
The Synchronization of Multiple
Manipulators in Kali *

345

Ajit N i l akan tan and Vincent H a y w a r d
McGill Research Center for Intelligent Machines, 3480 Univer-
sity Street, Montrdal, Qudbec, Canada H3A 2A 7

This paper presents a strategy in multi-manipulator synchroni-
zation that treats the motions as finite state machines. We use
the concept of a motion-system as a convenient abstraction for
programming explicitly coupled motions. Motions, treated as
processes, can communicate /affect one another through the
use of control signals and the dynamics of the system are taken
into account during the transitions between different motion
states. Using examples, we show that such a scheme is general
enough to cover diverse situations as two cooperating arms in a
multi-manipulator environment, synchronizing motion of the
feet of a legged robot for simple gaits and synchronizing the
fingers of an anthropomorphic end-effector for simple grasping
strategies.

Kevword~: Robot programming, Robot control, Multi-manipu-
lator control, Multi-manipulator synchronization.

Ajit Nilakantan was born in Banga-
lore, India, on Sept 20, 1963. He re-
cieved a B. Eng. degree in electrical
engineering with a minor in mathe-
matics at McGill in 1985. This was
followed by a M. Eng. Degree ('87)
which involved the development of a
VLSI-based tactile sensor. He then
spent a year contributing to the KALI
project at McGill. He is currently
working with Les Syst6mes Cimmetry,
an R & D c o m p a n y located in
Montr6al. His research interests in-

clude mathemat ical methods in manufactur ing, image
processing and robotics applications.

* Received May 12, 1988; revised January 6, 1989; accepted
April 10, 1989. The original version of this paper was
presented at the 2nd International Symposium on Robotics
and Manufacturing (ISRAM), Albuquerque, New Mexico,
November 16-18, 1988. The published proceedings of this
meeting may be ordered from: CAD Laboratory for Sys-
tems/Robot ics , EECE Dept., UNM, Albuquerque, N M
87131, USA.

North-Holland
Robotics and Autonomous Systems 5 (1989) 345-358

1. Introduction

The mutual synchronization of the various arm
motions and the synchronization of these motions
with respect to external events is one major con-
cern in the area of multi-manipulator control. In
particular, in order to achieve cooperation in a
multi-manipulator environment, one must provide
mechanisms that can ensure accurate and predict-
able time-space rendezvous between the arms and
capture these mechanisms into software primi-
tives. These primitives must also provide means of
handshaking between the motions of manipulators
so that one motion can be predicated by the
outcome of another motion.

There is, unfortunately, not a lot of work in this
area. One can, however, find an analogy between
the multi-robot synchronization problem and that
of the synchronization of jobs by a multi-tasking
operating system. The latter problem is better
understood and more studied. There are well
established theories and ample results provided by
computer science in the design of operating sys-
tems [2].

Vincent Hayward was born in Paris,
France, on January 5, 1955. He re-
ceived the Diplbme d'Ing6nieur from
Ecole Nationale Sup6rieure de M6ca-
nique de Nantes, Nantes, France, and
the Dipl6me de Docteur-Ing6nieur
from Universit6 de Paris XI at Orsay
in computer science, in 1978 and 198l,
respectively.
From December 1981 to December
1983, he was at Purdue University, in
the Depar tment of Electrical En-
gineering, the first year as a Visiting

Scholar sponsored by CNRS's ARA program (Automatique et
Robotique Avanc6e), and the second year as a Visiting Assis-
tant Professor. There he developed RCCL, a robot control and
programming system. He then joined CNRS at the LIMSI
laboratory in Orsay, where he worked as Attach6 de Recherche
on trajectory planning and spatial reasonning until May 1985.
He is now Assistant Professor with the Department of Electri-
cal Engineering at McGill University, where he teaches a
course on Artificial Intelligence, and a Research Associate with
the McGill Research Center for Intelligent Machines. His
research interests and publications are in the following areas:
robot programming and control, spatial reasoning, computa-
tional architectures, and space and remote applications of
robotics and telerobotics. Dr. Hayward is member of IEEE.

