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Fig. 1. Equal-time (5 minutes) renderings of a smoky Kitchen scene. Gradient-domain volumetric rendering techniques with L1 reconstruction converge faster
than primal-domain volumetric rendering technique. The relMSE error metric has a unitless scale of 10

−2.

Gradient-domain rendering can improve the convergence of surface-based

light transport by exploiting smoothness in image space. Scenes with partic-

ipating media exhibit similar smoothness and could potentially benefit from

gradient-domain techniques. We introduce the first gradient-domain formu-

lation of image synthesis with homogeneous participating media, including

four novel and efficient gradient-domain volumetric density estimation al-

gorithms. We show that naïve extensions of gradient domain path-space

and density estimation methods to volumetric media, while functional, can

result in inefficient estimators. Focussing on point-, beam- and plane-based

gradient-domain estimators, we introduce a novel shift mapping that elimi-

nates redundancies in the naïve formulations using spatial relaxation within

the volume. We show that gradient-domain volumetric rendering improve

convergence compared to primal domain state-of-the-art, across a suite of

scenes. Our formulation and algorithms support progressive estimation and

are easy to incorporate atop existing renderers.
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1 INTRODUCTION
Accurately simulating light transport in participating media re-

mains a longstanding challenge in computer graphics. While Monte

Carlo methods robustly render a range of surface-only scenes, den-

sity estimation techniques tend towards more desirable conver-

gence behavior in scenes with volumetric media. Recent advances

in volumetric density estimation, such as the beam radiance esti-

mate [Jarosz et al. 2008], photon point and beam estimators [Jarosz

et al. 2011a], virtual ray and beam lights [Novák et al. 2012a,b], and

other higher-dimensional representation such as photon planes and

volumes [Bitterli and Jarosz 2017], further improve this behavior.

Several recent extensions of conventional rendering methods to

the gradient domain have greatly improved visual convergence [Ket-

tunen et al. 2015; Lehtinen et al. 2013; Manzi et al. 2015]. The seminal

work on gradient-domain Metropolis light transport [Lehtinen et al.

2013] led to gradient-domain variants of uni- and bi-directional path
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tracing [Kettunen et al. 2015; Manzi et al. 2015], as well as gradient-

domain density estimation on surfaces [Hua et al. 2017; Sun et al.

2017]. These methods directly estimate image gradients, instead of

pixel intensities, and apply Poisson reconstruction to generate the

final image. Gradient-domain approaches tend to be more efficient

than their conventional counterparts since images tend to be piece-

wise smooth in many scenes. Existing gradient-domain methods,

however, only model and treat surface light transport. Scenes with
participating media also often exhibit image-space smoothness that

could potentially benefit from gradient-domain rendering.

We present the first gradient-domain formulation of volumetric

rendering, including several progressive algorithm for rendering

scenes with homogeneous participating media. As in surfaces light

transport, we exploit the coherence of light paths by introducing a

novel shift mapping within the volume. A key difference is that we

carefully take distance sampling, an operation unique to volumetric

rendering, into account in shift mapping to form an efficient gradient

estimator in volumes. Our gradient estimators are progressive and
generalize several primal-domain volumetric density estimators to

the gradient-domain. We show that our gradient-domain volumetric

rendering algorithms improve the efficiency compared to the primal-

domain estimators. Concretely, our contributions are:

• the first image-space gradient formulation for rendering in the

presence of homogeneous participating media,

• novel shift mapping techniques that account for the additional

distance dimension in volumetric light transport, and

• several new gradient-domain volume rendering algorithms us-

ing photons, beams and planes: specifically, point-point, point-

beam, beam-beam and beam-plane gradient-domain estimators.

For comprehensive evaluation, we also extend uni- and bi-directional

gradient-domain path tracing to homogeneous participating media;

while these new gradient-domain path-based methods are not core

contributions, we are the first to prototype them, to our knowledge.

Figure 1 illustrates representative results in a scene with diffuse

and specular volumetric transport. We compare volumetric photon
mapping (VPM) [Jensen and Christensen 1998], beam radiance esti-
mate (BRE) [Jarosz et al. 2008] and photon beams (Beam) [Jarosz et al.

2011b] with our gradient-domain methods. In the experiments, we

show that our gradient-domain methods can consistently produce

smoother results compared to primal-domain rendering methods.

2 RELATED WORK
Monte Carlo Integration. Monte Carlo integration can be used to

solve the radiative transfer equation (RTE) [Chandrasekhar 2013],

and its application to rendering leads to the uni- and bi-directional

volumetric path tracing algorithms [Lafortune and Willems 1996]

that generate paths to connect sensors to lights. Kulla and Fa-

jardo [2012] improve light sampling techniques for single-scattering,

and Georgiev et al. [2013] extended this idea to lower-order multiple

scattering. Monte Carlo integration is very general but its conver-

gence can be slow, even in geometrically (and visually) simple scenes,

e.g., a Cornell Box with homogeneous media. We build atop density

estimation methods that often converge faster in volumetric media.

Density Estimation. Jensen and Christensen [1998] proposed a

density estimation algorithm for volumetric light transport that

traces light paths to deposit volume photons in a scene, before inte-

grating their density along camera rays to synthesize a final image.

While more expensive than surface photon mapping [Jensen 2001],

this volumetric photon mapping is competitive with Monte Carlo

counterparts. Jarosz et al.’s beam radiance estimate (BRE) [2008]
performs density estimation directly along an entire camera ray,
leading to significant performance improvements. A recent exten-

sion of photon point primitives to beam primitives, including a

theory of density estimation using these photon beams, has led to

improvements when rendering scenes in certain scenarios [Jarosz

et al. 2011a]: Krivanek et al.’s [2014] variance analysis of various

point- and beam-based estimators concludes that point-based es-

timators are best-suited to optically thick media, whereas beam

primitive-based estimators are beneficial in optically thin media.

