
lated and the bandwidth of the position, velocity, and
acceleration of the joints respectively analyzed. This work
led us to conclude that the position and velocities spectra
are similar, whereas the spectrum of the acceleration is
about five times larger. In our experiments, we estimated
the velocities and accelerations from the measurements of
the joint angles.

We wanted to calculate the inertial coefficients, as well
as the forces caused by the velocities, as fast as possible.
To do so, we selected an efficient recursive algorithm to
compute the inertial and gravitational coefficients (Iza-
guirre and Paul 1986) and an efficient recursive algorithm
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to compute the velocity forces (Khalil et al. 1986). Iden-
tification of the parameters permits a further reduction by
first eliminating the linear dependencies and dropping the
parameters that are not significant.

In the next sections we will explain in detail the com-
putation and identification of the dynamic coefficients,
giving the results obtained for the PUMA 260 robot.

4. Calculation of the Dynamic Coefficients

In this section we first develop the equations for the in-
ertial and gravity-loading coefficients for a infinitesimal
mass dm located in link j. These cquations are elaborated
from the theorem of conservation of the momentum (Iza-
guirre 1985, 1986), leading to an easy and understandable
procedure. The calculation for the entire link will be ob-
tained by integrating these formulas over the mass of the
link.

4.1. Calculation of D;js

The coefficient D;; corresponds to the generalized force
in the joint j caused by the acceleration of the joint 2. We
will consider only the terms for which ¢ < j and then
show that D;; = D;;. We consider in this article the
revolute-revolute case for the joints ¢ and j. (All other
cases are treated in detail in Izaguirre et al. [1987]). The
acceleration §; is different from zero, but all the other
accelerations and velocities are set to zero.

In the revolute-revolute case, the term D;; corresponds
to the torque in the joint ¢ caused by acceleration ¢; only.
This torque can be calculated by derivating the angular
momentum around the axis 7 with respect to time. We
recall that the angular momentum of a point of mass
dm with respect to a coordinate system is calculated
by the cross product r x v dm, where r is the position
and v is the velocity of the mass dm in this coordinate
system. The variation of the angular momentum around
zis dm r; x (z; x r;) - 2;G;At. The torque is calculated
by differentiating the angular momentum with respect to
time:

[; =dm r; X (Zj x I'j) o AT 2)

The term D;; is then given by:
Dij = dmri X (Zj X I']') R 1
= dm(z; X ;) - (Z; X r;). 3

This formula reveals the symmetry between D;; and Dj;.

4.2. Calculation of D;s

To compute the gravity coefficients DD;, we consider the
revolute case (the general case being treated in Izaguirre
et al. [1987]).

The torque exerted by the gravity on the revolute joint
is equal to:
I;=dm(r; xg)-z, £}

where g is the acceleration caused by gravity.

To compensate for the gravity load, a torque must be
exerted in the opposite direction. Thus the coefficient D;
is given by:

Dy = —dm(r; X 8) - ;
= —dm(z; X ;) - 8. ()}

4.3. Integration of the Equations

In this section we will integrate the equations derived
earlier over one link. This link corresponds to the “com-
pound link™ 7, the link formed by the links j through

the last link, n. In fact, the calculation of the coefficients
D;; and D; depends only on the acceleration of the joint
j, with the other links considered relatively frozen to
each other, A recursive calculation of the moments of the
“compound link” j as a function of the “compound link”
7+ 1 leads to a large reduction in the calculation of the
inertial and gravitational coefficients. This recursion will
be explained later in detail.

The most difficult term to integrate is the parameter
D;; for the revolute-revolute case. The expression of this
term for a point mass situated in the “compound link” j,
(g > 1), 18

Dy; = dm(z; x 1) - (Z; X 1))
=dm(z; x (p; +1;)) - (z; x 1 ), (6)

where p; is the vector between the origins of frames 3
and j and 1; is the vector between the origin of frame j
and the elementary mass dm.

The expansion of this expression leads to the following
formula:

Dij =dm(z; x pi) - (z; x ;) + (2, x 1;) - (z; x1)]. (7)

The integration of the first term is obtained by the sub-
stitution of the point mass by the center of gravity of the
“compound link.” The last term can be integrated using
tensor notation. The term (z; x I;) is expressed in a ten-
sor notation as —ijzi or as ziij, leading to the following
expression:

dm(z; x ;) (z; x 1) = —dmziijiij, (8)
0 i 0 =l Uy
_lj ;= — ( ljz 0 —ljz) ljz 0 _ljz)
—ljy ljx 0 _ljy lj:v 0
l].ZZ -+ ljzy —ljzljy —ljzljz
= —lalyy 1A+1E —lyls.
_ljmljz —liylsz ljzw + lJZZ
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This term, integrated over the link, corresponds to the
inertial matrix of the “compound link” j in the frame j.
The final expression is:

D,L']' = (Zi X pz) . (Zj X MJ *D]) + Ziiij
= (z; x p) - (zj x L) + z:1;z;, (C)]

where M; is the mass of the compound link j, D; is the
center of gravity of the “compound link” 7 on the origin
of the frame 7, L; is D; multiplied by M; (i.e., the first
moment of the “compound link” j in the frame j), and
ij is the inertia matrix of the “compound link” j in the
origin of the frame j.

