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Fig. 1. Multifocal displays require a decomposition of the scene onto the display planes, which often assumes perfect alignment of the viewer with the system.
Otherwise, parallax introduced by eye rotation and head offsets relative to the display may result in misregistration between the images, creating halos and
increasing blurriness. (a) In this paper, we present the first multifocal display with eye tracking and accommodation measurement. (b-c) We also introduce the
first computationally efficient optimal decomposition algorithm, enabling interactive content that utilizes eye tracking to directly maintain image alignment.
Both our hardware and algorithmic contributions are necessary steps towards better understanding the practical requirements of multifocal displays.

As head-mounted displays (HMDs) commonly present a single, fixed-focus
display plane, a conflict can be created between the vergence and accommo-
dation responses of the viewer. Multifocal HMDs have long been investigated
as a potential solution in which multiple image planes span the viewer’s
accommodation range. Such displays require a scene decomposition algo-
rithm to distribute the depiction of objects across image planes, and previous
work has shown that simple decompositions can be achieved in real-time.
However, recent optimal decompositions further improve image quality,
particularly with complex content. Such decompositions are more compu-
tationally involved and likely require better alignment of the image planes
with the viewer’s eyes, which are potential barriers to practical applications.

Our goal is to enable interactive optimal decomposition algorithms capa-
ble of driving a vergence- and accommodation-tracked multifocal testbed.
Ultimately, such a testbed is necessary to establish the requirements for
the practical use of multifocal displays, in terms of computational demand
and hardware accuracy. To this end, we present an efficient algorithm for
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optimal decompositions, incorporating insights from vision science. Our
method is amenable to GPU implementations and achieves a three-orders-of-
magnitude speedup over previous work. We further show that eye tracking
can be used for adequate plane alignment with efficient image-based defor-
mations, adjusting for both eye rotation and head movement relative to the
display. We also build the first binocular multifocal testbed with integrated
eye tracking and accommodation measurement, paving the way to establish
practical eye tracking and rendering requirements for this promising class
of display. Finally, we report preliminary results from a pilot user study
utilizing our testbed, investigating the accommodation response of users to
dynamic stimuli presented under optimal decomposition.
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1 INTRODUCTION
More than a century of research into stereoscopic and multiscopic
displays has worked toward an accurate reproduction of the three-
dimensional world [Urey et al. 2011]. Today’s binocular head-mounted
displays (HMDs) offer an accessible means to resolve persistent de-
ficiencies of 3D displays, achieving accurate reproduction of motion
parallax, as well as depicting 360-degree imagery enveloping the
viewer. However, modern HMDs do not correctly reproduce all nat-
ural depth cues available to the human visual system. In particular,
due to the fixed optical focus of current HMDs, the retinal blur
created by out-of-focus scene components is synthesized inaccu-
rately. Correspondingly, the use of HMDs may lead to vergence-
accommodation conflict (VAC), which biases perceived depth [Watt
et al. 2005], and has been linked to visual fatigue and visual discom-
fort [Hoffman et al. 2008; Shibata et al. 2011].

Volumetric displays are one solution to alleviate the issues associ-
ated with VAC. This widely studied class of glasses-free 3D display
can depict accurate retinal defocus blur by synthesizing an additive
volume of modulated light sources [Blundell and Schwartz 1999].
Rolland et al. [2000] were among the first to propose a multifo-
cal volumetric HMD, capable of generating multiple virtual image
planes spanning a range of depths. By incorporating an eyepiece,
Rolland et al. demonstrated that a compact multifocal HMD can re-
produce a volume of light sources extending throughout a viewer’s
accommodative range.
As first described by Akeley et al. [2004], a scene decomposition

must be performed to distribute virtual objects across the various im-
age planes to produce near-correct retinal defocus blur. Specifically,
they introduced a linear blending algorithm to divide the depiction
of objects across the nearest enclosing image planes. In this paper,
we significantly expand upon the capabilities and practicality of the
more recent optimized blending algorithm of Narain et al. [2015],
which is better suited for depicting occlusions and reflections, as
well as accurate retinal defocus blur.

Despite nearly two decades of investigation, multifocal displays
remain potentially unsuitable for practical applications, primarily
due to two unresolved issues. First, computing high-quality scene
decompositions is inefficient, as evidenced by the minutes-long run
times reported by Narain et al. and other more complex decomposi-
tion approaches [Matsuda et al. 2017]. Second, all existing multifocal
display decompositions assume a single, fixed viewpoint. As shown
in Figure 1, this can cause the projections of the image planes to
be misregistered on the retina if the position and direction of the
viewer’s eye are not exactly the same as those assumed during the
scene decomposition, which can significantly reduce image quality.
In this paper, we present solutions to these long-standing chal-

lenges. First, we show that high-quality scene decompositions can
be computed at interactive frame rates, leveraging insights from
numerical methods and perceptual science. Second, we demonstrate
how eye tracking measurements can be efficiently used to correct
for eye movements. We apply these methods to drive the first mul-
tifocal testbed with integrated eye tracking and accommodation
measurement, demonstrating the feasibility of gaze tracking within
a multifocal display. Our hardware and algorithmic contributions en-
able the use and study of multifocal displays with dynamic content,

and open the way to a better understanding of practical require-
ments for multifocal displays.

1.1 Contributions
• We achieve a three-orders-of-magnitude improvement in

computation time relative to state-of-the-art optimal scene
decompositions, reaching interactive performance through
a different numerical method that is provably stable and
amenable to GPU implementations;

• From prior perceptual studies, we derive a modified de-
composition algorithm to optimize the retinal defocus blur
gradient, as well as the retinal defocus blur itself, further
accelerating computations;

• We develop an efficient algorithm to correct for eye move-
ments detected after scene decomposition, showing eye
tracking can be used to solve the misalignments due to eye
rotation and head movements relative to the display;

• We develop the first adaptive multifocal system with inte-
grated vergence and accommodation eye tracking, support-
ing three adjustable-focus displays per eye. This system is
the first to support dynamic content, leveraging our effi-
cient decomposition method and eye movement correction;

• We report preliminary results from empirically measured
accommodation responses that show, for the first time, that
optimal decomposition correctly drives accommodation.

2 RELATED WORK

2.1 Driving Accommodation with HMDs
Volumetric displays, through their evolution into multifocal HMDs,
are not the only means to address the vergence-accommodation
conflict. As reviewed by Kramida [2016], there exists a broad spec-
trum of such designs, spanning comparatively modest modifications
(e.g., varifocal HMDs) to nearly complete overhauls (e.g., near-eye
light field displays). In this context, multifocal displays present a
moderate, but technically challenging, progression, adding display
elements and computational complexity in exchange for extending
the supported accommodation range.
With any HMD, the viewer’s pupil must remain within the de-

signed eye box. Correspondingly, to mitigate VAC, the stimulus to
accommodation should be depicted correctly over this limited region.
A direct solution is offered by near-eye light field displays, faithfully
reproducing wavefronts of natural scenes for perspectives within
the eye box. Lanman and Luebke [2013], Hua and Javidi [2014], and
Song et al. [2014] demonstrate microlens-based architectures for this
purpose, whereas Huang et al. [2015] apply multilayer LCDs; how-
ever, in all these examples, resolution remains limited with current
display technologies. Similarly, Konrad et al. [2017] recently showed
that accommodation-invariant displays can be used to alleviate the
VAC problem, but again at the cost of a tradeoff in resolution.

