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Abstract— Inspection and exploration of complex underwater
structures requires the development of agile and easy to
program platforms. In this paper, we describe a system that
enables the deployment of an autonomous underwater vehicle
in 3D environments proximal to the ocean bottom. Unlike many
previous approaches, our solution: uses oscillating hydrofoil
propulsion; allows for stable control of the robot’s motion and
sensor directions; allows human operators to specify detailed
trajectories in a natural fashion; and has been successfully
demonstrated as a holistic system in the open ocean near both
coral reefs and a sunken cargo ship. A key component of our
system is the 3D control of a hexapod swimming robot, which
can move the vehicle through agile sequences of orientations de-
spite challenging marine conditions. We present two methods to
easily generate robot trajectories appropriate for deployments
in close proximity to challenging contours of the sea floor. Both
offline recording of trajectories using augmented reality and
online placement of fiducial tags in the marine environment
are shown to have desirable properties, with complementary
strengths and weaknesses. Finally, qualitative and quantitative
results of the 3D control system are presented.

I. INTRODUCTION

This paper presents a number of tightly integrated control
and human robot interface (HRI) components, developed for
the hexapod autonomous underwater vehicle (AUV), Aqua
[1], which enable agile, 3D, terrain-adapted trajectories. A
6-DOF motion controller extends the previous quasi-planar
2D operating modes of our vehicle while maintaining stabil-
ity and responsiveness. Additionally, we describe two HRI
paradigms that are convenient enough to be deployed by non-
expert and preoccupied support divers but also rich enough
to describe dynamic motions through space. The combined
system has been evaluated during a recent sea trial where it
performed numerous tasks that would have been impossible
for previous iterations of our vehicle (e.g., autonomously
tracing the 3D contour of a shipwreck, shown in Figure 1).

The core of our method is a trajectory controller that
allows a swimming robot propelled by oscillating hydrofoils
to track almost arbitrary 6-DOF motions rapidly, but stably.
Examples of these motions are provided in Figure 2. Aqua’s
propulsion system is based on the periodic motion (i.e.,
kicking) of 6 independent flippers, so a careful accounting
of forces and attitudes is required. Our controller com-
bines robust computation of 6-DOF quantities, such as the
body-frame commands required to meet world-frame con-
straints, spherical linear interpolation to find shortest paths in
rotation-space, and model-free feedback control. To address
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Fig. 1. The Aqua robot completes a vertical climb alongside a cargo vessel
that rests on the ocean floor, prompted by a visual marker placed next to
the ship by a human operator, seen near A. This is one of many new stable
behaviors made possible by our technique. Image best viewed in color.

the practical challenge of tuning controller gains in new
and variable environmental conditions, our system performs
semi-autonomous gain selection, with the robot searching
subsets of the parameter space interspersed with oversight
from an operator.

The trajectory controller opens the door for countless
behaviors and applications ranging from fish tracking to
hull inspection. While a full sensor autonomy system would
be well served by such a motion controller, in the current
work we consider the common model of a collaborative
team of human divers and their robot assistant. Underwater
HRI is well-documented to be challenging due to the limited
mobility and cognitive load facing human divers. We present
two HRI schemes based on visual fiducial markers: design
via augmented reality and terrain-based tag programming.
Both methods are simple to understand and well-suited to
describing the types of 3D motion that we seek. A key aspect
of this work is that it allows a human mediator (i.e. a scuba
diver) to specify the robot trajectories in real time and to
adapt trajectories to the undersea environment.

The next section will describe existing systems and high-
light the novelty of the work presented here. We will then
describe our legged swimming platform and the novel 3D
control regime that we have employed. Section IV describes
the HRI programming tools that we have developed. Our
experimental section provides quantitative analysis of the
control performance and reports the results of deploying the
HRI approaches in complex subsea locales. Finally, we will
outline future work.