4.4. Calculation of Coefficients Using Homogeneous
Transformations

In this section we explain how the inertial and gravita-
tional coefficients can be computed once the architecture
of the robot is defined by means of homogeneous trans-
formations. These transformations describe the coordinate
changes between the 7th and jth frames. Let the ‘T}s be
matrices representing these transformations, with the con-
vention that the first frame is the frame number O and the
last link corresponds to the frame number 7.

The part of the homogeneous transformation corre-
sponding to the rotation is the matrix ‘R;, and the part
corresponding to the translation is the vector ‘ipj.

The matrix *K; can be decomposed into three vectors
‘n;, o;. and *a;:

i

1
Nz ‘Ojz ‘Gjc  'Pjz
. in. 1o, tos T
ipo_ | Ty Y5y jy Py (10)
3= g io.. ig.. ip.
12 1z 3z p:]z

0 0 0 1

Expression for the D;; Coefficients

In this section we will derive the expressions of the dy-
namic coefficients using homogeneous transformations.
For the revolute-revolute case, equation (9) becomes:

Dy = (001)'R;1;000 )"

+ (=P P32 0) R (L, L2 0) (D)
where 7 € [0,n—1] and j € [0,n—1],n being the number
of degrees of freedom; (7L, 7L, 7L) are the components
of the first moments of the “compound link™ expressed in
the frame j; and /; is the inertia matrix of the compound

link j expressed in the frame ;.
Equation (11} leads to;

o D3
Dij = ("nj."052'a5z) | Ios;

1135
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+(AB) % (-1, 7L,)" (12)
with A= (_ipjy * injz -+ iij * in]-y)
with B = (—ipjy * iojz + ipjw * iojy) .
Expression of the D; Coefficients
Equation (5) can be expressed as
i i T
Di=—(9:9y9:) °Ri (—'LyLo0) ,  (13)

where (g gy g.) are the components of the acceleration
of gravity in the base frame. If the gravity is parallel to
the z axis of the base frame, equation (13) assumes the
following simplified form:

Di = —g (°ni; %0:) (—*Ly'La) T . (14)

4.5. Recursion of the Terms

In the previous sections we derived the expression of the
inertial and gravitational terms for the “compound link”
4. In this section we will work out the recursion for the
calculation of the moments of the “compound link” 7 as a
function of those of the “compound link” j + 1.

Recursion for the Masses

Obviously, M; = M;4, + m;4 1, where m; is the mass of
the link j and M; is the mass of the “compound link™ j.

Recursion for the First Moment

The first moment of the “compound link” j corresponds
to the product of the mass M, with the center of gravity
of the “compound link™ j. It can be expressed recursively
by using the following expression:

Ly =R (7L + 77 L + 77 pyiq0 « M), (5)
where

s JL; is the first moment of the “compound link” j
expressed in the frame j.

 J*1L; is the first moment of the link j expressed
in the frame 7 + 1. The fact that we expressed it
in the frame 7 + 1 is due to the selection of the
Denavit-Hartenberg parameters. The moments of
a link are constant with respect to the next frame,
rather than with respect to the jth frame. This is
why modified Denavit-Hartenberg parameters have
been sometimes used (Craig 1986; Khalil et al.
1986), in which case the moments of a link are
constant with respect to the relative frame. However,
the two approaches lead to similar results from a
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computational viewpoint; the differences are in the
notation.

» Jtlp,..| corresponds to the vector between the
origins of frames 7 and j 4 1. It is also constant
with respect to 7 + 1 if we choose the Denavit-
Hartenberg parameters and with respect to j if we
choose the modified Denavit-Hartenberg parameters.

Recursion for the Inertia

The inertia of the “compound link” j can be expressed as
a function of “compound link™ j 4+ 1 by transforming the
inertia of the “compound link” 5 + 1 from the origin of
the frame 74| to its center of gravity and from the center
of gravity to the origin of the frame j. Also, we have to
add the inertia of the link j following a similar pocedure.
This can be expressed as follows:

j+le — j+l]j+1 + My, % (j+1[)j+l j+]Dj+1)
LM [P Dy + )
* (D + 7 g500) |
+ L g« (PN T d)
—myx [Py T ) Oy 055000 ),
(16)

where 7111, is the inertia matrix of the “compound link™
J expressed in the frame 7 + 1, j“Ij is the constant
inertia of the link j in the frame j + 1, 7%'p;,,; is the
tensor corresponding to the vector p;_1;, j+lﬁ]+l is the
tensor corresponding to the center of the gravity of the
“compound link” j + 1 in the frame j + 1, and 7*'d,
is the tensor corresponding to the center of gravity of the
link 7 in the frame j + 1.

This leads to the following equation:

it —J i+1 j+1 i+la i+ 1a 7
Ty =Ryt (7L 7 T+ M #7507 i)
- o . T

X R =i’y =L P50, (17)
where the term 7+'p;;. | is a constant if defined in the
frame ;7 + 1.