More recently, Bitterli and Jarosz [2017] proposed to use higher

order primitives (like plane or volume) to get smoother results of

multiple-scattering inside the participating media.

Progressive density estimation [Hachisuka and Jensen 2009; Knaus

and Zwicker 2011] effectively eliminates the memory constraints

of traditional density estimators, and their extensions to volumes

using points [Hachisuka and Jensen 2009] and beams [Jarosz et al.

2011b] result in similar gains. We present the first gradient-domain

progressive volumetric density estimators using photon points, the

BRE, photon beams and photon planes.

Gradient-domain Rendering. Gradient-domain methods directly

estimate image-space gradients using coherent paths, and then re-

construct a final image with Poisson reconstruction [Bhat et al.

2008]. The seminal work of gradient-domain Metropolis light trans-

port [Lehtinen et al. 2013] inspired several relevant follow-up works.

Kettunen et al. [2015] formulated the image gradient computation as

a Monte Carlo estimator by extending path tracing to the gradient-

domain. Manzi et al. [2015] similarly extended bi-directional path

tracing and keeping the gradient computation overhead low by ig-

noring the connection between non-diffuse vertices. A temporal

extension of gradient-domain path tracing was also recently pro-

posed by Manzi et al. [2016a] in order to render image sequences
more efficiently. Bauszat et al. [2017] also extended gradient-domain

path tracing to leverage path reuse. All such techniques estimate

gradients by using paths constructed by Monte Carlo path tracing.

Hua et al. [2017] proposed gradient-domain photon density esti-

mation on surfaces. They use a two-step shift mapping to shift both

the camera and photon subpaths before performing density estima-

tion. Sun et al. [2017] combined gradient-domain bidirectional path

tracing and density estimation into the same framework.

We extend gradient-domain photon density estimation to volu-

metric light transport. We show that a trivial extension of gradient-

domain surface volumetric density estimation does not result in an

efficient rendering technique, and that special care needs to be taken

both when formulating the problem and devising generalized volu-

metric shift mappings. We propose a novel shift mapping variant

well-suited for gradient computation in the presence of volumetric

transport that takes the advantage of photon density kernel support

to further increase performance.
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Table 1. Table of notation.

Symbol Meaning

zk , yk vertex k on a sensor and light subpath

zt , z′t base and offset gather points

ys , y′s base and offset photons

f (x̄ ) measurement contribution function for a path x̄
ρ(xk ) abstract vertex interaction at xk
τ (xk , xk+1

) abstract edge transmittance from xk to xk+1

σt , σs , σa extinction, scattering and absorption coefficients

E, L, D, S, M camera, light, diffuse, specular & media interactions

T (x̄ ) shift mapping operator on a path x̄

3 BACKGROUND
We propose new algorithms to render scenes with participating me-

dia using progressive gradient-domain volumetric photon density

estimation. While conceptually simple, extending gradient-domain

rendering formulations to participating media and to density esti-

mation requires addressing two important challenges.

First, since existing gradient-domain rendering formulations rely

on Monte Carlo integration and surface-only transport, we must de-

vise a new gradient-domain formulation that is suitable for density
estimation and volumetric transport. Second, a trivial generalization
of surface-based shift mapping to volumes would result in inefficient

estimators. We identify that this is mainly due to the additional dis-

tance sampling in volumes. To alleviate this, we propose a new shift

operator based on spatial relaxation of volume photons that allows

us to skip a large percentage of expensive shift mappings during

gradient estimation, resulting in significantly faster convergence.

3.1 Volume Light Transport with Density Estimation
We begin with the unified path integral formulation for surfaces

and volumes [Jakob 2013] which states that:

Ii =

∫
P

hi (x̄)f (x̄)dµ(x̄), (1)

where x̄ is a light path, f is the measurement contribution func-

tion, and µ is the measure of paths in path space P. The filter hi
determines the contribution of path x̄ to pixel i . To solve this path

integral numerically, uni- and bi-directional path tracing build paths

by sampling vertices sequentially. Specifically, for a length-k path

with k +1 vertices x0 . . . xk , the measurement contribution function

can be written as f (x̄) = ρ(x̄)G(x̄) with

ρ(x̄) =
k∏
i=0

ρ(xi )
k−1∏
i=0

τ (xi , xi+1) and G(x̄) =
k−1∏
i=0

G(xi , xi+1) , (2)

where ρ(x) models the surface or medium interaction at a vertex, τ
models the transmittance value between two vertex, and G models

the geometry factors. Specifically, in a volume, the vertex interaction

function ρ from Equation 2 is

ρ(xi ) =


Le (x0 → x1) if i = 0

We (xk−1
→ xk ) if i = k

ρs (xi−1 → xi , xi → xi+1) if xi is on a surface

σs (xi )ρp (xi−1 → xi , xi → xi+1) otherwise,

(3)

where Le andWe are light emission and camera importance, σs the
scattering coefficient, ρs the BSDF and ρp the phase function. The

transmittance along an edge is τ (xi , xi+1). The geometric term is

G(xi , xi+1) = cos⊥(xi ) cos⊥(xi+1)

/
∥xi+1 − xi ∥2 , (4)

where cos⊥(·) is the cosine of the angle between the incident light

direction and the surface normal for surface scattering events, and

simply 1 at volumetric scattering events.