Fig. 2. Six example motions shown are from the larger set achievable by our 3D controller. Red arrows indicate directions of motion, explicitly named
surge (robot’s X direction) and heave (robot’s Z direction), as indicated. No sway motions (robot’s Y direction) are shown since our robot cannot produce
thrust in this dimension. Previous work on the Aqua vehicle almost exclusively focused on motions in the left-most column, which also represent the least
challenging control problems.

II. RELATED WORK
The problem of designing and controlling stable AUVs has

been studied by many authors [2], [3], [4], [5] on a variety
of platforms. While techniques range widely depending on
vehicle characteristics and goals, feedback control on orien-
tation sensors is a common theme. While controllers based
on fluid dynamics properties can be accurate, they are also
often complex. In our case, deployment on a physical robot
with limited computing resources was essential, precluding
intensive flow dynamic simulations. Rather, we employ a
simple, but practical linear feedback controller [6].

Previous authors have undertaken hydrodynamic motion
analysis for the Aqua vehicle itself [7], [8], [9]. This work
has yielded several versions of a model-based controller for
simple input commands. These controllers allowed for only
one angular dimension at a time to vary from the standard
downward looking configuration and considered a single
fixed forward thrust.

Humans dynamically adapt the way we move based on
conditions, and this same behaviour is crucial for robots.
In the underwater domain, [10] notes that gain scheduling
is needed for stable control of a swimming robot across
multiple speeds due to nonlinear drag effects. Online param-
eter tuning for a swimming vehicle controller was suggested
by [11], although their work considers only the theoretical
aspects of the problem and only discusses the optimization

of a single parameter value. We consider control of the
vehicle at arbitrary body orientations and at a variety of
speeds (consider Figure 2). This introduces a wide range
of disturbances, and modes of propulsion, and has motivated
our development of semi-autonomous gain selection.

Our work differs notably from prior studies that use
cameras for semi-autonomous underwater operation [1], [12],
[13], [14], [15], in particular due to the complex and vision-
guided trajectories we consider. As we descend very near to
underwater structures, 3D motions such as those we develop
are essential to avoid the plentiful obstacles and the paths
between obstacles become more complex to design, requiring
HRI solutions.

III. 3D TRAJECTORY CONTROL FOR LEGGED
SWIMMING ROBOTS

This section describes a feedback controller that allows
our vehicle to swim precise trajectories in the space of
3D attitude and depth. This module closes the loop around
the vehicle’s sensors, producing flipper rotation (kicking)
commands based on the error between the robot’s current
and target states. We build upon an existing low-level gait
generator, which translates desired thrusts in the robot frame
into flipper motions in an open loop fashion. The gait
generator has previously been paired with a 2D attitude
controller that achieved stable flat swimming [1]. This paper



Fig. 3. The 3D coordinate frames involved in our control problem.

represents the first demonstration of controlling the Aqua
vehicle under arbitrary 3D attitudes.

Control in 3D requires mapping all necessary sensor and
motion data into a common coordinate frame, as visualized
in Figure 3. We correct positional errors in depth using
computations robust to being upside-down or vertical. In
order to stabilize motions and to reject disturbances, we
implement PD control using an inertial measurement unit
(IMU) and a depth sensor as feedback. As our robot is
non-holonomic, jointly satisfying target depth and attitude
are conflicting goals. We employ a cascade controller [6],
composed of a depth loop surrounding an attitude loop,
to mediate between factors. This prioritizes depth control,
which is important for safe operations underwater. The
final component of our system is a semi-autonomous gain
adaptation behaviour that allows human operators to more
easily optimize controllers for a family of motions and to
adapt to changing environmental conditions.

A. Hexapod Swimming Gaits

The mapping between a desired motion of the robot’s body
and the required leg movements is highly complex, as it
involves interactions in the force-domain between the various
legs, the hydrodynamics created when vortices from one
leg are “shed” to the next, and interactions with exogenous
factors such as ocean currents. Simple swimming strategies,
called gaits, have been developed in previous publications
(e.g., [1]). In this work, we re-use the existing gait module
and describe its properties and inputs here as background.