0921-8830/89/$3.50 ~: 1989, Elsevier Science Publishers B.V. (North-Holland)

346 A. Nilakantan, l/~ Hayward / Synchromzation of Multiple" Manipulators in Ka/i

In general, robot systems have tended to adopt
some of the simpler concepts of operating sys-
tems; such as notions like critical section protec-
tion via atomic events and semaphores [1,8]. While
simple semaphore interaction can achieve syn-
chronization in some cases, they would not prove
useful in truly cooperative, tightly coupled tasks
where the phenomena have to be analyzed at a
very fine grain. Semaphores, in effect, attempt to
decouple the tasks by blocking out other processes
which, paradoxically, opposes the intended aim of
having the arms perform tasks together.

There is also another very important feature
that distinguishes multi-manipulator systems from
the multi-tasking operating system metaphor. This
is that manipulators are physical dynamical sys-
tems. That is to say, they "remember" their past.
Consequently, preview information must be used
and taken into account in order to meet time-space
constraints.

The dynamics of the system are most readily
apparent in the inertia properties of the robots
and of their loads. These inertias contribute to
delay the response of the system. To offset this
delay, one can use sensors which can provide
information about the environment with a certain
amount of preview. One of the justifications for
such an approach is provided in the context of
tele-operation. Here, inertia contributes to slug-
gishness in response that a man-machine interface
should account for [3], by means of on-line sensory
preview.

However, this type of synchronization is a quite
general problem that can be found in a variety of
situations (grasping, walking, etc.).

1.1 The Notion of Motion System

Motion systems are convenient abstractions of
physical situations where manipulators move to-
gether with kinematic a n d / o r force relationships.
A motion system consists of a set of manipulators
whose kinematic loops share a common "drive
transform". We recall here that the drive trans-
form represents a frame transformation intro-
duced into a kinematic loop in order to achieve
motion from one position to another. In many
cases this frame describes the " tool frame" or
controlled frame. Initially, the drive transform
contains the "difference" between the position we
want to move to and the position we are currently

at. Interpolating the drive transform linearly down
to unity, for example, will cause a linear motion in
cartesian coordinates towards the destination.

The conceptual advantage of a motion system
is that it can be viewed as a unit. For example,
sending a S leep signal to a motion system would
freeze all the manipulators comprising the motion
system; a Go signal would awaken them all
simultaneously. Thus synchronization is implicitly
achieved between the arms :involved in a motion
system.

A motion system is specified by giving a set of
closed kinematic loops. Each loop contains the
coordinate frame of one robot, so that one can
solve for the transform representing the robot.
The loops may share any number of frames (e.g.
common frames of reference), but must share a
common drive transform.

By breaking a motion system, one allows the
manipulators to move independently, while merg-
ing two motion systems causes the arms to move
in tandem. The facilities provided by the G o /
Sleep/End signals furnish the necessary means
to perform these operations. These facilities are
provided by a software package called Kali [4], a
major redesign of the RCCL system [6].

1.2 Trajectory Generation

In their complete generality, trajectories con-
tain many types of information and must take into
account such concerns as the desired position and
force set-points, velocities, arrival times, tracking
accuracy as well as factors induced by the dy-
namics of the robot and the joint motors. To
simplify the problem somewhat, we make several
assumptions about the nature of the trajectory,
First of all, it is assumed that during path seg-
ments, the main variables of concern are scheduled
arrival time or velocity. During the transition from
one segment to another, because of the change in
velocity, we relax the constraints on the velocity
and position, allowing the trajectory to wander off
the desired path. If we insist on following the path
exactly, then the manipulator must be brought to
a stop at the transition point, possibly violating
timing or acceleration constraints if insufficient
lead time is allowed.

These trajectories must be computed with re-
spect to possible time-varying frames (e.g. in
tracking moving objects) and we assume that these

A. Nilakantan, V. Hc{vward / Svmhronization of Multiple Manipulators in Kali 34"7

frames behave in a similar fashion. That is to say,
their trajectories consist of segments of approxi-
mately constant velocity separated by occasional
periods of acceleration.

Finally, the trajectory generation takes into
account the dynamics of the system and 'preview'
information during the transition periods. The time
it takes to change velocity from one path segment
to a new velocity in the next path segment is
determined on line by the dynamics of the robot
(including, possibly, a load that could be shared
by several manipulators) and limited by the maxi-
mum torques that the joint motors can provide in
order to meet the requisite acceleration. With pre-
view information, one can initiate the transition
before the actual transition point so that, taking
into account the dynamically determined transi-
tion-time, we can meet and arrive at the through-
point without over- or under-shooting. The result-
ing path is obtained by blending path segments
together [5].