Given recent advances, photon density estimation becomes an

attractive and efficient alternative to Monte Carlo integration, espe-

cially for scenes dominated by volumetric transport and paths that

remain on a localized manifold in the path space (i.e., SDS events).

A path x̄ can be constructed by connecting a camera subpath z̄ and
light subpath ȳ with a blurring kernel. We follow the comprehen-

sive theory of radiance estimation in volumes using photons points

and beams [Jarosz et al. 2011a] and a recent extension to photon

planes [Bitterli and Jarosz 2017] and consider four typical estimators

(in camera ray query × photon data order): point-point, beam-point,

beam-beam, and beam-plane estimators. In general, the major dif-

ference among these estimators are how the last vertices of both

subpaths are sampled, resulting in different strategies to generate

the last two vertices on the camera and light subpath [Hachisuka

et al. 2017]. For brevity, here we let the last two vertices on the light

subpath be a = ys−1, b = ys , and those on the camera subpath be

d = zt , c = zt−1. Path vertices can therefore be grouped into three

parts: x̄ = (y0 . . . abdc . . . z0), where y0 . . . ab is the light subpath,

dc . . . z0 the camera subpath, and abdc the vertices participating in

kernel sampling (See Figure 6 for an illustration). Applying Monte

Carlo estimation and density estimation, the path contribution is:

f (x̄)

p(x̄)
=

f (y0 . . . a)
p(y0 . . . a)

f (z0 . . . c)
p(z0 . . . c)

D(a, b, d, c) (5)

where the subpath contributions f (y0 . . . a) and f (z0 . . . c) can be

defined as in Equation 2. Note that vertex interactions at a and c
are included in the subpath contributions. The density estimator

D computes the contribution of the last light edge ab and the last

camera edge dc:

D(a, b, d, c) =
τ (a, b)G(a, b)ρ(a, b, d, c)G(c, d)τ (d, c)K(a, b, d, c)

p(b, d | y0, . . . , a, c, . . . , z0)

With this convention, we adapt the extended path integral for vol-

umes [Hachisuka et al. 2017] to evaluate path contributions with

different kernels, which include photon points and photon beams.

3.2 Gradient-domain Rendering
Without loss of generality, let the image-space gradient ∆ for pixel

i be estimated using finite differences with its neighboring pixel

i + 1, as ∆i = Ii+1 − Ii . Separately estimating Ii and Ii+1 with Monte

Carlo integration will cause gradients to have the same level of

variance as the image itself, and gradient-domain rendering will

not yield significant improvement after reconstruction. Instead shift
mapping is used to correlate the paths passing through pixels i and
i + 1, resulting in an estimate of the gradients that improves the

reconstructed image quality.
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Fig. 2. A photon density estimation path is shifted in three steps: first, the camera subpath is shifted and the offset gather point on the offset path is generated;
next, for each photon collected around the base gather point, we generate a offset photon within the kernel support of the offset gather point; finally, we
complete the offset photon path by performing reconnection. Blue arrows indicate a shift and red arrows a reconnection.

Shift Mapping. The goal of shift mapping [Lehtinen et al. 2013]

is thus to construct a new path, through a neighboring pixel, by

modifying the original path as little as possible (see Figure 2).

We can express the intensity of pixel i + 1 using paths of pixel i
and a shift mapping function T as

Ii+1 =

∫
P

hi+1(T (x̄))f (T (x̄))

���� ∂T (x̄)∂x̄

���� dµ(x̄) , (6)

where T is the shift mapping that transforms paths of pixel i into
paths of pixel i + 1, and the Jacobian accounts for the change in the

path density that occurs during the shift. Since the reconstruction

filter value remains unchanged in the shift, we have hi+1(T (x̄)) =
hi (x̄), and the gradient can be computed as

∆i =

∫
P

hi (x̄)

(
f (T (x̄))

���� ∂T (x̄)∂x̄

���� − f (x̄)

)
dµ(x̄) . (7)

In general, we want to keep the variance of the gradient estimator

as small as possible by (1) keeping base and offset paths as similar

as possible, (2) avoiding non-invertible offset paths, and (3) avoiding

singularities in the Jacobian. For the last point, we apply the multi-

ple importance sampling (MIS) solution proposed by Kettunen et

al. [2015], where the gradient at pixel i is estimated using a two-way

shift from pixel i to j and vice versa as

∆i =

∫
P

w(x̄)hi (x̄)

(
f (T (x̄))

���� ∂T (x̄)∂x̄

���� − f (x̄)

)
dµ(x̄) (8)

+

∫
P

w−1(x̄)hi+1(x̄)

(
f (x̄) − f (T−1(x̄))

���� ∂T−1(x̄)

∂x̄

����) dµ(x̄) ,

where T−1
is the inverse shift mapping that transforms paths from

pixel i + 1 to pixel i ,w andw−1
are MIS weights of the forward and

inverse shift mapping such that w(x̄) +w−1(T (x̄)) = 1. Note that

to apply MIS (Section 6), the shift must be invertible, otherwise we

need to devise MIS weights that maintain a unit sum.

After estimating gradients, we perform a Poisson reconstruction:

I = arg min





Dx I −Gx
Dy I −Gy





p
p
+ ∥λ(I − I0)∥

p
p , (9)

where Dx and Dy are convolution filters that compute finite differ-

ences in the image I , and Gx and Gy are the estimated gradients.