Gaits rely on hand-crafted behaviors that coordinate mo-
tions of the six flippers. These behaviors are based on an ab-
straction that approximates the flippers as steerable thrusters.
Under this approximation, absolute thrust can be controlled
via the oscillation amplitude and its direction by changing an
offset angle around which the oscillation is performed. By
combining the action of these six virtual thrusters, simple rate
commands (either angular or translational) can be executed
in open-loop. For example, a pure rolling motion can be

Fig. 4. An overview schematic of our vehicle controller.

achieved by having all the left virtual thrusters pointing
upwards and the right virtual thrusters pointing downward.

The gait controller accepts 5 of 6 possible instantaneous
thrusts. Sway, along the robot’s Y axis, is not possible due to
the physical orientation of the flippers, making this vehicle
non-holonomic. Therefore, the input to the gait module is 5
vehicle frame desired thrusts at each time: roll, pitch, yaw,
heave and surge. Due to inherent approximations and the
need to re-orient the flippers to achieve a new thrust, the
actual response of the robot to any requested motion is diffi-
cult to model and may have complex time-domain properties.
This motivates our pursuit of a closed-loop attitude controller
to drive the gaits.

B. Feedback Control for 3D Swimming

1) Inputs: Our controller receives target trajectories from
the users and data from the sensors as its inputs. A trajectory
is an n length sequence, pn = {p1, ..., pn}, where each
element, pi = {qi, fi, hi}, specifies a target global frame
orientation in quaternion form, qtarget, vehicle frame heave
and surge thrusts, ftarget and depth below the water’s
surface, htarget. A 3DM-GX1 IMU from Microstrain Inc.
measures the vehicle’s orientation, acceleration, and angular
velocity. In this work, we utilize only the orientation reading
as a quaternion, W

V q, which represents the vehicle’s attitude
in the IMU’s reference (or world) frame. A pressure sensor
reads the depth below the surface of the water, hcurrent.

2) Coordinate Frames: The first step in achieving 3D
control is the correct handling of the multiple frames of
reference related to various system quantities. The IMU’s
reference frame, defined by the gravity vector, acts as our
world coordinates. This implies that the ideal behavior is for
the robot to move such that the IMU readings exactly match
the commanded orientations. The robot’s gait controller
accepts instantaneous vehicle frame velocity commands, so
we must robustly transform geometric information between
the two frames. Our depth sensor is located at the back of
the vehicle, so its readings must be corrected based upon the
vehicle’s current orientation.

3) Depth Control Loop: The depth control loop, shown in
Figure 4, is responsible for modifying the robot’s orientation
such that it will climb or descend to maintain a specified
target depth, htarget. The robot can produce a motion along
the global Z axis by modifying its orientation to direct
thrust as needed. In symbols, the target orientation qtarget
is modified to achieve this Z motion via a depth-correcting



rotation qdepth. The final target angle to the inner controller
takes the form

qadjusted = qdepth ⊗ qtarget (1)

with ⊗ representing quaternion multiplication. We derive
qdepth by forming a quaternion from the unit vector, k, and
angle of rotation about that vector, θ, as

qdepth =


kxsin(θ/2)
kysin(θ/2)
kzsin(θ/2)
cos(θ/2)

 . (2)

The angle of rotation, specified by vector k, is selected
to achieve climb or descent as needed, accounting for the
current thrust direction. This desired vector is perpendicular
to both the vehicle’s world frame thrust and the world Z
axis, so it can be computed using the cross product

k = (WV qV ftarget)×

 0
0
1

 . (3)

The magnitude of rotation towards the desired depth, θ, is
determined by a PD controller, based on the current depth
error, εh = htarget − hcurrent, as

θ = Kdepth
P εh −Kdepth

D

dεh
dt

. (4)

This correction angle is capped to ±45◦ to limit the climb
rate of the robot, which is desirable when operated in
conjunction with human divers who cannot safely change
depth rapidly. Our nested controller can become susceptible
to oscillation, as there are two dependent levels of feedback
occurring. For this reason, we have found that derivative
control within the depth loop, Kdepth