Another approach to mitigate VAC is offered by varifocal HMDs
in which the virtual image distance is varied to match the ver-
gence distance reported by an eye tracking system. This concept
has been explored using electronically-tunable lenses, in part, by
Liu et al. [2010], Johnson et al. [2016], Konrad et al. [2016] and
Padmanaban et al. [2017]. Relative to near-eye light field displays,
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varifocal HMDs can offer higher resolutions and larger field of
views [Dunn et al. 2017], but require tunable optics that must rely
on accurate eye tracking. In addition, retinal defocus blur can only
be rendered synthetically. Although eye tracking can improve the
rendered blur [Kellnhofer et al. 2016], it cannot be properly repro-
duced optically as the viewer accommodates.

In contrast to light field displays, volumetric displays utilize an ad-
ditive superposition of display elements located at different depths.
This construction raises natural questions regarding the density
of planes required for accurate depictions. Early research by Rol-
land et al. [2000] suggests as many as 14 layers would be required to
support one arcminute resolution (i.e., 20/20 visual acuity) over an
accommodation range of two diopters (e.g., from 50 cm to optical in-
finity). More recently, MacKenzie et al. [2012; 2010] established that
a coarser separation between layers, as wide as 0.6 to 1.0 diopters,
is sufficient to correctly drive accommodation, requiring only four
planes for a two-diopter accommodation range. With this reduced
requirement on the number of planes, recent research has focused
on identifying practical hardware to support a limited number of
planes. For example, Love et al. [2009] apply fast-switching bire-
fringent optics, Hu et al. [2014] investigate deformable membrane
mirrors, and Llull et al. [2015] incorporate electronically-tunable
lenses. Matsuda et al. [2017] use a spatial light modulator to create
non-planar focal surfaces, which more closely adapts the few layers
to the scene content but increases processing times. In contrast to
these works, our efforts are focused on unresolved, yet fundamental,
questions of maintaining image quality under natural eye move-
ments and reducing algorithmic complexity; as a result, our system
is optimized as a perceptual testbed, with these prior works showing
potential paths toward compact form factors.

2.2 Multifocal Displays, Blur, and Accommodation
Similar to binocular disparity, the magnitude of retinal defocus
blur varies monotonically with the separation between an object
and the point of focus. Therefore, this retinal blur provides an-
other cue to perceived depth [Held et al. 2012]. Based on statistics
of natural scenes and the properties of the human visual system,
Burge and Geisler [2011] found that reliable estimates of depth
could be obtained from retinal defocus blur alone. This result is
consistent with a growing body of psychophysical work showing
the importance of retinal defocus blur for depth perception. The
tilt-shift illusion provides a convincing example: artificial blur, as
added to a photograph or a computer-generated image, can dramati-
cally affect perceived scale [Held et al. 2010; Vishwanath and Blaser
2010]. Moreover, recent studies have employed multifocal displays
to show that retinal defocus blur, in isolation, is sufficient to recover
depth ordering. Critically, this finding was supported only when
retinal defocus blur was created by the optics of the eye, as opposed
to synthetically rendered on a conventional display [Zannoli et al.
2016].
As discussed above, multiple HMD architectures have been pro-

posed to depict retinal defocus blur. We emphasize that those re-
lying on rendered defocus blur alone, such as varifocal displays,
may not appear correctly or respond quickly enough to changes in
the viewer’s accommodative state due to unmodeled aspects of the
eye or system latency, respectively. Multifocal displays avoid these

concerns by creating retinal defocus blur through optical means
(i.e, resulting from physiological changes within the eye). MacKen-
zie et al. [2010] confirmed that the linear blending algorithm of
Akeley et al. [2004] approximates retinal defocus blur. Specifically,
the accommodative state producing maximum retinal contrast oc-
curs when focusing at the correct depth.
Others have investigated alternative decomposition algorithms.

Wu et al. [2016] use a saliency map to optimize the display plane lo-
cations for linear blending. Liu and Hua [2010] advocate a nonlinear
weighting to maximize the modulation transfer function (MTF) for
objects within the display volume. Subsequent analysis by Raviku-
mar et al. [2011] reported a preference for linear blending over
nonlinear weighting when considering biologically plausible met-
rics of image quality and properties of natural scenes. In later work,
Narain et al. [2015] demonstrated that, despite subtle differences
between these methods, no prior scene decomposition suppresses
salient artifacts at occlusion boundaries and reflections. This defi-
ciency motivated the development of their optimized decomposition,
directly using the reconstructed focal stack to compute the displayed
images. We build on their work: to be practical, multifocal displays
must support artifact-free viewing, but must also demonstrate real-
time frame rates with unconstrained eye movements.
As described above, current evaluations of retinal defocus blur

depictions have focused on the maximization of retinal contrast. Yet,
as with rendered blur, it is not enough to correctly replicate this
retinal blur itself, but also its variation as the eye accommodates
(i.e., the retinal defocus blur gradient). Current evidence suggests
that the accommodative system may exploit the temporal change of
contrast that is induced through accommodative microfluctuations.
This signal may be applied to resolve the direction of an accom-
modative stimulus (i.e., whether it is closer or further than the plane
of focus) [MacKenzie et al. 2010; Metlapally et al. 2014]. Similarly,
others have identified the retinal defocus blur gradient as a criti-
cal feedback signal to the accommodative response [Alpern 1958;
Kotulak and Schor 1986; Owens 1980]. To our knowledge, we are
the first to directly use the retinal defocus blur gradient produced
by multifocal displays within the optimization formulation of the
scene decomposition.

3 INTERACTIVE SCENE DECOMPOSITION
Any practical application of a multifocal display requires decom-
posing a virtual scene onto the layers of the display. In order to do
so both accurately and efficiently, we formulate the scene decom-
position as an optimization problem with an efficient numerical
solution. We begin with a simplified formulation of the problem
in the theoretical case of a fixed eye, and only later generalize the
formulation to support eye movements (Section 4.1). We assume
monochromatic (i.e., grayscale) images, but the same formulation
can be independently applied to any number of color channels.
We write scalars in math italic (e.g. x , D), n-d points/vectors in

boldface italic (e.g. b), andmatrices/sub-matrices in sans serif (e.g. K).
Depending on context, vector and matrix subscripts may either refer
to individual scalar entries or to contained sub-vector/sub-matrices.
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Fig. 2. (Top left) Multifocal display diagram, showing the idealized configu-
ration of an eye perfectly aligned with the display view frustum, for D = 3
displays and F = 12 focal slices. Distances di and fi are in diopters. (Top
right and insets) In practice, eye rotations and head movements relative
to the display cause the entrance pupil, at position o and with unit gaze
direction g, to become misaligned with the displays, distorting the perceived
images.

3.1 Optimal Decomposition
Figure 2 provides a schematic of a three-plane multifocal display:
a stack of optically additive display planes are positioned at dis-
tances di from the eye, for i ∈ {1, . . . ,D}. The optical axis of the
system is defined so as to intersect the displays orthogonally at their
centers. We additionally assume, for simplicity and without loss of
generality, that each display has a square resolution of N ×N pixels.
We compute focal slices to form a focal stack, modeling the retinal
defocus blur when a viewer is accommodated at focal distances fi ,
for i ∈ {1, . . . , F }. All distances are in diopters, and we refer to the
display planes and focal slices by their distance from the eye.
When the viewer accommodates at fi , the superposition of the

display images should be as close as possible to the corresponding
focal slice. This requirement for multifocal display image formation
can be cast as a minimization problem [Narain et al. 2015]. Moti-
vated by this formulation, we propose a novel solution that differs
significantly from previous work by its interpretation, efficiency,
and stability.