The λ parameter is a regularization parameter that controls the con-

tribution of the primal-domain image, and the parameter p defines

the Lp-norm in the error metric. Lehtinen et al. [2013] showed that

the L2 metric yields an unbiased reconstruction but is sensitive to

discrepancies between the primal and gradient images, whereas an

L1 metric is robust to these discrepancies but introduces a bias.

Gradient-domain Photon Density Estimation. To apply photon den-
sity estimation to gradient-domain rendering, we have to consider

shifting the light and camera subpath and the kernel vertices (abdc)
that fall within the support of a density estimation kernel K . Similar

to the primal domain, the offset path has the configuration

x̄ ′ = (y′
0
. . . a′b′d′c′ . . . z′

0
), (10)

Estimating Equation 6 with Monte Carlo, we have

f (x̄ ′)

p(x̄)

���� ∂x̄ ′∂x̄ ���� = f (y′
0
. . . a′)

p(y0 . . . a)
f (c′ . . . z′

0
)

p(c . . . z0)

���� ∂(y′0 . . . a′)∂(y0 . . . a)

���� ���� ∂(c′ . . . z′0)∂(c . . . z0)

����
· D(a′, b′, d′, c′) (11)

Here, we evaluate the offset path contribution weighted by the

probability density of the base path and the shift’s Jacobian.

For efficiency, we need to ensure that f (z̄′) > 0 and f (ȳ′) > 0

and avoid zero kernel contribution. Hua et al. [2017] proposed a

shift operator to resolve this challenge in the case of surface light

transport, as they shift the relative configuration of the base path

endpoints (b and d) while enforcing K(b′, d′) , 0. In order to con-

struct a full path with the shifted endpoints (b′ and d′), they apply

a half-vector copy [Kettunen et al. 2015] to shift the camera subpath

and then use a diffuse reconnection or manifold exploration [Jakob

and Marschner 2012] to shift the light subpath.

Our approach also uses the concept of shifting an entire configura-

tion of endpoints, but we need to additionally address complications

that arise due to distance integration and importance sampling in

volumetric light transport, as well as different density estimation

kernel dimensionalities (estimator D in Equation 11). The density

estimator of the offset path is

D(a′, b′, d′, c′) = τ (a′, b′)G(a′, b′)ρ(a′, b′, d′, c′)G(c′, d′)τ (d′, c′)

·
K(a′, b′, d′, c′)

p(b, d | y0, . . . , a, c, . . . , z0)

���� ∂(b′d′)∂(bd)

���� (12)
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The probability of kernel sampling p(b, d) and its Jacobian could be

derived depending on which density estimation scheme is used, e.g.,

point-point, point-beam, beam-beam, plane-beam.

Equation 12 is a theoretical formula for estimating the contribu-

tion at the last two vertices of the offset camera and light subpaths,

where shift mapping jointly shifts the gather point and photon. In

practice, our shift mapping is applied in three steps: first shifting

the camera subpath, then shifting the gathered photon location and

finally shifting the light subpath. By shifting the camera subpath

without considering the light subpath, we can estimate the Jacobian

in Equation 12 by separating the gather point and the photon as:��∂(b′d′)/∂(bd)�� = ��∂b′/∂b�� ��∂d′/∂d�� . (13)

In the following sections, we will detail the shift mapping for vol-

umetric density estimation techniques, starting with volumetric

photon mapping (VPM) (Section 4), and then extending to higher di-

mensional photon representations including beam radiance estimate

(BRE), photon beam (Beam), and photon plane (Plane) (Section 5).

For each technique, we will also show how to compute the Jacobian

for the gradient-domain rendering integral. Along with the discus-

sion of shift mapping, we will also introducemixed shift, a new shift

mapping that combines traditional shift mapping with photon reuse,

which leads to more efficient shift mapping particularly when the

density estimation kernels has great overlaps.

4 GRADIENT-DOMAIN VOLUME PHOTON MAPPING
We first extend volumetric photon mapping (VPM) to the gradient-

domain, before deriving our shift mapping: we extend surface-based

gradient-domain photon mapping [Hua et al. 2017] to volumes by

considering eye-segment integration due to transmittance. We esti-

mate this distance integral with a density estimator D that performs

distance sampling to determine the last vertice d and b on the camera

and light subpaths. In VPM, d and b are sampled independently.

In the primal domain, we can estimate this integral with ray

marching or Monte Carlo integration. We choose the latter to more

closely match the path tracing formalism. Here, we first importance

sample the kth camera edge zk−1
zk based on its relative throughput,

before distance sampling tc proportional to edge transmittance as

p(tc ) =
σt

1 − exp(−σt s)
exp(−σt tc )p(k), (14)

where s is the distance between zk−1
and zk . Once we sample tc , we

have d = c + tcωc where c = zk−1
and ωc = zk−1

zk . We perform

density estimation at vertex d to find photons b that overlap the

kernel support centered at d, forming complete paths. We shift this

(completed) path and estimate its image-space gradients according

to the procedure we detail in Sections 4.1 and 4.2, and in Figure 2.

4.1 Shifting the Camera Subpath
In surface density estimation, we assume that a base camera path

ends on the first diffuse surface encountered during tracing. In vol-

ume density estimation, however, this gather point is not necessarily

the base camera path’s last vertex: instead, it can result from dis-

tance sampling. The base camera path has the form z0 . . . cd, where
z0 . . . c is the prefix and d the gather point. Note that all base camera

(a) Shorter path (b) Longer path

Fig. 3. Shifting the gather point on the base camera subpath. We copy the
transmittance distance from the base, to the offset camera subpath. If the
base camera subpath edge is shorter, we attribute zero contribution to the
omitted distance integration region; if it is longer, the shift is unsuccessful.

path prefix vertices are surface interactions, but the gather point

could lie either on a surface or in a volume.