D is essential.
4) Attitude Control Loop: Our controller’s inner loop

attempts to generate gait commands that bring the orientation
of the vehicle, qcurrent, to the orientation requested by the
outer loop, qadjusted. Each of these quantities is a rotation
in 3D and so their difference, our control error, cannot
simply be computed by subtraction. Instead, we consider
the distance of the shortest path through the space SO(3).
Topographically, this shortest path is the great circle along
the unit sphere which connects the unit vectors representing
the two orientations. Our goal is to drive the robot along
such a path through angle-space until it arrives at the target
angle qadjusted.

In order to send instantaneous commands, we extract the
current local orientation change needed to progress along the
angle-space path. This interpolation of the path into small
segments along the great circle is referred to as spherical
linear interpolation (SLERP) [16]. It produces a world frame
rotation error

W εq = SLERP (qcurrent, qadjusted, u) (5)

with interpolation parameter u controlling the size of the
angle step. The underlying gait controller accepts vehicle

frame thrust commands, so this world frame angle step must
be transformed into the robot’s coordinates

V εq = V
W qW εq. (6)

Finally, we extract the components of V εq in the roll,
pitch and yaw Euler angle representation accepted by the
gait module: εr, εp and εy . PD feedback control is applied
in order to output unitless rate commands compatible with
the gait module, in the roll, pitch and yaw axes

rgait = Kr
P εr −Kr

D

dεr
dt

(7)

pgait = Kp
P εp −K

p
D

dεp
dt

(8)

ygait = Ky
P εy −K

y
D

dεy
dt

(9)

In order to reduce the noise amplification effects of signal
differencing, a first-order Infinite Impulse Response filter
with a time-constant period on the order of one cycle of
leg motion (∼ 250 ms) is applied to smooth each signal.
This also alleviates the issue of unwanted oscillations due to
the periodic nature of the gait.

C. Online Gain Adaptation

Our robot is non-spherical, which causes highly varying
disturbances as the robot changes orientation. For example,
swimming directly forward causes the narrow and rounded
front shell to cut through the water, while so called heave
motions push large amounts of water with the flat top of the
robot. The measured drag ratio between these different mo-
tions is roughly a full order of magnitude (10x). To achieve
stable motion in both cases, different sets of controller gains
are required for each motion, slowing the development of
an agile system. To address this, we have developed a semi-
automated procedure to select our controller’s gains in novel
situations.

The robot adapts its controller gains while swimming by
searching for parameters that minimize control error over
short sequences. While numerous parameter search methods
could be viable, we have implemented an efficient coordinate
descent, which selects one parameter dimension at a time,
line searching over values of each dimension, fixing the mini-
mum value obtained, and then moving to the next dimension.
We will describe the efficacy of this search procedure in our
experimental results, but for now we make several observa-
tions about its desirable properties. We note that our approach
can operate without a model of the robot’s control system
or its disturbances – it is model-free. Coordinate descent
also has the important practical advantage of maintaining
the majority of parameter dimensions unchanged in any given
step, so that the robot’s effective behavior changes slowly and
safety can be maintained. In underwater robotics, the safety
of nearby humans and the marine ecosystem are paramount.
A final advantage of modifying a single parameter at a time
is to build the confidence of human operators and to facilitate
offline interpretation of the test results by a human, an
important consideration in mixed-initiative robot operations.



Fig. 5. A human operator specifies a looping trajectory using our
augmented reality interface. Note that the swimming robot that appears in
each image is rendered by computer graphics and is not physically present.
The rendered pose of the robot reflects a point along the trajectory, which
is stored in a format suitable for input to our trajectory controller. Later, the
robot replays the specified path with high fidelity, in this case swimming in
a vertical loop.