We formalize the optimal decomposition of a scene ontoD display
planes as the solution of the following constrained block-matrix
system:

argmin
x
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 (1)

such that 0 ≤ xi ≤ 1, ∀i . (2)

Here, ∥ · ∥ is the Euclidean norm and we define:

• Kf d ∈ RN
2×N 2

as the kernel sub-matrix for focal slice f
and display d (see below),

• xd ∈ RN
2
as the unknown optimal pixel intensities for

display d , and
• bf ∈ RN

2
as the known pixel values of focal slice f .

The pixels of every display and focal slice are linearized to form
vectors x and b. Each column of a kernel sub-matrix Kf d corre-
sponds to the discretized point spread function (PSF) of a given
pixel on display d viewed while focusing at distance f , which we
refer to as the kernel of this pixel. Each column of the entire kernel
matrix K therefore comprises the kernels of a displayed pixel as
focus spans that of the whole focal stack. The constraints in Equa-
tion 2 are necessary to model the finite, nonnegative range of display
intensities.
The system in Equation 1 can be solved using the normal equa-

tions

(K⊤K) x = K⊤b . (3)

Solving directly for x in Equation 3 will not generally give a solution
that satisfies the constraints, but it provides a way of approaching
the constrained solution. We thus study the unconstrained normal
equations here, and will discuss constraints further in Section 3.3.

It is useful to expand the left-hand side of Equation 3 as

©­­«
∑
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ª®®¬ .
We can similarly expand the right-hand side as:

K⊤b =
©­­­«
∑F
i=1 K⊤

i1bi
...∑F

i=1 K⊤
iDbi

ª®®®¬ ≡
©­­«
r1
...

rD

ª®®¬ .
This allows us to re-write Equation 3 more concisely as

C x = r (4)

with C ∈ RDN 2×DN 2
and r ∈ RDN 2

.
Recalling that columns of Ki j are pixel kernels for a single focal

slice, the (a,b)th element of Ci j corresponds to the sum of correla-
tions of pixel a’s kernel in display i and pixel b’s kernel in display
j. Similarly, the ath element of ri is the sum of the correlations of
pixel a’s kernel in display i with each focal slice.

Rewritten this way, we see that C x is a discrete convolution of the
displayed images with summed cross-correlated kernels, reducing
the optimal decomposition problem to that of discrete deconvolu-
tion.
We can compute the kernel for any displayed pixel directly and

accurately with a virtual scene consisting of a plane positioned at the
same distance as the physical display of that pixel. If we discretize
the plane geometry with an N × N grid, “activate” (i.e., render with
unit intensity) the grid element aligned with the pixel of interest,
and then render the resulting focal stack, we can compute the pixel’s
kernels across the focal stack.
If we represented the eye with a physically accurate model, the

kernel of each pixel would need to be computed independently
since the PSF of a human eye depends non-linearly on position
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and accommodation distance. All the matrix and vector elements
in C and r would therefore need to be computed independently,
requiring significant storage and processing: for example, for 8-bit
monochromatic images with N = 1024 and D = 3, matrix C would
require 9 TB of memory. As such, we adopt several carefully chosen
approximations to afford a practical, yet accurate, formulation.

3.2 A Thin Lens Approximation of Defocus Blur
To simplify computations, we approximate the optics of the human
eye as an ideal thin lens system. This approximation is common
in graphics [Potmesil and Chakravarty 1981] and has also been
adopted in the vision science community, particularly for multifocal
displays [Narain et al. 2015]. Our derivation applies an additional
small angle (paraxial) approximation, which is valid since display
and focal distances 1/di and 1/fi are large compared to the pupil
diameterϕ (given in meters). With these approximations, kernels ob-
tained from the thin lens model are spatially invariant and constant
over a circular support. We can also express the image formation
in terms of tangent angles, i.e., a point in focus on focal slice f
positioned p meters away from the optical axis maps to p/(1/f ) in
image space.

For focal slice f , the kernel k(p) of a pixel at position p0 on display
d is

k(p) = circ
(

(p − p0)
(ϕ/2) |d − f |

)
, (5)

where p and p0 are given in tangent angles, and circ(x) is 1 inside a
unit disk and 0 elsewhere. After rasterization, kernels are normalized
to have unit area.
To avoid complications at image boundaries, we add a band of

black pixels around the image so that pixels near the boundary
can use the same kernels as inner pixels. The necessary width of
this band is easily evaluated from the maximum kernel radius. The
value of these black pixels is never changed, and they are removed
after optimization. Note that this approach is not applicable to the
method of Narain et al., since it changes the frequency information
of the images. In our implementation of their method, which we
require later for comparison, we use a band of replicated edge pixels
around the images with a smooth falloff, as described in their paper.

These approximations drastically simplify the computation of our
matrix system and allow us to recast Equation (3) in terms of simple
image operations. Columns of each sub-matrix Kf d now all have
the same structure, differing only by a translation. As such, each
sub-matrix Kf d can be replaced by a single image Kf d ∈ RN×N

of the kernel for the display’s central pixel. All subsequent matrix
operations can also be written in terms of kernel images, instead of
using large, impractical kernel matrices. We arrive at

Ci j =

F∑
f =1

Kf i ∗ Kf j and ri =
©­«

F∑
f =1

Kf i
ª®¬ ∗ bi , (6)

and we need to solve the system C⋆ x = r, or explicitly

©­­­«
C11 . . . C1D
...

. . .
...

CD1 . . . CDD

ª®®®¬⋆
©­­«
x1
...

xD

ª®®¬ =
©­­«
r1
...

rD

ª®®¬ , (7)

where the correlation (∗) and the convolution (⋆) of a matrix of
images with a vector of images is defined as a regular scalar matrix
multiplication, replacing multiplications of scalars by the corre-
sponding image operation. The addition of images is computed
pixelwise. Note that since the circular kernels of Equation 5 are
symmetric, the correlations are convolutions.
Although conceptually similar to the scalar matrix formulation

in Equation 4, the image formulation we obtain in Equation 7 is
significantly more compact. The terms Ci j and

∑F
f =1 Kf i can be

precomputed once as images and easily fit in memory; the matrix
of images C now only requires 9 MB of memory.

3.3 Solving the Constrained Minimization
Even if unusable in practice, the full scalar matrix formulation in
Equation 4 allows us to reason about using numerical linear algebra
to solve the systemmore efficiently than in previous work. We detail
our optimal decomposition solver, relying on over-relaxed Jacobi
iterations [Burden and Faires 2011].

Let λd be the scalar value of the central pixel of image Cdd , and
let λ−1 = (1/λ1, ..., 1/λD )⊤. Given the approximate solution vector
x(k ) obtained during the kth Jacobi iteration, we can write the next
Jacobi iteration x(k+1) of the image matrix system (Equation 7) in
the compact image matrix notation of Section 3.2 as

x(k+1) = (1 − α) x(k) + α λ−1
(
r + λ x(k) − C x(k )

)
, (8)

where α is a positive scalar, and the product of scalars λ−1 with a
vector of images simply scales each image by the corresponding
scalar entry. We leverage the fact that kernels are non-negative to
prove (see Appendix A) that this iterative process is guaranteed to
converge when

0 < α < 1

/ ( D∑
d=1

(
F

λd

))
︸             ︷︷             ︸

α̂

. (9)

Empirically, α = 0.75 α̂ yields good results in all of our tests, but
a more comprehensive analysis of the system could lead to more
insights on optimal α settings.