Therefore, our camera path shift mapping requires two steps:

first, we shift the base camera path prefix and then the base gather

point. For the first shift step, since the prefix only comprises surface

interactions, we can apply path tracing and half-vector copy shift

mappings proposed by Kettunen et al. [2015] and Hua et al. [2017]

to generate the offset prefix z′
1
. . . c′. After copying the half-vectors,

we need to generate an offset gather location by determining a

corresponding distance t ′c on the offset path based on the sampled

distance tc on the base camera path. With this strategy, the Jacobian

due to the camera subpath shift is:���� ∂(z′0 . . . c′d′)∂(z0 . . . cd)

���� = ���� ∂(ω ′
0
. . .ω ′

c )

∂(ω0 . . .ωc )

���� ���� ∂t ′c∂tc
���� (15)

·
G(z0, z1)

G(z′
0
, z′

1
)

G(z1, z2)

G(z′
1
, z′

2
)
· · ·

G(c, d)
G(c′, d′)

where we use the relation between the volume measure at a point

z and the subtended solid angle measure dzG(z̃, z) = dω dt and
z = z̃ + ωt to compute the Jacobian in the volume measure from

the half-vector copy Jacobian [Kettunen et al. 2015]. Note that, for

the Jacobian due to changes in distance, we need only consider the

distance on the last camera subpath edge (from tc to t
′
c ) since the

preceding vertices are generated without any distance sampling.

Only a ray-surface intersection is required to trace these vertices.

To determine the offset gather location, we copy the distance

t ′c ≡ tc , but only after ensuring that the shift distance t ′c generates a
valid gather point (see Figure 3). Here, the shift Jacobian is simply 1.

With this offset distance, we now define our offset gather point d′.

Discussion. We experimented with two additional shift maps, in-

cluding linearly scaling t ′c = ktc (where k is the ratio of the offset

and the base camera edge length) and reusing the random number

that generates tc on the base camera path. We found that our sim-

pler copying of tc works best, in general. This behavior results from

first recognizing that any explicit shift guarantee will undoubtedly

displace gather points more, and so result in a less coherent shift.

This is especially true in the presence of sharp lighting features, like

caustics and visibility changes. Secondly, even though the simpler

copy strategy can lead to under-sampled regions in the integration

domain (red line region in Figure 3), these regions are very small in

practice and do not cause noticeable convergence errors in practice.

We can address this (admittedly minor) inconvenience by marking

the offset path as irreversible.
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(a) Simple shift

Base gather point

Base photon 

Offset photon

Null shift photon 

Offset candidate

Offset gather point

(b) Null shift

(c) Mixed shift 

Fig. 4. Shift mapping to generate the photon. Mixed shifts (c) reuse photons
in the overlapped region (darker blue) while also guaranteeing reversibility
by reflecting the photons in the non-overlapped region in the kernel support
across the plane perpendicular to b∗b′ (dashed line). In (b), photons marked
with a cross cannot contribute to the offset gather point.

4.2 Shifting the Photon
After shifting the base camera subpath with the base gather point,

we construct a kernel at the offset gather point to prepare for a

complete density-estimated path. We always apply the same kernel

at both the base and offset gather points. Hua et al. [2017] apply a

shift mapping guided by the distance between the offset and the base

gather points, which we refer to as a simple shift, here. The simple

shift is general, but could be expensive in volumetric rendering

for two reasons: first, the kernel size in volumetric rendering is

generally larger than in surface rendering, and so more photons will

overlap a kernel; second, many density estimations are performed

along a camera path, resulting in many more shift mappings per

rendering pass.

To reduce the cost of shift mapping in gradient-domain volumetric

light transport, we exploit this kernel overlap to design a new shift

mapping we call the mixed shift. Here, we discuss simple shift and

introduce an additional intermediate concept called the null shift,
before combining these concepts together to form our mixed shift.

Simple shift. Here, the offset photon position is computed as

b′ = b + (d′ − d) (see Figure 4a). This simple transformation is

reversible and guarantees that every region in the kernel can be

explored. This always shifts a base photon, regardless of where it

falls in the kernel, which is suboptimal since photons that lie in the

overlap of the base and offset kernel supports need not be shifted.

Null shift. One can also simply treat each base photon as a offset

photon (Figure 4b): this shift mapping is always successful and

effectively free for photons that overlap both kernel supports. On

the other hand, photons outside the overlap contribute zero energy

to the offset gather point and yield an ineffective shift map.

Mixed shift. Motivated by the pros and cons of the simple and

null shifts, we propose a more efficient method (Figure 4c): photons

in the kernel overlap region are not shifted (null shift); (2) otherwise,

the photons are shifted using a simple shift. To ensure that the shift

mapping is reversible, we verify whether photons shifted using the

Simple shift
>50%

0%

Mixed shift

relMSE  0.0136 relMSE  0.0085 

Fig. 5. Failure rate of simple and mixed shift in the Spotlight scene domi-
nated by specular transport: mixed shift decreases the shift failure rate and
lower the relative MSE by more than 30% for equal render time (5 mins)
using gradient-domain volumetric photon mapping.

simple shift lie in the overlap region. If so, they are re-shifted outside

the overlap. As such, the final offset photon position is

b′ = b∗ + 2u⊤(d′ − b∗)u , (16)

where b∗ is the initial offset position after one application of a simple

shift, and u = (d′−d)/∥d′−d∥ the unit vector pointing towards the
offset gather point. The dot product term is the projected distance

from the initial photon offset position to the offset gather point

onto unit vector u. This term makes sure that the final photon offset

position b′ is out of the overlapping region. Figure 5 illustrates the

benefits of mixed shift regarding the percentage of successful shifts

in the Spotlight scene with complex shift configurations.