2. Trajectory, Generator as a Finite State Machine

To achieve synchronization with the above as-
sumptions and constraints, we extent the analogy
with the operating system model, going beyond
simple semaphore handshaking. Here, we consider
a motion as a finite state machine which can
change states either through internally generated
changes or by externally applied signals. This is
really an extension of the crude finite state behav-
ior of semaphores - they, in effect, create two
states: Running and Waiting. In many cases,
however, it is desirable to have a 'sleeping' state.
In this state, the drive transform is frozen, freezing
the relatiue motion of the manipulator. That is to
say, if the manipulator were approaching a mov-
ing object, putting it to sleep would cause the
manipulator to maintain the same relative dis-
tance from the moving object.

Because of the third state, we decided to do
away with semaphores and instead use control
signals to affect the state of the manipulator. Such
an approach, in addition to greatly increasing the
flexibility of the system, fully transforms the
behavior of the motion-system into one of a finite
state machine.

Motions are requested by the controlling pro-
gram and sent to the motion generator through a

queue. There is one queue assigned to each motion
system. In a motion system, at all times, we keep
track of three motion requests in its motion queue:
the motion that has just been completed (mA), the
current motion (roB), and the pending motion
(mC). The motion mA, as well as all previous
motions, is in the Termina ted state and is im-
mune from any further state changes. The pending
motion, mC, is in the Cons ide red state and all
subsequent motions are in the Q u e u e d state. In
the normal course of events, the current motion
the motion of interest, roB, is in the Running
state. Once we have reached the destination of
roB, a state change is triggered internally; mB
becomes Termina ted and gets shifted back to
become mA, mC becomes the current Running
motion mB and a new Cons ide red motion mC is
popped off the motion queue.

State changes, however, can also be explicitly
induced by signals applied by the user. The End
signal applied to the current motion mB causes it
to terminate prematurely and immediately begin a
transition into the next motion inC. A Sleep
signal applied to the current motion would cause
its drive transform to stay constant and remain
that way, in the S leep ing state, until the motion is
awakened with the Go signal or prematurely
terminated with an End signal.

Note that all state changes go through a transi-
tion period whose duration reflects the dynamic
manipulability of the motion system. In each state,
the drive transform is assumed to have an ap-
proximately constant velocity; during the transi-
tion period, blending is used to ensure a smooth
interpolation between the two xelocities. The con-
straints on the duration of this period of transition
are: the dynamics of the manipulators and the
load in the motion system (the dynamics compris-
ing the gravitational, velocity and inertial forces)
and the maximum torques that the joint motors
can supply (in effect the maximum physically
achievable accelerations).

According to the desired behavior, the user
must also provide a preview factor. With no pre-
view, the transition is initiated at the moment of
the state change and the resulting trajectory will
overshoot. With preview, one can look ahead and
initiate a transition before the expected time of
the state change; with a 100% preview factor, the
end of the transition period coincides with the
time of the state change. Finally, the user can also

348 A. Nilakantan, V. Hayward / Synchronization of Multiple Manipulators in Kah

I End '<Ending> I

[Considere~ ~ ~4~i~g I ~ [Terminated
Sleep

<Drowsy> ~' <Awakening>

iSleeping~7<Ended>

Fig. 1. Finite state model of a motion. Unlabeled arrows denote implicit state changes.

specify the profile of the acceleration, as a fiat
step, a ramp or something in between which will
have an impact on the trade-off between path
wander and transition duration.

The finite state model of the motion generator
is illustrated on Fig. 1.

For instance, the robot can be in the Running
state. By applying the S leep signal to the motion,
it will change state to Drowsy and an internally
triggered event will cause it to change state to
Sleeping, This state causes the robot to freeze in
mid-flight - the manipulator's drive transform is
kept constant so the manipulator will continue to
maintain the same relative position with respect to
its goal. While the manipulator is Sleeping, if a

Go signal is applied then the motion will proceed
to the Awakening state which will internally trig-
ger another transition back into the Running state
from where the manipulator will resume its inter-
rupted motion. On the other hand, applying an
End signal to a S leeping motion will cause it to
change state to Ended from where, once again.
the Ended motion will trigger a transition into the
Terminated state, causing a new motion request
to be popped from the queue

We shall illustrate four possible scenarios, giv-
ing the position as a function of time. In Fig. 2 we
have a normal, uninterrupted motion from A to
B. If no external signals are applied to the motion.
then we can expect it to follow the trajectory

Posilion

...- "'.