The only remaining step is to deal with constraints (Equation 2).
To do so, we simply clamp the pixels of images x to 0 and 1 after
each Jacobi iteration. Although simplistic, this projection step does
not impact the convergence guarantee (Appendix A), is easy to
implement, and yields consistently good results in practice (see
Section 6).

4 PRACTICAL CONSIDERATIONS
The Jacobi iterations of Section 3 provide an efficient way of com-
puting the scene decomposition, but do not fully solve the two main
issues of current HMDs discussed at the beginning of this paper. This
section discusses the correction of errors caused by eye movements,
the modification of the objective function to further improve conver-
gence speed, and GPU implementation details. The final algorithm
including these modifications is summarized in Algorithm 1.
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(a) Ground Truth (b) Linear Blending (c) Optimal Decomposition

Fig. 3. Small eye offsets have significant effects for all multifocal decompo-
sition methods, most noticeably near large depth discontinuities. For linear
blending (b), the errors often appear as salient dark bands across edges. For
optimal decomposition (c), the errors show more subtly as additional blur at
the edges. The supplementary video also shows the effects of misalignments.

4.1 Eye Tracker Deformation
The assumption that the pupil of the user is always at the exact
position assumed by the scene decomposition is not easily main-
tained in practice. This may create plane misalignments that can
significantly impair the quality of the perceived images, as shown
in Figure 3 and in the accompanying video. This problem is still
present in very recent multifocal systems [Matsuda et al. 2017],
and diminishes the impact of new advances in multifocal display
technology on practical applications.

Even when trying to constrain the position of a user in a display
system, for instance using a bite bar, eye rotations move the position
of the pupil relative to the displays because the center of rotation
of the eye is located behind the pupil. This type of misalignment is
predictable (using eye dimensions from an average viewer) and can
be alleviated geometrically without eye tracking. In effect, plane
misalignment errors are most noticeable near the region fixated by
the user. As proposed by Akeley [2004], we can maintain a localized
plane alignment by rendering each pixel on given lines of sight from
the assumed viewpoint of a rotated pupil. However, this approach
requires rendering the scene from multiple viewpoints (one per line
of sight), which breaks the assumptions of Section 3.2, prevents us
from leveraging modern single-viewpoint oriented hardware, and
ultimately hinders an efficient implementation of our decomposition.
Note that an approximation of this behavior can be obtained by using
the center of rotation of the eye as the center of projection of the
camera [Akeley 2004], but we do not use this approximation.
More importantly, a local alignment strategy that only corrects

for eye rotations still assumes the head of the viewer is perfectly
static within the display device. This requirement may be too con-
straining for practical applications, since users constantly move
their head slightly when looking into benchtop systems, and HMDs
cannot be perfectly fixed to a user’s head. Therefore, because of the
higher dimensionality and possibly larger amplitude of viewpoint
displacements in practical applications, misalignments are not easily
predictable.
We show here how eye tracking can be used to correct for such

eye movements. The eye tracker gives the position of the pupil
and gaze direction of the user relative to the origin and direction
assumed by the decomposition. First, we offset the virtual camera
of the renderer to match the eye-tracked position and gaze. The

scene decomposition is then carried out normally, but since the
displays are now tilted and shifted with respect to the new frame of
reference of the virtual camera (Figure 2), we cannot simply show
the decomposed images on the displays.

The display misalignments can be corrected with a simple image-
space deformation of the image computed by the decomposition.
This transformation is obtained by directly computing the mapping
between the physical pixels of the displays and the pixels of the
virtual images used for the decomposition (respectively red and blue
planes in Figure 2). Let n = (nx ,ny )

⊤ ∈ [−1, 1]2 be the normalized
coordinate of a pixel, g = (дx ,дy ,дz )

⊤ and o = (ox ,oy ,oz )
⊤ be

respectively the measured gaze direction and eye offset, and let t =
(tx , ty ) = (tan(fovx /2), tan(fovy/2)). The mapping from a physical
pixel to a decomposed image is given explicitly by

n 7→
M1 n + v1
M2 n + v2

(10)

where M1,M2 ∈ R2x2 and v1, v2 ∈ R2 are defined as

M1 =

(
d дz tx 0

−d дx дy tx d ty (1 − д2y )

)
M2 =

©­«
−t2x

√
1 − д2y d дx −tx ty

√
1 − д2y d дy

−ty tx

√
1 − д2y d дx −t2y

√
1 − д2y d дy

ª®¬
v1 =

(
(d + oz )дx − дz ox

дx дy ox − oy (1 − д2y )) + (d + oz )дy дz

)
v2 =

©­«
tx

√
1 − д2y (d дz + o · д)

ty

√
1 − д2y (d дz + o · д)

ª®¬ .
(11)

This mapping strategy is easy to implement as operations on
images, and its exactness is only limited by the precision of the
eye tracker. Furthermore, it is completely decoupled from the de-
composition strategy, so it can be applied directly to any other
decomposition method, including linear blending.
As shown in Figure 1(c), displaying the decomposed images de-

formed by Equation 10 exactly solves the display misalignment
problem. This is also demonstrated in the accompanying video. No-
tice that black bands appear at the edges of the displays since the
offset virtual view frustum is not entirely contained in the original
view frustum formed by the displays. This can be solved by artifi-
cially reducing the field of view of the renderer, so the offset virtual
view frustum remains within the display frustum for reasonable
eye rotations and translations. In practice, we have not found the
outside edge artifacts to be disturbing, and we prefer to ignore them
in order to maximize the field of view of the system.

4.2 Blur Gradient Heuristic
Our optimal decomposition solver can be further improved by in-
vestigating the behavior of our Jacobi iterations. As seen in Figure 5,
the solution of the decomposition after a large number of itera-
tions features ring structures around depth discontinuities. These
structures appear in the optimal decomposition of most scenes, and
therefore seem to be important for the accurate reconstruction of
the focal stack, but our algorithm requires many iterations before
these patterns emerge.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 237. Publication date: November 2017.



Fast Gaze-Contingent Optimal Decompositions for Multifocal Displays • 237:7

Fig. 4. The blur gradient kernels are obtained by subtracting the kernels of
adjacent focal slices, creating desirable ring structures.

(a) (b) (c)

Fig. 5. Front plane of the optimal scene decomposition. (a) The converged
solution features ring structures around occlusion boundaries. (b) The ring
features take a large number of iterations to appear when using our method
without the blur gradient modification, and are not visible after only 10
regular Jacobi iterations. (c) Using our blur gradient modification pushes the
solution toward the optimal imagemore aggressively, and the ring structures
already start to appear after a single iteration. As verified in Section 6.3, this
consequently improves the convergence speed of our method.