4.3 Reconnection
After computing the offset photon, we reconnect it to the base

path. To increase coherence, it is preferable to connect the photon

to the base light path as early as possible, all while avoiding zero

contribution scenarios. To do so, after classifying the preceding

light path vertex of the base photon as diffuse or specular, we apply

specialized strategies: for diffuse, we directly connect the offset

photon to the preceding vertex; otherwise, we rely on manifold

exploration for reconnection [Hua et al. 2017; Lehtinen et al. 2013].

5 GRADIENT-DOMAIN VOLUME DENSITY ESTIMATION
WITH PHOTON BEAMS AND PLANES

Equipped with insights from gradient-domain volumetric photon

mapping, we will detail extensions of higher-order primitives to

gradient-domain density estimation, including beam radiance esti-
mate (BRE) [Jarosz et al. 2008], photon beams (Beams) [Jarosz et al.

2011b] and photon planes (Planes) [Bitterli and Jarosz 2017].

5.1 Gradient-domain Beam Radiance Estimate
The beam radiance estimate (BRE) often outperforms standard volu-

metric photon mapping in the primal domain. Having generalized

the point-to-point volumetric photonmapping estimator to the gradi-

ent domain (i.e., G-VPM), and motivated by the relationship between

the primal-domain VPM and BRE algorithms, we will extend the

beam-to-point BRE estimator to the gradient domain (i.e., G-BRE).

Point-Beam 2D. The BRE gathers all photons along a camera path

segment using a beam query, which can be interpreted as a splatting

technique where each photon-aligned kernel’s energy is projected

onto the screen. This formulation is more efficient than VPM and

enables the use of 2D kernels. To enable gradient-domain BREwith a

2D kernel (Figure 6c), we need to ensure that d′b′ are perpendicular
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(a) Point-Point 3D (VPM)

(d) Point-Beam 2D (e) Beam-Beam 1D (f) Plane-Beam 0D (Plane)

(b) Point-Beam 3D (BRE) (c) Beam-Beam 3D (Beam)

Fig. 6. Shift mapping for volumetric density estimation techniques with various kernel dimensions. In general, shift mapping with lower kernel dimensions is
more restricted as it requires preserving more geometric constraints to guarantee reversibility. Technique naming convention: data (Point, Beam, Plane) -
query (Point, Beam) and kernel dimension (3D, 2D, 1D, 0D). (For conceptual illustration, beam size and kernel radii are not drawn to have the same scale.)

to the offset camera beam. We do so by expressing the vector db in

the base camera beam coordinate frame, and by copying its local

coordinates to the offset camera beam. The associated shift mapping

only applies rigid transformations, and so its Jacobian is 1.

However, since the overlap of two 2D kernels is either null nor

degenerate, the application of a mixed shift becomes more challeng-

ing. To overcome this issue, we rely on a 3D kernel variant of the

BRE, which we call Point-Beam 3D.

Point-Beam 3D. We rely on an extended volumetric path integral

formulation [Hachisuka et al. 2017] to apply a 3D kernel in BRE and

devise our new shift mapping (Figure 6b). This shift mapping proce-

dure is related to the mixed shift for G-VPM (Section 4.2), with two

notable differences. First, we position a kernel at a photon location

instead of a gather point, for G-BRE. This, however, is only a con-

ceptual difference and does not impose any algorithmic changes. To

evaluate the contribution, in the primal domain, we sample the base

gather point in [t−c , t
+
c ] in the kernel, and compute the contribution

of the photon to this gather point. Shift mapping in the gradient

domain can then be applied as in Section 4.2. Second, and more

importantly, we have to ensure that the camera beam segment and

its length remain constant during a shift, i.e., [t−c
′, t+c

′
] = [t−c , t

+
c ].

We achieve this by keeping the distance between the photon and

the gather point constant |d′b′ | = |db|.

5.2 Gradient-domain Volume Density Estimation with
Photon Beams

After lifting camera subpath gather points to beams for G-BRE,

we continue with a generalization of photon points in gradient-

domain volumetric density estimation to higher dimensional photon

primitives: first, from photon points to photon beams. As with G-

BRE, we assume that a camera beam is always used for gathering.

The camera beam could intersect a photon beam constructed from

a light subpath edge.

In general, kernel evaluation with beams involves sampling vertex

pairs (d, b) [Bitterli and Jarosz 2017; Hachisuka et al. 2017]. These

vertices can be treated as a gather point on the camera beam, and

a photon along the photon beam. In the gradient domain, in addi-

tion to tracking the probability density of the sampled vertex pair

(d, b), we need to track the Jacobian associated to this sampling,

as in Equation 12. For efficiency, our sampling takes the geometric

intersection of the camera beam and the photon beam into account.

We provide details for density estimators with photon beams using

1D and 3D kernels, below.

Beam-Beam 1D. Here we opt to preserve the distance between the
photon and the gather point (Figure 6e): we first project the beam

origin a onto the offset camera ray starting from c, and fit a disk S
of radius r at the projected location so that the disk is perpendicular

to the offset camera ray. We then compute a tangent vector from

the beam origin a to the disk, which yields the offset distance vector

u′. We slide u′ along the offset camera ray, until it reaches the offset

gather point d′, to determine the offset photon at b′. Note that

there are two possible tangent vectors during this shift. The offset

photon from both cases will have the same distance to the beam

origin, due to symmetry, and so the Jacobian is equal for both cases.