These terms can be easily calculated using homo-

geneous transformation, as explained before for the cases
of the inertial and gravitational coefficients.

5. Calculation of the Velocity Terms

There are two main methods to calculate the velocity
terms. The first requires the calculation of the velocity
coefficients and Coriolis and centrifugal terms and the
multiplication of these coefficients by the velocities of
the joint. The Coriolis and centrifugal terms can be effi-
ciently calculated by using the Christoffel symbols over

the inertial terms (Renaud 1984). The second method
comprises the calculation of the velocity torques by us-
ing the Newton-Euler method. A simplification of this
method using intermediate variables has been proposed by
Khalil et al. (1986). This algorithm calculates the velocity
torques by ignoring the gravitational effects.

The advantage of this last method is that the inertial
and gravitational coefficients, as well as the velocity
torques, can be computed independently, unlike the
Christoffel symbols methods, which depends on the in-
ertial coefficients. Also the complexity of the method
is linear, rather than O(n?), for the method using the
Christoffel symbols.

The forward recursion for the velocities and accel-
erations, considering only the influence caused by the
velocities of the joints is the following:

w; = "'RT « [Thwis + (1 - 0)(00¢)7 ], (18)
g = TIRT  [Thi + (1 — o)+ T wi g x 00¢)"],

(19
Wy = IR % gy + 2% 0y x wy x FTRT(00 )7

+U; * 'pi—iy (20)

where w; is the angular velocity of the frame ¢ expressed
in the frame ¢, %, and %); are the angular and linear ac-
celerations of the framg\z' exBr\es/sgd in the frame ¢, and
U; is the matrix U; = 4ir; + aw; fw;.

The backward recursion can be expressed by using the
formula:

THF =m0+ Ui * L 21
BN = T 4+ T < P ey 22)
Yi="Ripr (TVfir1 +0F) (23)

g = Rt (Frier TN + Lo x o)
+ piir X fi (24)

where *T1F; is the force caused by the motion of link 7,
“+INf; is the torque caused by the motion of the link 1,

if. is the total force in the link ¢ expressed with respect
to the frame 4, and %; is the total torque in the link ¢
expressed with respect to the frame 4. Khalil et al. (1986)
picked intermediate variables that further simplified the
computation; the reader is referred to this article for more
detail.

6. Identification of the Dynamic Coefficients

The torques can be expressed as linear functions of the
masses of the first moments (the masses of the links
multiplied by the center of gravity of the links) and

the second moments (the inertia matrix of the links).

The easiest way to show this linear relationship is to con-
sider the Newton-Euler method. The forces and torques

Izaguirre et al.
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caused by the velocities and accelerations of these links
are linear functions of the moments of the links—i.e.,
products of these moments with functions that depend on
the velocities and accelerations of the links, as shown ear-
lier. In the backward recursion, these forces and torques
transform from one link to the previous one in a linear
form, and the influence of the new link is taken into ac-
count by the addition of the forces and torques caused by
the previous link to the force and torque caused by the
actual link. Finally, because the working force or torque
in a joint is a projection of the forces and torques, we
show that the dynamic equations can be expressed as a
linear function of the link moments.

This can be shown by using the results obtained in
the calculation of the inertial and gravitational coeffi-
cients. First, it is easy to verify that the “compound link”
moments are linear functions of the moments of the con-
stituent links. Second, the coefficient D;; and D); are
linear functions of the moments of the compound link.
Third, as the D;;; terms are calculated by the Christoffel
symbols which are additions of partial derivatives of the
D;; terms with respect to the joint angle, we prove that
the terms D;;; are linear function of the link moments.
Finaily, as the computation of the forces or torques is
made by multiplications of these coefficients by the ve-
locities and accelerations of the links, we prove that the
forces/torques are linear functions of the link moments.

The problem, however, is not trivial, as many of these
terms are mutually linearly dependent. It is important to
calculate these dependencies in order to seek a reduction
of the number of parameters to be identified, as well as to
arrive at a unique estimation. In the following paragraphs
we explain the method used to eliminate these depen-
dencies, as well as the experiments that were performed
using a PUMA 260 manipulator.

6.1. Algorithm to Identify the Linear Dependencies

Although there might exist analytical methods for calcu-
lating the linear dependencies between the moments of
the links, it is not easy to identify them. Instead, we have
implemented a numerical procedure to find these depen-
dencies. The algorithm is based in the calculation of the
rank of a matrix.

The dynamic equations can be written as:

T; = D(g, ¢, mm .- 1) (25)

where T'; is the generalized force of the joint i;
(M7 ... 7y is a vector of the moments of the links,
the Coulomb and viscous frictions, and the inertias of the
motors; 1(q, g, ) is a function of the positions, veloci-
ties, and accelerations of the joints.
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For the PUMA 260, there are 10 moments for each
link, six static frictions, six dampings, and six motor in-
ertias, making a total of 78 parameters. The function D
is computed numerically using the Newton-Euler method,
each time taking into account the torque caused by each
unit parameter—i.e., the torque caused by a parameter
with value equal to 1. For the motor inertias, Coulomb
frictions and viscous friction, the D parameters corre-
spond to the acceleration, sign of the velocity, and veloc-
ity of the joint, respectively.