As mentioned in Section 2.2, current perceptual science research
suggests the gradient of the blur with respect to changes in depth
is key to driving accommodation. To try to force the ring features
to appear more quickly, we modify the minimization formulation
of Equation 1 in order to explicitly include the blur gradient. Since
the scene is densely sampled in depth by the focal stack, a gradient
in depth can be approximated as finite differences by subtracting
adjacent focal slices. We can thus include the gradient term in the
minimization as

argmin
x

∥K x − b∥2 + β


K′ x − b′



2 (12)

where β weights the contributions of the reconstructed images and
their gradient, and

K′ :=
©­­«

K′
11 . . . K′

1D
...

. . .
...

K′
F 1 . . . K′

FD

ª®®¬ , K′
f ,d := Kf +1,d − Kf ,d (13)

b′ :=
©­­«
b′1
...

b′F

ª®®¬ , b′f := bf +1 − bf . (14)

Note that the new terms in Equation 12 are obtained by reusing
the already-computed focal stack and blur kernels, so this mod-
ification does not incur any significant additional cost. The new
minimization can be solved through the normal equations

(K⊤K + βK′⊤K′)x = (K⊤b + βK′⊤b′). (15)

This system is processed similarly to the original normal equations
to obtain an efficient formulation in the image matrix notation of
Section 3.2, and likewise reduces to simple operations on the blur
gradient kernel images K′

f d and blur kernel images Kf d .
The blur gradient formulation, despite its structural similarity

to the original minimization, cannot be solved directly with our
Jacobi iterations. Since the blur gradient kernels are composed of
differences of the original kernels, they are not non-negative kernels,
and the convergence criterion of Equation 9 does not hold. This
results in divergent instabilities in the decomposition after a large
number of iterations. Still, we use the blur gradient formulation for
the first few iterations of the decomposition, and then revert back to
the original formulation to maintain stability. We have found using
a single blur-gradient-augmented Jacobi step with β ≈ 250 to be
sufficient in our experiments to increase convergence speed, but
the optimal values for the weights and the number of blur-gradient-
augmented steps remain to be investigated.
Some intuition on the effects of the blur gradient term can be

gained by looking at the structure of the blur gradient kernels K′
f d ,

shown in Figure 4. The new kernels possess ring structures akin to
the structures we observe in the converged optimal decomposition
in Figure 5, which might explain why they improve the convergence
of the decomposition. The computational benefits of using the blur
gradient are verified in Section 6.3.

4.3 GPU Implementation
The Jacobi iterations of Equation 8 are mostly composed of per-pixel
operations, which are implemented in a pixel shader on the GPU.
Only the term C x(k ) requires more attention, as it corresponds to
a convolution. However, for the parameters used throughout this
paper, the cross-correlated kernels are small and only convolutions
over a few pixels are required. Even if standard GPU convolution
techniques can be used [Podlozhnyuk 2007], a naive implementation
summing over neighboring pixels in a pixel shader outperformed
all other methods we have tested. Approximate downsampled ap-
proaches could also be used, but they would introduce errors in the
decomposition and would require further analysis.
Generating the focal stack r in Equation 8 is also a challenging

part of the decomposition, as it requires accurately rendering depth
of field blur for each focal slice. We compute the focal stack by accu-
mulating images over 64 samples on the virtual pupil. As depicted in
Figure 6, this would usually require 64 × F renders using a standard
pinhole rendering pipeline. We instead approximate this process
by using a single view frustum per pupil sample which envelops
all focal slices, reducing the number of required renders to 64. The
enveloping images are rendered at higher resolution, and the image
for each focal slice is extracted by cropping the enveloping images.
This greatly improves the efficiency of focal stack generation, and
we have found the resulting sampling errors to be negligible. More
approximate but faster focal stack rendering methods might give
superior results, but we prefer to use a slower but accurate focal
stack generation method in this paper, so that no additional error is
introduced in our analysis.
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Fig. 6. To generate the focal stack, we accumulate samples on the pupil of
the virtual camera. (left) This would usually require one render per sample
per focal slice, as shown here for a single pupil sample and F = 3 focal slices.
(right) As explained in Section 4.3, we instead use a single render per eye
sample which envelops the rendering frustums required by all focal slices,
greatly reducing the cost of focal stack generation.

Algorithm 1: Scene decomposition (computed each frame)

for each eye do
- update virtual camera to match measured eye position
- render focal stack r (Section 4.3)
- initialize x to zero
- do one Jacobi step with blur gradient (Section 4.2)
- do S regular Jacobi steps (Equation 8)
- apply eye tracker deformation (Equation 10)

end

5 EYE-TRACKED MULTIFOCAL DISPLAY TESTBED
We build a multifocal display testbed driven by the methods of Sec-
tions 3 and 4, leveraging a combination of off-the-shelf and custom
components. Our testbed is purpose-built to explore open questions
regarding the accommodation response to, and visual perception of,
multifocal displays, as enabled by our efficient gaze compensation
and scene decomposition algorithms. As such, three subsystems are
necessary: a binocular multifocal display with a reasonably large
field of view to reproduce natural viewing conditions; an eye tracker
to account for parallax caused by eye rotations and head movements,
following Section 4.1; and a way of measuring accommodation to
experimentally verify the reaction of subjects under various viewing
conditions. This section describes the components selected for our
testbed, their use, and their calibration. Figure 7 details the con-
struction, and a detailed view of the system is also presented in the
accompanying video.

5.1 Displays
The testbed employs six full-color organic light-emitting diode
(OLED) display panels (MicroOLEDMDP02), each supporting 1280×
1024 resolution at a 60 Hz refresh rate. The panels are mounted on
motorized translation stages to create three variable-focus virtual
image planes per eye. Light from the displays is combined using pel-
licle beamsplitters and relayed to the eye through a pupil-forming
optical system. This pupil-forming system affords a 20-degree field
of view, a 10-mm-diameter eye box, and is designed to be telecentric
in the virtual image space, so as to maintain image resolution of one
arcminute per pixel (i.e, 20/20 visual acuity). Each display panel is

independently actuated to address a 17-diopter depth of focus (DOF),
and these ranges are staggered to address a total DOF spanning from
−5 to +12 diopters. This extended range allows for the correction
of the spherical component of the viewer’s prescription, eliminat-
ing the need to use corrective eyewear when viewing the testbed,
thereby assisting eye tracking and accommodation measurements.
Viewers are positioned, relative to the viewing optics, using a bite
bar. Note that the bite bar helps stabilize the user’s head, but does
not eliminate head movements, so the corrections of Section 4.1 are
still required in this system. A manual translation stage controls
the interaxial distance (IAD) by altering the separation between the
right-eye display subsystem and the remainder of the testbed to
adjust to the user’s interpupillary distance, if necessary.

Because a different display synthesizes each virtual image plane,
the system requires accurate radiometric and color calibrations.
These calibrations are obtained from measurements of the gamma
curves and primary spectra, as recorded with a Photo Research
PR-745 SpectraScan Spectroradiometer. A look-up table converts
target sRGB image values to color-corrected, display-specific RGB
values, following the method of Brainard [1989]. The focus of each
display was measured using a SID4 wavefront sensor from Phasics
Corp. Optical distortions and alignment between the virtual images
are measured using a method akin to Gilson et al. [2011]. Similar to
Watson and Hodges [1995], distortions and alignment are corrected
by pre-warping imagery on the GPU.