We estimate the Jacobian of this shift mapping numerically with

finite differences, and find that a value of one produces sufficiently

accurate reconstructions.

In theory, the shift mapping we present is sound, preserving geo-

metric constraints to guarantee reversibility. To be concrete, after
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the shift, the distance between the photon and the gather point

remains unchanged, and the distance vector is perpendicular to the

camera and photon beam. To generalize this shift mapping to specu-

lar and glossy path reconnections, manifold exploration [Jakob and

Marschner 2012] needs to be extended to preserve such geometric

constraints.

In practice, we approximate this shift mapping with a simpler

strategy. We first find the candidate photon b∗ = b − d + d∗ to

determine the offset photon beam, where the candidate gather point

d∗ is computed by copying the same distance from the primal camera

subpath. Then, we perform an additional beam-beam intersection

here to find the actual photon b′ and the actual gather point d′. The
Jacobian of the photon shift here is���� ∂d′∂d ���� ���� ∂b′∂b ���� = ���� ∂d′∂d∗ ���� ���� ∂d∗∂d ���� ���� ∂b′∂b∗ ���� ���� ∂b∗∂b ���� = ���� ∂d′∂d∗ ���� ���� ∂b′∂b∗ ���� (17)

which models the shift from the candidate to the actual intersection.

In practice, this value is very close to 1. Empirically, we find that

the approximate shift is effective and integration converges without

issues. Moreover, there is negligible impact on convergence between

the accurate and approximate shift mappings, across our test scenes.

Beam-Beam 3D. For Beam-Beam 3D, we find the photon beam

segment that intersects the kernel support, and then sample a pho-

ton along the segment (Figure 6c). Given the sampled photon, the

gather point can be sampled as in the Point-Beam 3D (BRE) case. We

then apply the same kernel shift as G-VPM (Section 4) to generate

the offset gather point d′ and offset photon b′. Diffuse reconnection
or manifold exploration can be used to connect the offset photon

at b′ to the base light subpath, as usual. Note that, in this case, the

geometry of the offset photon beam (its start and end points) is

undetermined until successful reconnection. While the 3D kernel

sampling (to estimate primal-domain contribution) is slightly differ-

ent from Point-Beam 3D, the shift mapping and its Jacobian remain

unchanged in the gradient domain.

5.3 Gradient-domain Volume Density Estimation with
Photon Planes

Finally, we show that gradient-domain rendering can be extended

beyond point and beam primitives. Namely, we extend shift mapping

to photon planes with a zero dimensional kernels (Figure 6f). Here,

density estimation involves a camera beam and a photon plane, and

we shift this configuration as follows.

As before, we first fix the distance on the camera subpath, setting

t ′c = tc to compute the offset gather point d′. We then proceed to

establish the offset photon. Since we use a 0D kernel, the offset

photon is expected to be at the same location as the offset gather

point, and so b′ = d′. The offset photon plane is then constructed

by preserving a0 and a1, rotating the base plane by moving a2 to a′
2
,

where the offset plane contains d′. We mark this shift as invalid if

the offset camera beam does not intersect the offset photon plane,

or when t ′
0
is negative because we opt not to change a0 and a1 and

only do a rotation to generate offset plane.

The Jacobian determinant of this shift is���� ∂b′∂b ���� = ���� ∂(t ′0t ′1)∂(t0t1)

���� ���� ∂b′∂(t ′
0
t ′
1
)

���� ���� ∂(t0t1)∂b

���� (18)

=

���� ∂(t ′0t ′1)∂(t0t1)

���� ω0 · (ω
′
1
× ω ′

c )

ω0 · (ω1 × ωc )
=

t ′
0

t0

t ′
1

t1

ω0 · (ω
′
1
× ω ′

c )

ω0 · (ω1 × ωc )
,

where d′ = b′ = a0 + ω
′
0
t ′
0
+ ω ′

1
t ′
1
where ω ′

0
= a0a1 and ω

′
1
= a1a′

2
.

We operate in a local coordinate frame parameterized by (t0, t1),
compute the Jacobian, and transform back to the original frame.

The local parameterization yields a Jacobian determinant that is

similar to photon plane variable coupling or ray-triangle intersec-

tion [Möller and Trumbore 1997]. In this local space, we need only

consider the scaling of t0 and t1 during a shift, hence the formula

above. Contrary to our previous shift mapping, we do not need to

reconnect the light path (Section 4.3) as neither a0 nor the first edge

change during the shift mapping.

6 EXPERIMENTS
We employ five test scenes: Kitchen, Staircase, Spotlight, Bath-

room, and Laser. The first four scenes were rendered with surface-

volume and volume-volume light transport, to evaluate all the gra-

dient techniques except gradient-domain photon planes. We use

the Laser scene to evaluate gradient-domain photon planes, since

photon planes [Bitterli and Jarosz 2017] are best suited to volume-

volume light transport and multiple scattering. Before performing

density estimation, we trace camera subpaths until they hit diffuse

surfaces. We use the vertex classification convention of previous

work [Hua et al. 2017; Kettunen et al. 2015], classifying a surface

vertex as specular if its roughness is < 0.05. We use a relative mean

square error metric relMSE= (1/n)
∑
(R − I )2/(R2 + 0.001), where

R is the reference and I our rendered output. All gradient-domain

techniques use Poisson reconstruction with L1-norm (Equation 9)

to produce the final images.