A set of measurements leads to:

T=(DiDz...Dyp)mm...im)? . (26)

If we consider n different values of the position, velocity,
and acceleration of the joints, this system has a dimension
equal to (6, n,m) for the matrix D. If we consider 100
points, a six-joint manipulator leads to a matrix D of
dimension (600 x 78). The system is overdetermined, and
the linear dependencies correspond to the dependencies
between the columns of the matrix D. Suppose now that
the columns D - - - D; are linearly independent. We
augment the submatrix with the column D;, | to compute
the new rank. If the rank is equal to ¢ + 1, then the new
submatrix D) ... D;y, is linearly independent. If not,
D, is linearly dependent of the previous columns, thus
Oél*D1+"'+Dti*Di-|—a1;+1Di+[=O, 27
with a4, different from zero by construction. Next, we
have:

Di+1 = (—Q]/OZH_]) * D] — = (Ofi/aH,]) * D.L (28)

The expression for I' becomes:

P = (D] .. Dm) [(7’]1 — Mi+1 * Q’l/ai_,_]) . nm}T . (29)
We eliminate the dependencies by dropping the corre-
sponding parameters and modifying the remaining para-
meters in this last equation. The algorithm to calculate
the dependencies considers a £ matrix with 100 random
points and successively computes the rank of the sub-
matrices D) ... D;, dropping one parameter each time a
new dependency is found. We implemented the algorithm
by computing the rank using the singular value decom-
position method. To account for numerical errors, each
time a smallest singular value of the order of 107'° was
obtained, the matrix was considered singular.

Using the IMSL library, the dependencies for the
PUMA 260 were found in 15 minutes of YVAX CPU time.
From a starting set of 78 independent parameters, we ob-
tained 52 linearly independent parameters. We picked the
six motor inertias as the six first parameters, because they
are constant numbers. Two parameters were dependent on

The International Journal of Robotics Research


http://ijr.sagepub.com

the actuator inertias of links 1 and 2. The static frictions
and damping were independent of the other parameters.
This means that from a total of 60 moments, we obtained
34 linearly independent moments.

The identification was carried out on these new inde-
pendent parameters, and the PUMA 260 robot was run
over 10 different trajectories selected to excite the various
contributions to the dynamics of the manipulator.

7. Experiments

The experiments were performed by running a PUMA
260 over six predetermined trajectories and four randomly
generated trajectories. These trajectories were polynomi-
als that fitted points inside the range of each link of the
robot. We preserved the continuity of the trajectory, im-
posing zero-velocity conditions at the beginning and end
of each trajectory. The experiments were performed at
McGill University using the RCCL environment. The
curves were time scale updated to obtain maximum
torque responses and enhance the signal-to-noise-ratio.
The sampling period was 28 ms.

The collected data from the measured torque and mea-
sured position has been used to calculate the velocities
and accelerations of the joints, and we substituted these
values into the D model of the PUMA 260. The veloc-
ities and accelerations were estimated by finite differ-
ence using the formulas &; = (i1 — §;-1)/(27), and
d; = (;41 — ¥;-1)/(27), where 7 is the sampling period
(28 ms), to filter the accelerations and velocities values
(see Appendix A). We also dropped the first 15 and last
15 samples to eliminate the effects of transients.

We used a weighted least-squares procedure, because
the output torque caused by the first three links is 10 to
50 times larger than the output torque caused by the last
three links. This weighting is possible because the influ-
ence of the last three links over the first three is not very
significant. We calculated the average, standard devia-
tion, maximum and minimum values of the parameters.
Table 1 shows the results for the fitting of all 53 para-
meters.

In this table, the first six parameters correspond to the
actuator inertias. The last 12 parameters correspond to
Coulomb frictions (the fsis) and viscous frictions (the
dsis). The rest of the parameters correspond to moments
of the links of the robot. The first column in Table 1 cor-
responds to the parameter number in the identification.
The parameters considered as significant are marked by
an asterisk. The second column contains the representa-
tion of each parameter; the third through sixth columns
contain the average value, standard deviation, and maxi-
mum and minimum value, respectively, of the parameter
over a set of 10 different trajectories.

The significant parameters were calculated by look-
ing for the maximum contribution to the torque for each
parameter. The parameters whose contributions for all
trajectories were less than 1 percent of the maximum
measured torque were not considered significant. Only 23
parameters were found significant. Another identification
was made using only these 23 parameters, obtaining a
better distribution (that is, a smaller standard deviation).
This result can be attributed to the condition of the D
matrix. In the first case, the condition number—the quo-
tient between the smallest singular value and the biggest
singular value—was 0.033/828.8. When we limited the
fit to only 23 parameters, we obtained a condition number
of 0.35/146.0, which is 60 times better. The fit of the
parameters is shown in Table 2.

7.1. Identification Errors

The measured and fitting torques using the 23 parameter
averages that resulted from the fitting of the curves are
displayed in Appendix B. The results for the first three
joints are almost perfect, as very slight differences are
found (see Appendix B). For the last three joints, there
are larger discrepancies, because the measured torques are
small and the last three links are mechanically coupled.
This coupling is not yet taken into account in the model.