I
i I ' i
I I

I r

1.4 IB t~ •

Time

Fig. 2. Uninterrupted motion from A to B, then C.

A. Nilakantan, V. Havward / Synchronization of Multiple Manipulators in Kali 349

Posili~m
- , . .

.....-

I

[4 M o t i o n f I~ !,
l~nded
(End Slgn~.i i

f ' i m , ,

Fig. 3. The motion from A to B is Ended so the manipulator moves directly to (7".

shown; during the transition phase between mo-
tion A and motion B, we have a transition time
that is computed, based on the dynamics of the
motion system and a preview time that is supplied
by the user.

In Fig. 3, however, we illustrate the case where
the End signal is applied to same motion, from A
to B. By applying the End signal to the motion
system, the user indicates that she or he wants to
forget about moving to B and go immediately to
position C. Thus, the motion now will follow the
path indicated by the arrows.

The two next cases both illustrate a Sleep
signal being applied to the motion from A to B.
Once the motion is Sleeping, it will remain so
indefinitely until it is Awakened with a Go signal
or is Ended with an End signal. If a motion is
Awakened then it will continue its motion to-
wards B as if nothing had happened. If the Sleep-
ing motion is Ended then, as in the case above,
the motion towards B will be aborted and the
motion system will wake up and go directly to C
(see Fig. 4)

Note that in all the state transitions, one com-
putes the transition durations based on the dy-
namics of the robot and the desired change in
velocity, while blending ensures that the transi-

tions are indeed smooth. Thus at run time, the
actual scheduling may vary, but the relevant con-
straints are always enforced. In addition, in every
transition, including those induced by Go, Sleep
and End signals, the user has control over the
preview. This, in effect, means that the user can
cause these signals to have a delayed effect. For
example, if a robot, equipped with a range sensor,
is approaching a table, the user can supply a 100%
preview and send a Sleep signal ahead of time so
that the robot will fall asleep just as it comes to
the level of the table.

Finally, this finite state model of a motion begs
comparison with the job control used by Unix i
where processes can be in states such as Runnable,
Stopped, Waiting, Sleeping or Idle, etc, Further-
more, a change of state of a process can be
triggered by internal events (such as completion of
the job) or by an externally induced events (such
as completion of the job) or by an externally
induced event (provided by Unix signals). In Unix,
all processes can be identified by a unique process
id; here the motions all have unique motion id's.

1 Unix is a trademark of AT & T

350 A. Nilakantan, K Hayward / Synchronization of Multiple Manipulators in Kali

3. Software and Hardware Considerations

The first implementation of Kali consists of a
multi-processor system described as follows. Five
Heurikon single board computers with the
Motorola MC 68020 and floating point coproces-
sor communicate over a common VME backplane
via a dual ported shared memory. The develop-
ment is done in C and programs are created on a
SUN workstation under Unix connected to the

VME backplane via Ethernet. To off load VME
bus traffic, we have selected a system which fea-
tures the VSB secondary bus. The VSB bus serves
to access the shared memory for all asynchronous
communications. Further details of the hardware
requirements and implementation are presented in
[51.

Modern software engineering methods suggest
the use of message passing mechanisms to imple-
ment complex software real-time application [7].

Posil ion

, " , , .

," Motion S l e e p i n ~ i ~

", ; : ,
I I t r I
I I I I[

Preview! \ Preview , \ ' \
For i Transition For li" I Tra;,si~i I ~ ~ "

I Sleep t I Time , • I . o , Aw~k~;c,,,C Ti,.~ ', V
I I I I I I J I I i I I
I r I I ~ t

] I I ~ 1 I I

I I I I 1 I Time
a , l I I ' ~ i

t. 4 Motion Motion tf-; l(,
Put to Sleep Awi~kened
(Sleop signal) (Go signal)

Posit ion

..." "'-....

Motion Sleeping X

Preview \ Preview I \ I t ~ N
For Transition For ~ l ' r anSl~ io,, i ~ " /
Sleep Ti Ending i Ti ,

i

i I]
b I ~ t Time t I I

i i i

t .4 Motion Motion 1 t~ ¢
Put to Sleep Ended
(Sleop signal) (End ~,/gnal)

Fig. 4. In the first case, the mot ion from A to B is put to SI t~p and, after some time, A w a k e n e d with a Go signal: I n the second
case, the sleeping motions is applied a End signal, the manipulator then proceeds directly toward C.