IV. SYNTHESIZING 3D UNDERWATER
TRAJECTORIES

In challenging underwater environments, semi-
autonomous operation is often preferred. Full sensor-guided
autonomy is not within the reach of most platforms due
to cost, reliability, or other limitations. For example, the
close-to-object operations that we study here must occur in
relatively deep water, which precludes the use of a GPS
antenna and acoustic underwater localizers add significant
financial overhead. However, human scientists regularly
participate in the day-to-day routine of underwater science
and are a reliable source of guidance. We describe several
techniques that allow an operator to synthesize detailed 3D
underwater trajectories suitable for our vehicle, which we
have developed and tested in the ocean.

A. Parameterized-Shape Trajectories

Our first approach allows a human operator to specify
target robot trajectories by composing segments of param-
eterized shapes, such as squares and circles, with different
orientation, speed and depth settings for each individual
shape. In principle, by careful choice of the parameters and
potentially the use of a very large number of segments, the
operator is able to produce any arbitrary trajectory. However,
choosing the shape family and parameters is difficult to
visualize even in a lab scenario, and is essentially impossible
for a diver in deep water. So, we have continued to consider
several more convenient synthesis paradigms.

B. Trajectory Design via Augmented Reality

Our second synthesis approach is inspired by the notion
of a human “conductor” forming paths with natural gestures
that the robot mimics afterwards. To assist the operator
in visualizing the scenario our system provides augmented

reality feedback in the form of a virtual robot rendered on top
of the live image feed. The response of the augmented reality
robot allows easy comprehension of what will be the real
robot’s target behaviour during trajectory playback. Figure
5 provides an example of the human operator recording a
trajectory. A sample of the corresponding robot motion can
be seen in the video submission accompanying this paper,
which is also available on the Internet1.

Mapping human hand motion into robot swimming motion
requires a translation between two different physical spaces.
Several mappings have been considered during our system
development and the following was reported by the operator
to be well suited for the task due to its simple intuitive nature:

• The position of the tag along the camera’s viewing
direction is mapped to the robot depth’s below the water
surface.

• Changes in the position of the tag in the camera’s
image plane between video frames are projected onto
the forward direction of the robot to determine its surge.

• Rotations of the tag are mapped to rotations of the robot.
Although we postpone full evaluation of this HRI

paradigm for future work, we received significant positive
feedback from test operators. The robot was able to perform
a number of trajectories in the ocean, both near reefs and a
sunken ship, collecting valuable sensory data while operating
safely without environmental impact.

C. Terrain-Based Programming

The final trajectory synthesis method that we studied fo-
cuses on achieving very close proximity between the vehicle
and the terrain. While each of the previous methods allows
for the construction of trajectories that conform loosely to
the shape of the sea floor, the vehicle operates without
feedback during trajectory execution, which means that a
reasonable safety margin must be maintained. The approach
that we refer to as Terrain-Based Programming utilizes
visual fiducial markers placed by human operators in the
environment itself in order to achieve precise near-terrain
trajectories. The robot detects the visual markers using its
cameras, which is reliable due to the highly distinctive nature
of the visual patterns and the robust image processing used
for detection [17]. Each time that the robot detects a tag, it
recovers an unique numeric ID and solves for the relative
pose between its camera and the tag.

A vocabulary, known to the human operators, maps be-
tween available tag IDs and the matching motions. The
operators construct a desired robot trajectory by choosing
the position and orientation of several tags, so that each
will be seen by the robot after it completes execution of
the previous motion. Tags are often placed at key landmarks
in the environment, for example to enable the robot to
avoid a sensitive obstacle, and at points of desired robot
behaviour change, for example where a local visual survey
should be conducted. The relative pose between the robot

1Address: http://www.cim.mcgill.ca/˜dmeger/IROS2014_
3DTrajectories/



Fig. 6. Roll tracking with various gains attempted automatically by the robot during a line-search run conducted in the ocean. The error summary on the
right shows that the gain value 0.55 produced minimal error and was selected. Note that the snowplow motion shown here pushes significant amounts of
water in front of the robot, causing large natural disturbances, and large errors compared to other motions. This is one of the most challenging elementary
motions to control on the Aqua vehicle.

and the tag acts as a global frame position correction and can
influence the robot behaviour, such as to remove drift. Figure
8 provides an example of tag-based shipwreck inspection. We
will discuss the specific vocabulary used and resulting robot
trajectory in our experiments section.