If we compare the results of the frictions measured for
the same robot by Lloyd (1984) (see Table 3), we can see
that they almost agree completely.

We also compared the dynamic coefficients that Lloyd
measured to calculate the gravitational coefficients. He
found three parameters c15 = —0.192N-m, c13 =
—1.1762N - m, ¢12 = 5.509N - m. Developing our
formulas (see Appendix A), we found that the coefficients
have the following values: c15 = —0.13743N - m,
cl13 = —1.176644N - m, ¢c12 = 5.51792N - m.

Using these parameters, we automatically generated
the program that calculates the inertias and gravitational
coefficients, as well as the program that calculates the
velocity torques (see Appendix A). These programs
permit (1) calculation of the inertias and gravitational
coefficients for the PUMA 260 without load, using 98
multiplications and 70 additions and (2) calculation of
the velocity torques using 140 multiplications and 110
additions. In the case of an arbitrary load at the end
effector, calculation of the inertias and gravitational
coefficients requires 190 multiplications and 150 addi-
tions and that of the velocity torques, 200 multiplications
and 170 additions.

7.2. Errors in Trajectory Following

To test the validity of our dynamic model, we have com-
puted the necessary torques to follow predetermined tra-
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Table 1. Statistics for the Parameters Obtained Experimentally

Parameter Representation Average Standard Deviation Maximum Minimum
1* ial 0.098889 0.050155 0.155265 0.07256
2" ia2 0.1436638 0.086779 0.243456 —0.0067
3" a3 0.048211 0.054446 0.136380 —0.031769
4 ia4 0.003262 0.012358 0.032090 —0.010854
5* ia5 0.012713 0.018743 0.041647 —0.030187
6" ia6 0.002808 0.002849 0.009251 —0.002870
7 mé 2721895 1.119838 4.311959 0.402778
8 x6 —0.0012975 0.002621 0.002830 —0.005907
9 y6 —0.000464 0.002 0.002262 —0.002939

10" % 0.012975 0.009833 0.023582 —0.004141
11 a6 0.00340 0.006396 0.010470 —0.00916
12 b6 —(.001549 0.005895 0.008865 —0.0107
13 cb 0.000513 0.001691 0.003652 —0.00208
14 d6é —0.000107 0.001391 0.002072 —0.0030
15 eb 0.000655 0.001307 0.003036 —0.00168
16 f6 —0.000123 0.000831 0.001565 —0.0013
17 x5 0.005288 0.012684 0.035485 —0.00479
18 y5 0.0067 0.014106 0.039692 —0.01085
19 as —0.000094 0.008077 0.012286 —0.0172
20 5 —0.003878 0.016054 0.019385 —0.0296
21 d5 0.000206 0.004036 0.007888 —0.00736
22 5 0.000139 0.002689 0.005776 —0.00354
23 5 0.002137 0.005822 0.016140 —0.00345
24 x4 0.004657 0.018356 0.046432 —0.01414
25* yi —0.344338 0.229325 0.117723 —0.6942
26" a4 0.086604 0.092222 0.196475 —0.11892
27" o4 0.078255 0.081800 0.176402 -0.11721
28 a4 0.006251 0.011871 0.032354 —0.01660
29 o4 —0.000380 0.004918 0.008801 —0.0053
30 4 0.000146 0.001974 0.003355 —0.00283
31 x3 0.015860 0.077495 0.242066 —0.05096
32 ¥3 0.068128 0.182303 0.254483 —0.33270
33 a3 —0.055563 0.09324 0.037403 —0.3020
34 d3 0.004356 0.020517 0.031289 —0.04308
35 e3 0.004208 0.027816 0.050051 —0.03657
36 3 0.005254 0.021493 0.031724 —0.03638
37 %2 0.014250 0.235012 0.512454 —0.32158
38 y2 —0.007559 0.040522 0.075899 —0.0645
39 d2 —0.017301 0.049358 0.066779 —0.0837
40 e2 —0.015461 0.026013 0.025235 —0.0641
41" 1 0.650330 0.074645 0.776301 0.565639
42~ fs2 1.379400 0.229495 1.640865 0.929609
43" fs3 0.600034 0.127999 0.831090 0.382789
44* fs4 0221244 0.038097 0.288517 0.162633
45" 55 0.039534 0.037993 0.099793 —0.03222
46" 156 0.097322 0.027456 0.135677 0.062352
47* dsi 0.640149 0.142105 0.957472 0.496185
48" ds2 1.054428 0.292792 1.639596 0.646664
49~ ds3 0.419111 0.177024 0.653683 0.065445
50* ds4 0.087686 0.002107 0.045901 0.146658
51 ds5 0.099686 0.070966 0.281025 —0.00686
52+ ds6 0.033299 0.012595 0.053150 0.019065
354
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Table 2. Statistics for the Significant Parameters