A. Nilakantan, 14 Havward / Synchronization of Multiple Manipulators in Kali 351

However, our application has stringent timing re-
quirements - trajectory setpoints are generated at
rates varying from 20 to 100 Hz. Thus our option
was to implement the entire trajectory generation
algorithm, including the synchronization mecha-
nism described here, as a single synchronous pro-
cess bound to a clock interrupt. Since modern
CPU's such as the MC 68020 with floating point
coprocessors are capable of computing the trajec-
tories for several "motion systems", we have made
no attempt at distributing these computations over
several processors, therefore diminishing the com-
munication overhead. In addition, some vendors
have announced single board computers five times
faster than those we currently use. Since all code is
in C this guarantees effortless upgrade in perfor-
mance. We nonetheless envisage to make a use of
true message passing mechanisms in subsequent
versions of this project.

The trajectory generation process can handle
several motion systems using a sort of "multitask-
ing" analogous to operating systems. Each motion
is associated with a "record" which contains the
various applicable constraints. Whenever a motion
is requested, such a record is created and assigned
a unique identification number like a process id.
The record is then stored in a circular buffer so it
will remain accessible as long as needed. Thus an
elementary motion can be thought of, to pursue
the analogy, as a computer process with which it is
associated. Given the identification number, the
application program is able to send control signals
to this process to perform the required synchroni-
zation. Sending signals is actually implemented by
writing entries in the motion records. These en-
tries are defined to be atomic variables at the
hardware level. Thus an application program can
read the current state of a particular motion
without the need for explicit critical section pro-
tection.

Although a number of distributed processes are
required to run the entire control algorithms, only
two are relevant to this discussion: the user pro-
cess, which contains all directives that make up a
"robot program" and runs asynchronously with
respect to the trajectory generator, and the trajec-
tory generator, which contains all the algorithms
to convert information available from the robot
program and from external sensors into setpoints
suitable to be tracked by feedback control.

The user process requests motions via the

aforementioned records asynchronously with the
actual robot motions; therefore it is capable of
controlling several simultaneous "threads" of mo-
tions as illustrated by the examples in the next
section.

4. Examples

In this section, we give various examples that
demonstrate the usefulness of this motion syn-
chronization system for a wide number of applica-
tions.

4.1. Two Arms

Many useful examples can be found in the
synchronization of two manipulators. The easiest
way to synchronize two arms is to have them
belong to the same motion system; often, how-
ever, the arms do not share the same drive
transform but one still desires such features as
common departure or arrival times for the two
independent motions. This is most easily achieved
by having motions put themselves to Sleep. While
they are asleep the motion states are repeatedly
examined to see if the other motion is ready (i.e. is
mB). When they both become so, they wake them-
selves up and can proceed towards the destination
with the same departure time. In addition, just
before the motions wake themselves up, several
other useful functions can be performed. For in-
stance, if we want to enforce a common arrival
time, we can assign the same segment time or
same arrival time. Going one step further, one can
first see which arm is further from the destination,
have it move at maximum velocity and let the
closer arm have a motion segment time based on
the expected time of arrival of the first arm.

Another example considers a situation where
one robot passes an object to another robot. One
strategy resembles the example shown above; the
robots, using Sleep, synchronize themselves to
start to move towards each other at the same time
with a fixed arrival time. Then. using preview
based on the expected time of arrival at the ren-
dezvous point, they End themselves so they meet
for an instant and then depart again without
overshooting and hitting each other. Another
strategy would have the two robots move towards
some pre-determined rendezvous point. If one

352 A. Nilakantan, V. Hayward / Synchronization of Muhiple Manipulators in Kali

arrives too soon, it would put itself to Sleep and
wait for the other arm to arrive. When the transfer
of the object is detected, as perhaps, by a force
sensor, then, as before, the motions End them-
selves and a new motion is popped from the
queue. See a "Kali" code outline in Appendix A.

4.2. Cycfical Synchronized Motions." Walking

wards the three hold points to grasp the object is
requested. We assume that the position of the
object is not known exactly, so the motion end is
predicated upon force sensor readings. The grasped
object is then swiveled around the z-axis. An
outline of the code to perform a simple task is
given in Appendix B.