5.2 Eye Tracker
The use of eye tracking for multifocal displays has been discussed
before, for instance in the early design of Rolland et al. [2000].
However, to our knowledge, our testbed is the first to incorporate
such eye tracking. We employ a conventional model-based eye
tracking algorithm, as surveyed by Hansen and Ji [2010], wherein
the position and pose of the eyes are estimated by tracking the
boundary of the viewer’s pupil and the bright reflections of point
light sources from the anterior surface of the cornea. The point light
sources consist of an array of near-infrared light-emitting diodes
(LEDs) placed into a structure in front of the designed eye box. A pair
of infrared-sensitive cameras record images focused over a 25-mm-
diameter region centered on this eye box at a sampling rate of 250 Hz.
Dichroic “hot” mirrors combine the eye tracking and display paths.
We emphasize that our development of this eye tracking system
closely follows prior constructions, with extended implementation
details provided for a similar design by Stengel et al. [2015].

5.3 Accommodation Measurement
The accommodative state of the viewer’s left eye is measured at 67
Hz using the well documented Shack-Hartmann wavefront sensing
technique [Liang et al. 1994]. Our system employs near-infrared light
created with a Thorlabs SLD830S-A10 superluminescent diode (SLD)
that is coupled to the eye using a weakly reflecting beamsplitter.
Light passing through the viewer’s eye and reflecting from the retina
is separated from the display path using another “hot” mirror and
relayed to an Imagine Optic HASO wavefront sensing camera with
a 34×34 microlens array achieving a 294 µm pitch at the system
entrance pupil.
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Fig. 7. Our multifocal testbed includes three primary subsystems, as denoted in the photographs (left) and the optical diagram (right). First, the display
subsystem uses three OLED panels per eye to achieve a 17-diopter accommodation range over a 20-degree field of view. Lenses in this subsystem are shaded
blue, and blue optical rays are traced from display pixels to the eye box. Second, the eye tracking subsystem comprises a pair of 250 Hz cameras and a set of
near-infrared LEDs. Lenses in this subsystem are shaded green. Third, the accommodation measurement subsystem uses a Shack-Hartmann wavefront sensor.
Lenses in this subsystem are shaded gray and red optical rays are traced from the illumination source, to the eye, and back to the wavefront sensor. See the
supplementary video for additional details.

Method Time 100 iterations Precomp. Per Iteration
Narain CPU - - 1.8
Narain GPU 20 1.5 0.185

Ours 2.38 0.5 0.025
Table 1. Time comparison (in seconds) of the original CPU implementation
of Narain et al. [2015], our GPU implementation of their work, and our
method. The total and precomputation times for Narain et al. were not
reported. We report the time required to compute 100 iterations for image
resolution 512× 512, and break down timings into precomputations and the
iterations themselves.

6 RESULTS AND DISCUSSION
In this section, we show that our method is an efficient way of
solving the optimal decomposition formulation of Equation 1, out-
performing previous work, and that it unlocks the interactive use
of high-quality decompositions for practical multifocal display ap-
plications.

6.1 Efficiency Versus Previous Work
In their original paper, Narain et al. [2015] describe a CPU imple-
mentation of their method. They report a computation time of 180
seconds for 100 iterations, or 1.8 seconds per iteration. Note that this
time does not appear to include the computation of the ground truth
focal stack and other various images (e.g., the Fourier transforms
of the PSFs required by their method). To obtain a fair comparison
between our method and theirs, we first implement their method

Fig. 8. Comparing the residual mean square error (RMSE) over time of our
GPU implementation of Narain et al. [2015] against our method. We can
compute 47 Jacobi iterations, which yields a solution close to optimal, before
a single iteration of Narain et al. is computed.

more efficiently on the GPU. Doing so, we report a computation
time of about 0.185 seconds per iteration for similar conditions,
which is an order of magnitude faster. Times are reported in Table 1.
All computations are done on a 12-core 3.5 GHz processor and an
NVidia TitanX Pascal graphics card. Note that because of possible
small differences between our benchmark test and that originally
used by Narain et al., the improvement of our GPU implementation
could be slightly lower than 10x, but this uncertainty is taken into
account later in this section.
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The implementation of our Jacobi iterations is also done on the
GPU, following Algorithm 1. We report a time of 0.025 seconds per
frame, which is an order of magnitude faster than our GPU imple-
mentation of Narain et al. The reason for this significant speed up
in our implementation is due to fact that the method of Narain et al.
solves the deconvolution problem in Fourier space, but applies the
constraints projection in the primal domain, which requires two
Fourier transforms per iteration. Convolutions in Fourier space be-
come pointwise multiplications, which is efficient for very large
kernels. However, in our case, the radii of the kernels are fairly small,
especially for a plane spacing of 0.6 diopters. We found it much
faster to compute the convolutions directly in the primal domain,
as described in Section 4.3.
Figure 8 compares our Jacobi method with our GPU implemen-

tation of Narain et al. We use scene A (shown in Figure 10), and
image resolution 512 × 512. We use the residual mean square error
(RMSE) to compare each reconstructed focal slice to a ground truth
image rendered with correct defocus blur. The errors are averaged
over the focal range at twice the frequency used by the decompo-
sition, i.e., we average the errors over 23 focal slices whereas the
decomposition uses F = 12 for all results in this paper. Doing so
verifies that no large error appears between the focal slices used by
the decomposition.

Our method converges to the optimal solution faster than previ-
ous work, both in terms of number of iterations and computation
time. We can use at least 10 times fewer iterations with our method
compared to Narain et al. to reach the same image quality. As such,
the computational time can be further divided by 10, which gives
a total of three orders of magnitude improvement in computa-
tional time for our method compared to the original implementation
of Narain et al. Note that, according to Figure 8, the improvement
in number of iterations for our Jacobi method over our GPU imple-
mentation of Narain et al. is actually significantly more than 10 fold.
We report this conservative value to account for the uncertainty,
described earlier in this section, related to the comparison between
the CPU and GPU implementations of Narain et al.
With our current implementation, we can thus run the optimal

decomposition of scenes at 5 frames per second (FPS) for a 512× 512
image resolution. As indicated by the steep slope of the error curve
in Figure 8 for a low number of iterations, we begin to notice er-
rors if we reduce this number of iterations further. Note that this
timing does not include precomputation times, which are mostly
comprised of the focal stack generation. As seen in Table 1, we clock
our focal stack generation at roughly 2 FPS, but we emphasize that
this is highly dependent on the renderer, scene complexity, and
focal stack generation method. We use 64 pupil samples and 12
focal slices throughout this paper, which generates a high-quality
focal stack and allows us to avoid the effects of focal stack errors
in our analysis. However, it is very likely that much more efficient
focal stack generation methods can be employed. For instance, a
simple reduction in the number of pupil samples would directly
reduce precomputation times. Furthermore, using well-known ap-
proximations, such as a reverse-mapped z-buffer, would trivially
bring focal stack generation to real-time rates. Determining whether
such fast focal stack generation methods are perceptually sufficient
is an interesting research avenue that our system enables.

Fig. 9. Captures from our testbed with a camera focused at 0.6 diopters.
The accompanying video also shows captures of focal stacks for dynamic
content.