Parameter Representation Average Standard Deviation Maximum Minimum
1~ ial 0.091631 0.015729 0.115515 0.069620
2 ia2 0.136312 0.037337 0.205561 0.084086
3" ia3 0.030843 0.022379 0.046165 —0.032295
4> ia4 0.001781 0.005213 0.013764 —0.005222
5" ias 0.006759 0.012284 0.028195 —0.015815
6* ia6 0.001262 0.002065 0.003792 —0.004269
7* mb 2.768114 0.139741 2971715 2.395409
8* z6 0.014041 0.006980 0.022369 0.002290
9* y4 —0.382190 0.025796 —0.315692 —0.423311

10* a4 0.079781 0.022904 0.118200 0.036028
1+ c4 0.077761 0.021450 0.118039 0.033405
12* fsl 0.787033 0.048752 0.861973 0.703532
13" fs2 1.389280 0.221132 1.711836 1.080681
14" fs3 0.650706 0.045556 0.751500 0.593681
15 fs4 0.256854 0.031520 0.301434 0.199465
16* fs5 0.036607 0.041190 0.097840 —0.03550

17 fs6 0.106594 0.020605 0.140304 0.077563
18" dsl 0.575662 0.057868 0.685223 0.465081
19* ds2 0.944670 0.199482 1.362454 0.558198
20 ds3 0.417502 0.103817 0.589464 0.292471
21 ds4 0.066791 0.033318 0.113687 0.019180
22 ds5 0.101721 0.030324 0.155355 0.044809
23 ds6 0.030363 0.011697 0.056091 0.016647

jectories in two kinds of experiments: with joints 1, 2,
and 3 each run independently, and with joints 1, 2, and 3
run together. We have recorded the actual trajectories pro-
duced by controlling the robot PUMA 260 in open-loop,
using the computed torque, and obtaining the error with
respect to the nominal trajectories. We have experimented
with several trajectories, all of them giving very good re-
sults, at low and high speed. In addition, we could totally
compensate for the gravitational torque, eliminating the
effect of gravity on the robot.

As might be expected, in all the experiments, the er-
rors were smaller at high speed rather than at low speed
because the modeled system is essentially a double in-
tegrator. In the case of fast motions (about 180°/s), the
error in a trajectory of 90° is < 10% (Figs. 6 and 7).

We also realized that the gravitational force builds
up errors of large magnitude as the robot moves at low
velocity. To correct this, we have compensated for the
gravitational torque as a function of the joints’ actual po-
sitions, thus introducing an elementary form of feedback.
We can see in Figure 8 that the errors were considerably
reduced.

Finally, in Figures 7 and 9, it can be verified that the
model works well when three different joints move to-
gether, proving that the coupling inertias, as well as the
centrifugal and Coriolis terms, are well compensated for.

8. Conclusion

The method developed in this article allows for the real-
time computation of the dynamic equation of robot
manipulators. This has been achieved by dividing the
computation into background and synchronous tasks. This
separation was motivated by the inherent properties of
the dynamics of an industrial manipulator, which can be
experimentally observed. In addition, in the background
computation, we could separate the inertial and gravita-
tional part from the velocity torques, thus suggesting the
convenient allocation of two parallel tasks.

The reduction of parameters from 78 to 52 independent
parameters and from 52 to 23 significant parameters make
this even more significant. In effect, the computational
load required to obtain an accurate estimate of the inertial
and gravitational terms amounts to only 100 multiplica-
tions and 70 additions per update. The computation of
the velocity torques estimates requires a similar compu-
tational load. When the manipulator carries an arbitrary
load at the end effector, the computation for the inertial
and gravitational terms becomes 200 multiplications and
150 additions; approximately the same number of opera-
tions are needed for the velocity torques.

The code required to implement this model in a digital
computer is entirely computer generated, requiring no

Izaguirre et al.


http://ijr.sagepub.com

Table 3. Comparison of the Results Obtained for the
Frictions

Parameter Value Found  Value Found
Number Representation inJ. Lloyd by Our Method

1* fsl 0.760 0.7870
2* fs2 1.620 1.3892
3 fs3 0.850 0.6507
4% fs4 0.175 0.2568
5* fsS 0.178 0.0366
6* fs6 0.140 0.1065
7* dsl 0.71 0.5756
8* ds2 0.55 0.9446
9* ds3 0.50 0.4175

10* ds4 0.05 0.066

11 ds5 0.030 0.101

12~ ds6 0.065 0.030

manual intervention save for performing a campaign of
measurements.

We have also experimentally evaluated the compu-
tational model by measuring the errors produced by
controlling the robot in open-loop, feeding the robot
actuators with currents corresponding to the calculated
torques in order to follow predetermined trajectories. The
results are very good for slow and fast motions, proving
the validity of the model.

Several points could be taken into account in order to
improve the results. First, we considered the friction con-
stant, which is, of course, not true in a real manipulator.
This might explain most of the discrepancies of our iden-
tification results. However, the range of variation is small,
making the approximation reasonable, obtaining at the
same time a very good fit.