This example involves the control of a statically
stable walking robot with six legs. The gait can be
described by two motion systems; each comprises
three legs so that at any point in time, three legs
support the robot in a stable position. The syn-
chronization of the motions involves the following
factors: First of all, one constraint is that the feet
touches the ground with zero velocity, without any
overshoot, to avoid stomping. To obtain that ef-
fect, proximity sensors would avoid to have to rely
on passive compliance, because preview time
would be available. Once three feet have made
solid contact with the ground, they should trigger
the other three legs to lift up and move forward.
Accurate transitions must occur so that the veloc-
ity at the end of the transition is zero and the
position is at ground level, with no overshoot.
Next, once contact has been made with the ground,
the other set of three feet lift up and move for-
ward. Meanwhile, the feet touching the ground
move backwards. If the feet do not slip, this will
have the effect of propelling the robot forward. If
either motion in the two motion systems com-
pletes before the other, then it puts itself to Sleep
and waits for the slower one to catch up and End
it. Similarly, detecting contact with the ground
will trigger one of two signals - if the other set of
legs is asleep then this motion will End them as
well as itself; otherwise the motion will put itself
to sleep and wait.

4. 3. The Motion of Fingers

The concept of a motion system can be quite
convenient in instances such as controlling a
multi-fingered hand. In such cases, using sema-
phores can be quite a headache but a motion
system simply, effectively and explicitly achieves
synchronization by having the fingers share their
drive transform. Thus a single move request would
queue a single motion involving all the fingers.
First, a simultaneous move of three fingers to-

5. Conclusion

The motion synchronization scheme that we
present has several advantages, the chief of which
is its generality. The examples shown above indi-
cate the wide variety of tasks that can be handled.
The two main ideas introduced here are the con-
cept of a motion system and that of the finite-state
machine for robot motions. In addition, to account
for the 'real-time dynamism' of the system, we
compute transition times between the state
changes, based on the the dynamics of the mani-
pulators and loads. Finally, the code that imple-
ments this has been written as part of the Kali
multi-robot programming and control system, and
is presently running in a simulation mode. Work is
under way at McGill University to install this
code on a multi-processing real-time operating
system environment.

Acknowledgements

The ideas described in this paper benefited
invaluably of comments from Laeeque Danesh-
mend, Tony Topper, and John Lloyd.

This work has been made possible by a con-
tract with the Jet Propulsion Laboratory (NASA
sub-contract) and by a Grant from NSERC, the
Natural Sciences and Engineering Research
Council of Canada.

References

[1] R. Alami and H. Chochon, Programming of flexibte assem,
bly cells: Task modeling and system :i intc~ration, iEEE
International Conference on Robotics and Automation, St.
Louis, MO (1985).

[2] F. Andrr, D. Herman and J.-P. Verjus, Synchronization of
Parallel Programs (MIT Press; i986).

[3] V. Hayward, Autonomous control issues in a telerobot,
1EEE Conference on Systems Man and Cybernetics, Peking,
China (1988):

A. Nilakantan, V. Hayward / Synchronization of Multiple Manipulators in Kali 353

[4] V. Hayward and S. Hayati, Kali: An Environment for the
Programming and Control of Cooperative Manipulators,
1988 American Control Conference, Atlanta, GA (1988).

[5] V. Hayward, L. Daneshmend and A. Nilakantan, Model
based trajectory planning using preview, McGill Research
Center for Intelligent Machines Technical Report, CIM-88-9,
McGill University, Montr6al, Canada (1988). Also a Jet
Propulsion Technical Report.

[61 V. Hayward and R.P. Paul, Robot manipulator control

under Unix: RCCL a robot control 'C' library, Int. J. of
Robotics Research, Vol. 5(4) (1987).

[7] W.M. Gentleman, Real-time applications: Multiprocessors
in Harmony. Proceedings of BusComp "88, New York
(1988).

[8] S. Mujtaba and R. Goldman, Ak users's manual, AIM-3~,
Stanford, CA, Stanford University Artificial Intelligence
Laboratory, (1981).