Metric Method Scene
A B C D E

Q

Converged 72.46 67.70 73.59 74.93 74.84
Linear 66.85 61.70 60.78 66.52 57.92
Narain 63.66 62.91 64.09 65.28 62.99
Ours 71.80 66.52 72.92 74.24 72.25

RMSE

Converged 0.0974 0.0794 0.0441 0.0913 0.0413
Linear 0.1324 0.1760 0.1259 0.1297 0.1506
Narain 0.3237 0.3910 0.2965 0.4275 0.1792
Ours 0.1210 0.1170 0.0700 0.1295 0.0515

Table 2. Quantification of the error for the decomposition methods and
scenes of Figure 10. We use an equal-time comparison at 5 frames per
second, which corresponds to 1 iteration of Narain et al. and 8 iterations
of our method. The HDR-VDP-2 Q metric (higher is better) and the RMSE
(lower is better) are averaged over the entire focal stack. In all scenes, our
method beats both linear blending and Narain et al. in both metrics.

This performance allows us to compute the optimal decompo-
sition of dynamic content with good quality at interactive frame
rates. Figure 9 shows images captured within our system, and the
accompanying video shows a sequence with dynamic content cap-
tured in real-time in our testbed. However, faster framerates are
desirable, and the resolution of the images (stretched to fill the dis-
plays vertically) is only half the maximal resolution of our displays.
The performance of our method is highly sensitive to differences
in equipment and implementation details, and we believe that the
significant improvements we report in comparisons with previous
work, both in equal time and equal number of iterations, confirm the
fundamental benefits of our method. By decreasing optimal decom-
position times from the order of minutes to milliseconds, we believe
the path to true real-time performances becomes a manageable
problem of hardware and implementation efficiency.

6.2 Equal Time Comparison
We use our Jacobi iterations with the blur gradient modification to
solve the optimal decomposition for a variety of different scenes,
shown in Figure 10. We test our method for a display spacing of
0.6 diopters, as recommended by current research [MacKenzie et al.
2012], but also for larger display distances of up to 2 diopters to test
the possibility of covering larger accommodation ranges. We use
F = 12 focal slices, and image resolution 512 × 512. Since the goal
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Fig. 10. Comparison of the HDR-VDP-2 metric for different decomposition methods applied to various scenes, compared to the ground truth focal stack. We
average the metric over the depth range spanned by the displays, so the colors can be interpreted as the probability of detection of differences between the
reconstructed and original focal stacks. The reference images (column 1) show the scenes (identified A to E) viewed from a pinhole camera, without any
defocus blur. The insets in the reference images for scenes A, D and E are used in Figure 11. To compare Narain et al. (column 4) with our method (column 5),
we use an equal-time comparison at 5 frames per second, ignoring precomputation time. In this time, we can afford 1 iteration of Narain et al. and 8 iterations
of our Jacobi method. We also compare both methods to linear blending (column 3) and to the converged solution of the optimal decomposition (column 2),
which we compute using 10,000 iterations of our method. The numbers on the right give the display plane positions used for each scene. For all scenes, our
method gives better results than both Narain et al. and linear blending at this interactive frame rate. These results are also quantified in Table 2.
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Fig. 11. Insets of scenes A, D and E from Figure 10, using an equal-time
comparison of Narain et al. and our method at 5 frames per second. Images
are taken at a single focal depth indicated in square brackets. This shows
how the errors detected by the HDR-VDP-2 metric of Figure 10 translate
to visible artifacts in the reconstructed images. Note how Narain et al.
washes out the colors and makes parts of the scene bleed into each other,
for instance on the left where the river is visible through the cattail, while
our method gives a sharper reconstruction.

of scene decomposition is to reproduce the focal stack as closely as
possible, Figure 10 uses the popular perception-based HDR-VDP-2
metric [Mantiuk et al. 2011] to compare reconstructed focal stacks
with ground truth images rendered with correct defocus blur. The
HDR-VDP-2 metric gives the probability for an average user to
detect differences between two images, which we use to compare
reconstructed and reference focal slices. The probability is then
averaged over the whole focal range, sampled at twice the frequency
used by the decomposition (similarly to Section 6.1). Furthermore,
as discussed in Section 3.2, the different decomposition methods
treat boundary pixels differently. We therefore remove an additional
small band of pixels around the images before comparing them
to reduce the possible effect of boundary treatment on the image
quality metrics.
Since our Jacobi approach and that of Narain et al. are based on

the same objective function, they will ultimately converge to similar
solutions after a large number of iterations. Focusing on interactive
applications, we use an equal time comparison at 5 FPS, without
counting precomputation time. In this period, we can compute one
iteration of our GPU implementation of Narain et al., and eight
iterations of our Jacobi method. Both methods are also compared to
linear blending [Akeley et al. 2004], and to the converged solution
of the optimal decomposition, computed using 10,000 iterations of
our Jacobi method. Note that 5 FPS is the fastest frame rate we can
use for the equal-time comparison since we need to compute at
least one step of Narain et al. Slower frame rates could be used, but
this would only improve the advantage of our method compared to
linear blending, and would reduce the gap between our method and
Narain et al., making the analysis less clear.

Table 2 also compares the methods and scenes of Figure 10 quan-
titatively. HDR-VDP-2 provides a global image quality metric Q,

(a) (b)

Fig. 12. Comparison of our method with and without the blur gradient
modification of Section 4.2. Both in the RMSE (lower is better) and HDR-
VDP-2 Q (higher is better) metrics, our method reaches a given error roughly
2 to 4 times faster when using the blur gradient.

which we use to compare reconstructed and reference focal slices,
again averaging over the whole focal stack. We also give the same
comparison using the RMSE metric, which is proportional to the
quantity minimized by the optimal decomposition formulation of
Equation 1.

For all five test scenes and all metrics, our method performs better
than both Narain et al. and linear blending, reaching decomposition
results that are perceptually close to the converged solution, at
interactive frame rates. Note that even though the RMSE metric
sometimes gives similar values for our method and linear blending
(e.g. in Scene D), the Q metric and the images in Figure 10 distinctly
highlight the advantages of our method. Note also that using the
RMSE metric in Figure 10, or using the maximum error over the
focal range instead of the average, gave similar results in all cases.
Figure 11 shows insets for three of the scenes presented in Fig-

ure 10, as indicated by red squares in the reference images of that
figure. These insets compare our method to Narain et al. for a given
focal slice and show that the differences identified by the HDR-
VDP-2 metric do indeed correspond to perceivable differences in
the reconstructed images. In general, for a low number of iterations,
the method of Narain et al. tends to create halos around objects, and
generates blurrier images with colors from different objects bleeding
into one another. This is also visible in the equal time comparison
present in the accompanying video.

6.3 Blur Gradient Evaluation
All results presented in Sections 6.1 and 6.2 use the blur gradient
modification described in Section 4.2. Figure 12 compares the errors
obtained with and without this blur modification, using both the
HDR-VDP-2 Q and RMSE metrics described in Section 6.2. As done
in previous sections, the metrics are computed by averaging over the
whole focal stack, sampled at twice the depth frequency used by the
decomposition. From this figure, we see that the blur modification
does indeed improve the performance of our method, reducing the
number of iterations (and therefore the computation time) required
to reach a given error by roughly 2 to 4 times.