V. EXPERIMENTS

We have evaluated our system in the open waters of the
Caribbean Sea, off the coast of Barbados. In all cases, a
team of divers operated the Aqua vehicle without tether, pre-
loading software and parameters to be executed when the
robot had been brought to sufficient depths and conditions.
In Section V-A, we quantitatively study the stability achieved
by our depth and attitude controller over a range of desired
robot trajectories. Here we do not focus on trajectories
that are particularly meaningful for the local terrain, but
rather choose those that allow us to understand the system’s
behavior. Section V-B describes evaluation of our holistic
system, including the trajectory synthesis, its flexibility and
efficacy, as well as the control system’s ability to achieve
that trajectory.

A. 3D Control Evaluation

Our initial set of ocean trials were conducted in tracts of
water with few obstacles where the stability of our controller
could be verified and tuning could be done safely. The
controller was driven with several fixed swimming behaviors
(i.e., each trajectory was composed simply of one orientation
and speed, repeated for a duration). These trials were used
to observe the stability of our controller and to execute

TABLE I
TRACKING ERROR FOR VARIOUS MOTION CLASSES. BOTH HELICAL

MOTIONS ROTATED THE ROBOT AT A CONSTANT 36◦ EACH SECOND

ABOUT ITS ROLL AXIS.

Roll Pitch Yaw Depth
Motion Error Error Error Error

(deg) (deg) (deg) (m)
Flat 0.4 1.6 0.3 0.05

Knife 1.7 3.0 1.1 0.06
Snowplow 7.5 3.7 2.0 0.20

Circular Helix 7.2 6.3 6.0 0.11
Square Helix 13.0 6.6 7.3 0.17

the online parameter optimization procedure. We have sum-
marized the average errors for a variety of both simple
and composite robot motions in Table I. The increasing
errors are an indication of the difficulty level associated
with each motion pattern. For example, the vertical heave
maneuver has a much larger drag force than the flat or knife-
edge maneuvers. As mentioned earlier, this increase in drag
renders motion less stable. We additionally provide results on
our controllers stability in Figure 7. The motion command, a
circular helix, involves simultaneous and continuous change
in all angular dimensions, which is a stress-test for an attitude
controller. Maintaining depth errors within 11cm for this
behaviour indicates a relatively well-tuned system.

We report results from semi-autonomous gain selection in
Figure 6. In this case, the robot attempts to line-search over
the values of its roll proportional gain, r

PK, to find the value
which yields the minimal error swimming performance under



current conditions. In order to be robust to environmental
disturbances and to allow convergence of the controller, each
gain value is maintained for T = 75s, parameter that can
be modified in the field. In this trial, the initially low gain
values lead to poor tracking of the target angle. As the
gain was increased, the robot moved ever faster towards the
desired orientation, with the largest attempted gain leading
to significant oscillatory behavior. Of the values attempted in
this run, the gain 0.55 was selected, as it yielded the minimal
average error over the trial. Note that this procedure was
run live in the open ocean, so that all disturbances such as
current, sub-optimal buoyancy, and physical variations in the
robot had realistic values.

B. Synthesized Trajectory Execution

We have utilized all three of our trajectory generation
methods for carrying out a selection of sample tasks in the
ocean.

1) Parameterized-shape trajectories: As a proof of con-
cept and to ensure the coverage of the full range of target
robot attitudes, several trajectories were constructed as col-
lages of parameterized shape trajectories: (a) a right-angle-
based path where the robot traverses several edges of a
cuboid, with a variety of orientations and camera directions;
and (b) a circle-based path, where the robot orbits several
central points of interest, observing them from a dense set of
the possible viewing directions. The accompanying video is
most appropriate for demonstrating the repertoire of motions
performed in this dance-like trajectory. We were able to
achieve all robot motions that were attempted, at the cost of
a relatively large effort needed to produce the choreography
via source code.