354 A. Nilakantan, V. Hayward / Synchronization of Multiple Manipulators in Kali

A ndix A

#include " r e l e v a n t . h "

main()
{

Link *pO, *pl , *rvO, * rv l ;
Transform a l i c e , r a l p h ,
d r y _ a l i c e , dry r a l p h ,
pO_pt, p l _ p t ,
r v_p t ;

/* pointers to kinematic loops */
/* The two manipulators */

/* The i r d r i ve t r a n s f o r m s */
/* Two p o s i t i o n s */
/* The rendez -vous p o i n t */

/*

** Creation of the kinematic loops describing the Positions of the two

** m a n i p u l a t o r s , Alice and Ralph, at t h e i r s t a r t p o s i t i o n s . Note
** t h a t they have d i f f e r e n t d r i ve t r a n s f o r m s , so they w i l l move
** i n d e p e n d e n t l y . "mmg" and "cmg" are b u i l t - i n f u n c t i o n f o r the
** ' M a n i p u l a t o r Motion G e n e r a t o r ' and the ' C a r t e s i a n Motion
** G e n e r a t o r ' . "NoFun" i n d i c a t e s t he t r a n s f o r m i s not bound to any
** function.
*/

/*

pO = ploop(~alice, mmg, ~drv_alice, cmg, ~pO_pt, NoFun, NULL);

pl = ploop(&ralph, mmg, /xlrv_ralph, cmg, ~1_pt, NoFun, NULL);

** Assign Alice to MotionSystem #0 and Ralph to MotionSystem #1

** and move to the initial points.
*/

/*

*/

move(~mO, pO);
move(~ml, p l) ;

/*

** The k inemat ic loops d e s c r i b i n g the p o s i t i o n at the r endez -vous p o i n t .
*/

rvO = ploop(~alice, n~ng, ~drv_alice, cmg, ~rv_pt, NoFun, NULL);
rvl = ploop(~ralph, n~ag, ~drv_ralph, cmg, ~rv_pt, NoFun, NULL);

/*

** Move to r~he rendez-vous point
*/

move(~mO, rvO);

move(&ml, rvl);
/*

** Since the mot ions are not s y n c h r o n i s e d (they have d i f f e r e n t d r i v e
** t r a n s f o r m s) , we use the " w a i t () " f u n c t i o n to make sure t h a t
** the ~rms do indeed meet at the r e n d e z - v o u s p o i n t . I f one a~m
** s x r i v e s a t the rendez-vous p o i n t b e f o r e the o t h e r , i t p u t s i t s e l f
** to s l e e p and wakes i t s e l up when the o t h e r arm a r r i v e s too .
* /

wa i t (rvO, r v l) ;

Do o t h e r mot ions , e . g . go beck to the o r i g i n a l p o i n t s .

A. Nilakantan, ~ Hayward / Synchronization ofMult~leMan~ulatorsin Kali

move(~mO, pO);
move(&ml, p l) ;

355

/*

*/

The "wait" function i s called from the user level. It adds two

motions to each queue and binds the first to the

interrupt-level function "_wait()". The function "_wait" does

the actual work of synchronising the motions; "wait()" just

sets things up for it.

long idO, id l ;
i n t s t a t e _ f l a g = O;

/* the id"s of the motions to be synchronized */

/* state flag */

void wait(lO, ii)

Link *i0, *ii;
{

void _wait(); /* I n t e r r u p t l e v e l f u n c t i o n */

mO.specs.control = Go;
mO.specs.fO = _wait;

idO = movereq(~mO);

/* Tie the function _wait to the motion. */
/* Queue the motion for motion system #0 */

ml.specs.control = Go;

ml.specs.fO = _wait; /* Do the same for motion system #I

idl = movereq(aml);
/*

** Put two motions to act as ''buffers''
*/

mO.specs.control = Go;

movereq(~mO);

ml.specs.control = Go;

movereq(&ml);

state = i;

*/

/*

*/

The interrupt level function "_wait". If the motion associated with

idO becomes active (i.e. mB) before the motion associated with idl

does, then it puts itself to sleep and wakes itself up when the other

motion catches up. And, vice versa.

void _wait(iddO, iddl)

long iddO, iddl;
{

if (flag == 0) {
return ;

}
/* ignore */

356 A. Nilakantan, ~ Hayward / Synchronization of Multiple Manipulators in Kali

*/

m*

./

*/

Case I: Both motions have arrived and are ready!