As a conclusion we feel that the identification proce-
dure outlined in this article is robust and easily applicable
to real-time control. It provides an accurate model at a
low computational cost available on conventional low-
cost computing hardware. In addition, this computational
structure should become even more applicable to new
robot manipulator designs, as the research is focused
on obtaining manipulators with very small coupled iner-
tias.
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Appendix A. Generated Code Example

This appendix shows an example of the input specifica-
tion file, as well as the resulting output “C” code after
experimental data processing, parameter identification,
and model reduction. The code computes the inertial
and gravitational parameters for the PUMA 260 without
load. Additional examples are included in Izaguirre et al.
(1987).

number_links 6

mass 0 0 0 0 O nm6 % initial link masses

sigma 0 0 0 0 0 0 % joint types: all revolute

alpha 90 0 -90 90 -90 0}, D-H parameters: twist angles

dpar 0 0 d3 44 0 0 ¥ D-H parameters: distances

apar 0 a2 % D-H parameters: offsets

adyna 0 0 0 % Link inmertia

bdyna ¢ © oo

cdyna O 0 0o

ddyna 0 0

edyna O O
0
0
Q
0

<

4

a
= o

000¢C
0 al 0
000¢C
0 cdd O
0000
000G
000¢QC
000¢C

[l el

fdyna ©
xgrav 0
ygrav 0 0 0y4 00 % ...
zgrav 0 0 0 0 0 z6

ial ai2 ia3 ia4 iab ia6
option moment
option_update moment
variable m6 2.768114 ¥ Some initial values
variable z6 0.01401 % ...

variable y4 -0.382190

variable ad4 0.079781

variable cd4 0.077761

variable ial 0.091631

variable ia2 0.136312

variable ia3 0.030843

variable ia4 0.001781

variable iab 0.006769

variable ia6 0.001262

constant a2 0.20320

constant d3 0.12624

constant d4 0.20320

stop

% Link centers of gravity X limk masses

% Motor inertia

The generated “C” code is listed below.

#define M6 2.768114
#define Z6 0.01401
#define Y4 -0.38219
#define AD4 0.079781
#define CD4 0.077761
#define IA1 0.091631
#define TA2 0.136312
#define TA3 0.030843
#define TA4 0.001781
#define IAS 0.006759%
#define IAE 0.001262
#define MC6 M6
#define MC5 MC&
#define MC4 MC5
#define MC3 MC4
#define MC2 MC3
#define MC1 MC2
#define A2 0.2032
#define D3 0.12624
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#define D4 0.2032
#define KP21 A2
#define KP32 (- D3)
#define KP42 D4

#define FP42 KP42 *
#define FP32 KP32 *
#idefine FP21 KP21 »
#define NP411 MC4 *
#define NP433 MC4 » (KP42#KP42)
#define NP311 MC3 *
#define NP333 MC3 x
#define NP222 MC2 *
#define NP233 MC2 *

MC4
MC2
MC2
(KP42*KP42)

(KP32%KP32)
(KP32*KP32)
(XKP21%KP21)
(KP21%KP21)

#include <math.h>
dyn_robot(Q,DIJ,DI)
fleat Q[7],DIJ(7][7],D1[7];

float GRAV=9.81;

float 51,52,53,54,55,56;

float C1,C2,C3,C4,C5,C6;

float C£23,823;

float C4C4,S454,54C4,C3C3,5333,83C3,C2C2,8202;

float §282,C1C1,51C1,8181;

float T1214,71224,T1411,T1414,T1424,T1421;

float BS21,BS23,BS22,BA31,BS33,BS31,B532,BA42;

float BS43,BS42,BS41,BA52,BS52,BS51,BS63;

float J$222,15223,J8233,JA322,J4333,J8311,JS312,J8322;
float J$313,J8323,J8333,JA411,J4433,38411,JS412,J8413;
float JS422,J)8423,JA511,JA5633;

float PS031,PS041,PS042,PS131,PS141,PS142,PS241;

51 = sin(Q[11);

C1 = cos(Q[1]1);

52 = sin(Q[2]);

€2 = cos(Q[2]);

S3 = 8in(Q[3]);

C3 = cos(Q[3]};

S4 = sin(Q41);

C4 = cos(Q[4]);

85 = sin(Q[5]1);

C5 = cos{Q[5]);

86 = sin{Q[6]);

C6 = cos{Q[6]);

€23 = cos(Q[21+Q[3]);

$23 = sin(Q[2]+Q[31);

C4C4 = C4 * C4;

8454 = S4 = 84;

S4C4 = 34 » C4;

€3C3 = C3 * C3;

$383 = 53 * $3;

$3C3 = 53 * C3;

€202 = C2 * C2;

8202 = 82 * C2;

8282 = 52 * §2;

C1C1 = C1 * C1;

S1C1 = 51 * C1;

S151 = S1 = S1;

T1214 = (C2 * A2);

T1224 = (82 * 42);

T1411 = ((C23 * C4));

T1414 = (- (523 * D4) + T1214);
T1424 = ((C23 * D4) + T1224);
T1421 = ((S23 * C4));

BS63 = (Z6);

BS51 = (- (S5 * BS63));

BSB2 = ((C5 * BS63));

BAB2 = ((Y4 + BSS52) + FP42);
BS41 = ((C4 * BS51));