2) Trajectories designed via augmented reality: We
recorded trajectories with our augmented reality system and
played them back in the ocean at locations where collection
of visual data was desirable. We asked our human operators
to produce trajectories that took the robot through a wide
range of visual angles, and that also varied the robot’s depth
significantly. Again, several example trajectories appear in
our video submission, and our operators reported that they
observed the robot carrying out all aspects of the task that
they had intended.

3) Terrain-based programmed trajectories: We specifi-
cally focused on guiding the robot to pass into close prox-
imity with a sunken cargo vessel, located near the coast
of Barbados, in the Caribbean Sea. In order to capture the
visual experience of this location with high detail, the robot
swam less than 2 meters from the surface of the vessel. The
robot followed the contour of the vessel due to the strategic
placement of tags at the edges joining various elements of
its construction:

• A tag encoding “ascend vertically to the deck” was
placed on the sea floor near to each one of the ship’s
outer walls.

• A tag encoding “descend vertically to the sea floor” was
placed at the very edge of the ship’s deck, at the last

Fig. 7. Control of the acrobatic “circular helix” maneuver, one of our family
of parameterized shapes. With constant forward speed, the robot rotates in
roll (top-left) and yaw (bottom-left), to form a circle in space. Disturbances
from a constant depth target (bottom-right) are corrected by modifying the
pitch angle (top-right), through 3D-aware computation. Over the 35 second
maneuver, our system achieves an average depth error of 11 cm.

location the robot passed over before heading out into
open ocean.

• An “execute a U-turn” tag was placed on the ocean floor
several meters away from the ship in both directions, to
start the behavior again from the opposite side.

Figure 8 demonstrates a sampling of the motions made
by our robot during the executing of this ship survey. The
robot was able to make crisp turns to swim entirely forwards,
upwards, or downwards, and this let the robot pass very near
to both the flat deck of the ship, as well as to the outer walls
of its hull. The data collected by the robot during this trial
gives a unique perspective on the marine life present in the
ship’s ecosystem, and on the condition of various parts of
the vessel. In the future, such trajectories may be utilized
for inspecting operational vessels, to inspect for signs of
damage and for security reasons. We note that the visual
tags have easy-to-understand translations into robot motions
and that no specialized robotics knowledge is necessary to
program our system in this way. Therefore, this technology
will allow teams of unspecialized divers to direct automatic
survey platforms.

VI. CONCLUSIONS

We have described a system that allows our robot to
survey and navigate in parts of the marine environment
such as beside and between potentially complex benthic
(sea floor) structures. We have presented the details of a
control system for an under-actuated hydrofoil vehicle that
features quaternion angle representation, cascading depth
and attitude feedback loops, SLERP command smoothing
and online gait selection. This system can achieve agile
robot motions, but requires rich input trajectories in order
to reach its full potential. Therefore, we have paired it
with several human robot interaction techniques, including
a conductor style augmented reality gesture interface and a
spontaneously created environmental landmark map based on



(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 8. A turn-by-turn account of one pass over the contour of a shipwreck. From left to right and top to bottom, the robot: (1) approaches from the sand;
(2) views an “up” tag and ascends vertically along the ships hull; (3) crests at a depth above the deck; (4) swims flat above the deck; (5) views a “down”
tag; (6) turns downwards; (7) descends near to the ship’s opposite side; and (8) finally levels out, again swimming flat over the sandy ocean bottom. Best
viewed in color.

a vocabulary of available actions. We have demonstrated the
effectiveness of these approaches in the Caribbean Sea, near
to several coral heads as well as a sunken cargo ship, with
our robot able to achieve many desirable poses that would
be challenging or impossible for existing systems.

The demands of the marine environment, especially in the
context of human-robot interaction, are substantial and the
interaction modalities we have outlined are merely samples
what can be achieved. The HRI aspect of our system will
be more formally verified and extended, potentially through
use by interested marine biologists and oceanographers.
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