We kill the bogus motions and proceed.

i f (f l a g kk (m O . e . m B - > i d == idO) k~ (m l . e . m B - > i d == i d l)

k~ (c u r r e n t _ s y s t e m == kmO)) {

m O . e . m B - > c o n t r o l = End;

m l . e . m B - > c o n t r o l = End;

f l a g = O;

return;
)

Case 2: Motion System #0 is ahead of time---We put it to Sleep.

if (flag == 1 k~ mO.e.mB->id == idO

mO.e.mB->control = Sleep;

f l a g = 2;

r e t u r n ;
}

&k m l . e . m B - > i d < i d l)

Case 3: Motion System #I is ahead of time---We put it to Sleep.

i f (f l a g == 1 kit m O . e . m B - > i d < idO

m l . e . m B - > c o n t r o l = S l e e p ;

flag = 2;

r e t u r n ;
}

m l . e . m B - > i d == i d l)

A. Nilakantan, V. Hayward / Synchronization of Multiple Mamputators in Kali 357

Appendix B

main()
{

L i n k * f l l , * f 1 2 , * f 1 3 ;

T r a n s f o r m f i n g e r 1 , f i n g e r 2 , f i n g e r 3 , d r i v e ,

h o l d 1 , h o l d 2 , h o l d 3 , o b j e c t ;

Transform rot_increment, rot_decrement;

long id;
i n t i ;
e x t e r n l o n g m o v e 3 () ; /* t h i s r o u n t i n e h a n d l e s a m o t i o n w i t h 3 l o o p s * /

/*

• * C r e a t i o n of r o t a t i o n m a t r i c e s r e p r e s e n t i n g 0 . 1 r a d i a n s r o t a t i o n s a r o u n d

• * t h e z - a x i s .
, /

r o t _ i n c r e m e n t : r o t _ t o _ r o t m (0 . 1 , z u n i t)) ;

r o t _ d e c r e m e n t : r o t _ t o _ f o r m (- 0 . 1 , z u n i t)) ;
/*

• * C r e a t i o n o f t h e k i n e m a t i c l o o p s t h a t d e s c r i b e t h e p o s i t i o n o f t h e f i n g e r s

• * when t h e y a r e g r a s p i n g t h e o b j e c t . Note t h a t t h e y a l l s h a r e %he same

• * d r i v e t r a n s f o r m .
*/

fll : ploop(~fingerl, mmg, ~Irive, cmg, 8aholdl, NoFun, ~object, NoFun);
f12 = ploop(afinger2, mmg, &drive, cmg, Lhold2, NoFun, ~object, NoFun);

f13 = ploop(afinger3, mmg, ~drive, cmg, ~ahold3, NoFun, &object, NoFun);

k i l l _ o n _ c o n t a c t (m o v e 3 (f l l , f 1 2 , f 1 3)) ;

for (i=O; i<I0; i++) {
holdl.r = tr_mult(holdl.r, rot_increment);
hold2.r = tr_mult(hold2.r, rot_increment);
hold3.r = tr_mult(hold3.r, rot increment);

move3(fll, f12, f13);
}

f o r (i = O ; i < 1 0 ; i + +) {

h o l d l . r = t r _ m u l t (h o l d l . r , r o t _ d e c r e m e n t) ;

h o l d 2 . r = t r _ m u l t (h o l d 2 . r , r o t _ d e c r e m e n t) ;

h o l d 3 . r : t r _ m u l t (h o l d 3 . r , r o t _ d e c r e m e n t) ;

move3(fll, f12, f13);
}

v o i d k i l l _ o n _ c o n t a c t (m o t i o n _ i d)

long motion_id;
{

extern MotionSystem *current_system;

358 A. Nilakantan, V. Hayward / Synchronization of Multiple Manipulators in Kali

extern Boolean made_contact();
static long id_of_interest;

i f (c u r r e n t _ s y s t e m := NULL) {
/ *

** R o u t i n e was c a l l e d f r o m t h e u s e r l e v e l - - - R e m e m b e r

** t h e m o t i o n i d f o r f u t u r e r e f e r e n c e .
* /

i d _ o f i n t e r e s t = m o t i o n _ i d ;
}

else {

i f (c u r r e n t m o t i o n - > r e B - > i d := i d o f _ i n t e r e s t) {
/*

** R o u t i n e was c a l l e d f r o m i n t e r r u p t l e v e l a n d we a r e s e r v i c i n E

, , t h e m o t i o n we a r e i n t e r e s t e d i n . I f c o n t a c t (w i t h t h e o b j e c t)

** i s d e t e c t e d t h e n we k i l l t h i s m o t i o n .
* /

i f (made c o n t a c t ()) {

current_motion->mB->control : End;
)

)