BS42 = ((S4 * BS51));

BS43 = (BA52);

BA42 = (BS42 + FP32);

BS32 = ((S3 * BS41) + (C3 *= BS43));
BS31 = ((C3 » BS41) - (S3 = BS43));
BS33 = (- BA42);

BA31 = (BS31 + FP21);

BS22 = ((S2 * BA31) + (C2 = BS32));
BS23 = (BS33);

BS21 = ((C2 * BA31) - (S2 * BS32));

JAG33 = (CD4 - NP433);
JAB11 = (AD4 - NP411);

JS423 = (0 - (D4 * BS42));

JS422 = ((S454 * JAS11) + (C4C4 * JA533) + (2.0 * (D4 = BS43)));
JS413 = (0 - (D4 * Bs4l));

Js412 = ((S4C4 * (JAS11 - JAS33)));

JS411 = ((C4C4 * JAB11) + (S4S54 * JA533) + (2.0 * (D4 * BS43)));
JA433 = (- NP333);

JA411 = (JS411 - NP311);

15333 = (J5422);

JS323 = (- (83 = JsS412) - (D3 * BS32));

35313 = (- (C3 * J5412) - (D3 * BS31));

JS322 = ((8383 * JA411) + (C3C3 * JA433) + (2.0 * (D3 * BS33)));
JS312 = ((83C3 * (JA411i - JA433)));

JS311 = ((C3C3 * JA411) + (S353 * JA433) + (2.0 * (D3 % BS33)));
JA333 = (JS333 - NP233);

JA322 = (JS322 - NP222);

JS233 = (JA333 + (2.0 * ((T1224 * BS22) + (T1214 * BS21))));
J8223 = ((82 » JS313) + (C2 * JS323) - (T1224 * BS23));

JS222 = ((8282 * JS311) + ((2 = S2C2) * JS312) + (C2C2 » JA322) +

(2.0 * (T1214 = BS21)));

PS031 = ((C23 = D3));

PS041 = ((T1411 * D3) + (84 * T1414));

PS042 = (- (823 * D3));

PS131 = (- (C23 * T1224) + (523 » T1214));

PS141 = (- (T1411 * T1424) + (T1421 » T1414));
PS142 = ((S23 * T1424) + (€23 = T1414));

PS241 = (- (C4 * D4));

DIJ[1][1] = ((JS222) + IA1);

DIJ[1][2] = (JS223);

DIJ[1][3] = ({82 * JS313) + (C2 * JS323));
DIJ[1][4]) = ((S23 * JS413) - (BS42 * PS031) + (BS41 = T1214));
DIJ{1]1[5] = (- (BS52 * PS041) + (BSS1 * PS042));
DIJ[1](6] = (0);

DIJ[2][2] = ((JS233) + IA2);

DIJ[2][3] = (JS422 + (BS31 * A2));

DIJ[2][4] = (- JS423 - (BS42 * PS131));
DIJ[2][B] = (- (BSS52 » PS141) + (BS51 * PS142));
DIJ[2][6] = (0);

DIJ[3][3] = ((J8422) + IA3);

DIJ[3][4] = (- JS423);

DIJ[31[6] = (- (BSB2 * PS241));

DIJ(31(6] = (0);

DIJ[4]1[4] = 1A4;

DIJ{4])[5] = (O);

DIJ{4][6] = (0);

DIJ(5][5] = IAS;

DIJ(5] [6) = (0);

DIJ[6]1[6] = 146;

DI[1] = (0);

DI[2] = (GRAV * (BS21));

DI[3] = (GRAV * (- (BS32 * 82) + (BS31 * C2))};
DI[4] = (GRAV * (- (BS42 * S23)));

DI(5] = (GRAV # (- (BS52 * T1421) + (BS51 * €23)));
DI(6] = 0;

Appendix B. Experimental Results

We show here the results of the model fit, as well as tra-
jectory following in open-loop control. Figure 1 contains
one of the several trajectories used to identify the dy-
namic coefficients. Figures 2 and 3 shows the velocities
and accelerations, respectively, estimated using central
differences of positions and velocities, respectively.

Figure 4 shows, for the same trajectory, the measured
and the estimated torque obtained by the model using 52
linearly independent parameters. The fit is very accurate
for all joints. Figure 5 shows, for the same trajectory, the
measured and the estimated torque obtained by the model
using only 23 most significant parameters. The fit is still
very accurate for the first three joints, showing small
differences for the last three ones.
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Fig. 1.

Fig. 2.
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Fig. 5. Fitting of the torques for the same trajectory using Fig. 7. Errors in trajectory following. First three frames:
23 parameters. First three joints together in slow motion. Last three
frames: First three joints together in fast motion.
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Fig. 9. Errors in trajectory following (same as Figure 7,
but with on-line gravity compensation).

Finally, Figures 6 and 7 contain the errors in trajectory
following in open-loop control. Figure 6 shows the trajec-
tories for individual joint motions of the first three joints.
Figure 7 shows the trajectories for the motion of all three
joints moving together. Figures 8 and 9 are similar to
Figures 6 and 7 after on-line gravitational compensation.
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