6.4 Accommodation of Human Subjects
We tested the capabilities of our system in a pilot user study where
we compared the accommodation responses of users looking at
dynamic content decomposed using linear blending and our optimal
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decomposition method. We collected accommodation responses
from four observers to a target oscillating sinusoidally in depth
between 0.6 and 1.8 diopters at a rate of 0.1 hertz. Observers were
asked to maintain fixation on the target, and the image deformation
of Section 4.1 was used to adjust to the user’s pupil location. The
target consisted of a Snellen eye chart embedded into scene C of
Figure 10. The target size was held constant (2.4 degrees wide, letter
size 0.2-0.7 degrees) in order to remove looming as a potential cue to
accommodation. Three repetitions of the movement were collected
over 30 seconds for each of the four observers. Observers viewed
the scene monocularly to avoid the influence of binocular cues (e.g.,
vergence distance), and to ensure the changes in accommodation
were driven by retinal blur alone.

The results of this study are shown in Figure 13. Individual ob-
server responses were shifted relative to the stimulus position in
order to align responses while accounting for subtle shifts in the
accommodation response unique to each observer’s optics. This was
done by computing the average accommodative position through
the captured sequence, and then shifting the responses by an amount
equal to the difference between that average and the average stimu-
lus position (1.2 diopters).
The results shown in Figure 13 indicate that both decomposi-

tion methods provide a stimulus that drives the accommodation
response. For linear blending, we replicate the findings expected
from literature [MacKenzie et al. 2010], with an accommodative
gain of about 0.61. Our Jacobi algorithm also drove changes in the
accommodation response, but with a significantly lower gain than
linear blending, as confirmed with a repeated measures t-test (0.28,
t(3) = 5.08, p=0.015).
Measuring the modulation transfer function (MTF) under both

decompositions can help explain the results of the user study. Fig-
ure 14(a) shows the MTF measured with a camera looking at a point
stimulus in the system, decomposed with either linear blending or
optimal decomposition. In all cases, the stimulus is placed between
two display planes at 1.5 diopters, and the camera is focused at this
same depth. We see that linear blending has a higher MTF, notably
in the 4-8 cycles per degree range which maximizes the signal to ac-
commodation [MacKenzie et al. 2012]. Figure 14(b) shows the MTF
for the same stimulus, but captured virtually in software. Since the
stimulus is a point, and the virtual system is not diffraction limited,
the ground truth MTF is constant. Again, we see that linear blending
gives a better MTF than optimal decomposition. The method itself is
therefore responsible for at least part of the drop in relative contrast
observed in the real MTF of Figure 14(a).
Many factors could explain the lower MTF and accommodation

gain of optimal decomposition. For instance, optimal decomposition
reduces high spatial frequencies at the display planes [Narain et al.
2015], which can thus reduce the strength of the accommodative
signal and the MTF, even with a virtual camera. This is particu-
larly important for the scene we used because of the large depth
discontinuity at the edges of the eye chart. Furthermore, the display
alignment appears to be more critical for optimal decomposition
since it distributes light across all three planes, while linear blending
distributes light to the two nearest ones. Small calibration errors

Fig. 13. Results of accommodation measurement to both linear blending
(red), and our optimal decomposition method (blue). The black dashed
curve shows the stimulus profile. Error bars represent +/-1 standard error
of the mean. Accommodative gains (inset) were obtained by computing
the difference between the maximum and minimum responses during the
stimulus movement, and scaling the difference by the amplitude of the
stimulus movement. These results show, for the first time, that optimal
decomposition does indeed drive accommodation, albeit with a lower gain
than linear blending.

(a) (b)

Fig. 14. MTF measurements for a point stimulus placed at 1.5 diopters and
decomposed using either linear blending or optimal decomposition. The
camera is also focused at 1.5 diopters. (a) MTF using a camera looking into
our system. (b) MTF computed in software using a virtual camera with a
5mm aperture.

could therefore increase image blur for optimal decomposition, fur-
ther reducing the strength of the accommodative signal and the
captured MTFs of Figure 14.

These results and their explanation require a more in depth inves-
tigation, but the study illustrates that optimal decomposition does
provide a stimulus that can drive accommodation. We reiterate that
this user study is preliminary and only serves to demonstrate the ca-
pabilities of our system. This simple user study already raises many
questions and possible research avenues, such as the possibility of
modifying the objective function to optimize for the MTF directly,
which shows the potential and usefulness of our testbed.
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7 DISCUSSION AND CONCLUSION
We have presented significant, necessary improvements over the
current state-of-the-art in multifocal displays. Our efficient scene
decomposition method unlocks the use of optimal decomposition
for high-quality interactive applications. We have also demonstrated
how eye tracking can be used to efficiently maintain plane alignment
in multifocal displays.
The way current display technologies drive accommodation is

still under active investigation [Koulieris et al. 2017], but accommo-
dation in multifocal displays has so far been difficult to study due
to impractical decomposition times, misalignment issues, and the
difficulty of integrating measurement paths to a multifocal system.
By combining eye tracking and accommodation measurement with
our interactive decomposition algorithm, our multifocal testbed is
the first to fully enable the investigation of many open questions
regarding multifocal displays and the human visual system.
Many of these open questions are intricately coupled with the

design of our system. For instance, we hope to investigate the re-
quired precision and latency of eye tracking, the effects of our blur
gradient heuristic and better optimization functions on accommoda-
tion, and the relation between the error metrics and the perceived
realism, quality and comfort in multifocal displays. By its signifi-
cant form-factor, our testbed is however limited to investigating
the accommodation of static users, and cannot be used to study
such open questions relating to the interactions of more depth cues
as a user moves freely in a virtual environment. We hope that a
better understanding of these questions will allow us to improve our
testbed, and in turn guide the design of future multifocal displays.

A CONVERGENCE PROOF
We prove the convergence criterion of Equation 9. Because the sub-
matrices of K⊤K are definite-positive, C only has positive eigenval-
ues, and the convergence criterion for over-relaxed Jacobi iterations
[Burden and Faires 2011] is

α < α̂ :=
2

ρ(Λ−1 C)
(16)

where Λ is the diagonal matrix of C and ρ denotes the spectral
radius. The proof thus reduces to computing the largest eigenvalue
of Λ−1 C.
For a single display d and a single focal slice f , the action of

Λ−1 C is a convolution by the kernel image 1
λd

K
⊤

f d ∗Kf d . The largest
eigenvalue for this case is obtained by finding the eigenvector image
Ω with largest norm after convolution.
By Parseval’s identity, the problem can be solved equivalently

in Fourier space. Denoting the Fourier transform by F , we can
decompose the convolution into a pixelwise multiplication as

F

((
1
λd

K
⊤

f d ∗ Kf d

)
⋆Ω

)
= F

(
1
λd

K
⊤

f d ∗ Kf d

)
· F (Ω) . (17)

The largest norm after convolution is thus obtained by using the im-
age Ω which only contains the frequency with the largest amplitude
in F (K

⊤
f d ∗Kf d ). Because our kernels are positive, the largest ampli-

tude is located at frequency (0, 0). The image with the largest norm
after convolution is thus a constant image, which is also trivially an
eigenvector image under convolution.

Because the kernels are normalized, the convolution of a constant
imageΩi on display i with kernel 1

λd
K
⊤

f d ∗Kf d results in the uniform
image 1

λd
Ωi ∀f . Combining all displays and all focal slices then

yields the eigensystem
F∑
f =1

D∑
i=1

1
λd

Ωi =
F

λd

D∑
i=1

Ωi = γΩd d ∈ {1, ...,D} (18)

for eigenvalue γ , whose solution is

γ =
D∑
i=1

F

λi
. (19)

Combining this result with Equation 16 gives the convergence cri-
terion of Equation 9.
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