We generate all our results on a dual Intel Westmere EP Xeon

X5650 workstation clocked at 2.66GHz with 12 cores and 24 GB

of memory. The reference images are rendered using BRE with a

3D kernels, except the Laser scene which uses bidirectional path

tracing. We provide an open source implementation of our methods.

6.1 Implementation Details
We implement our work in Mitsuba [Jakob 2010], evaluating our

gradient-domain volumetric photon mapping (G-VPM), gradient-

domain beam radiance estimate (G-BRE), gradient-domain pho-

ton beams (G-Beam) and gradient-domain photon planes (G-Plane)

against their four primal-domain variants.

All our techniques support progressive photon density estima-

tion [Knaus and Zwicker 2011], we use the standard reduction ratio

of α = 0.7 and deposit 1 million photons or 20 × 10
3
photons beams

and planes per iteration.

We clamp the number ofmanifold exploration [Jakob andMarschner

2012] iterations to 5 when shifting a specular or glossy light path. To

achieve even faster manifold exploration and increase the number

of successful shifts, we relax the acceptance condition of these walks

by accepting a proposal path so long as its last vertex (towards the

camera) falls inside the offset photon’s kernel. This relaxation biases
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Fig. 7. Convergence plots for our test scenes using a relative MSE metric. Solid and dash lines represent primal- and gradient-domain methods. G-VPM and
G-BRE outperform their primal counterparts by a large margin. G-Beam outperforms Beam marginally for scenes dominated with specular light transport.

manifold exploration but, due to progressive kernel size reduction,

the resulting estimator is still consistent.

We set the λ parameter for Poisson reconstruction to 0.2, the

kernel radius scale to 0.10% of the scene bounding box diagonal (for

every method except VPM, where we use a slightly larger scale of

0.15% to reduce variance.) We use a uniform kernel for all our results.

For (G-)VPM, we use 40 stratified samples per pixel for distance

sampling. For beam and plane density estimation, we use a BVH to

accelerate beam-beam and beam-plane intersection tests.

With the exception of photon planes, we use 3D kernels for all

volumetric photon density estimators. Note that, while Beam-Beam

1D estimators may appear to be more efficient (as the kernel is

of lower dimension), we found empirically that there is no clear

benefit when compared to Beam-Beam 3D: in fact, it is not fair

to compare Beam-Beam 1D and Beam-Beam 3D in a progressive

density estimation setting, since kernel reduction rates differ across

kernel dimensions.

Gradient Estimation with Photon Subsets. We propose to use only

subsets of all available photons during gradient estimation to re-

duce rendering time. Our observation is that, in density estimation,

neighboring pixels gather from mostly the same set of photons,

resulting in similar pixel values and small gradients. This is espe-

cially true for volumetric rendering with camera beam queries. We

therefore propose to split the photons into two equal subsets that

are gathered by each pixel in an interleaved manner. This balance

between introducing artifacts in gradient estimation and improving

computation time when gathering photons. We employ this opti-

mization for all our rendering techniques that rely on camera beam

queries, including G-BRE, G-Beam and G-Plane. To further reduce

the impact of noise from the primal domain, we reuse offset paths

to estimate the primal-domain contribution [Lehtinen et al. 2013].

Multiple Importance Sampling. As with previous gradient-domain

methods, we apply multiple importance sampling to reduce the

variance of Jacobian determinant estimates. As light and camera

subpaths are generated independently, we can compute the weight

using a balance-like heuristic, as

w(x) =
p(y)p(z)

p(y)p(z) + p(T (y))p(T (z))|T ′(y)| |T ′(z)|
, (19)

where all probabilities are expressed in the area measure and T ′
is

the Jacobian of the shift mapping. For mixed shifts, when a base

light path is reused, we simply have T (y) = y and the weight only

treats the base and offset camera paths.

Gradient-domain Volumetric Path Tracing. We additionally imple-

ment novel extensions of gradient-domain path tracing (G-PT) [Ket-

tunen et al. 2015] and gradient-domain bidirectional path tracing

(G-BDPT) [Manzi et al. 2015] to volumetric light transport. In G-PT,

we use a half-vector copy shift mapping and also copy the distance

sampled on the base path to the offset path (similarly to Section 4.1).

We use a balance heuristic for MIS in G-PT instead of a power heuris-

tic [Kettunen et al. 2015] since, in a volume, the path probability

from distance sampling is very small and may suffer from floating

point precision issues. Our G-BDPT extension to volumes is much

more straightforward, incorporating the transmittance evaluation

into the existing implementation [Manzi et al. 2015].

6.2 Experimental Results
Convergence. We select scenes with various types of light trans-

port to evaluate our techniques. Particularly, for scenes with mostly

diffuse light transport, we choose Staircase and Kitchen, and for

scenes with moderate and dominant specular-diffuse-specular light

transport, we choose Bathroom and Spotlight. Figure 7 shows

the convergence plots of the different algorithms, for equal ren-

dering times. The result images are shown in Figure 8. Figure 12

illustrates the proportions of different shift mapping used in each

gradient-domain technique.

Gradient-domain techniques consistently outperform their primal-

domain counterpart, with the widest margin in scenes dominated

by diffuse light transport (Staircase and Kitchen), since the shift

mapping of diffuse light subpaths only requires direct reconnec-

tion (which is both cheap to perform and more likely to succeed.)

This applies to both gradient-domain path-based and photon-based

approaches. Figure 8 (first row) illustrates the rendering of the

Staircase scene. G-PT and G-BDPT also perform as well as our

gradient-domain photon density estimation techniques here since

their primal-domain counterpart can effectively sample the path

space.

The Bathroom and Spotlight scenes are dominated by specular-

diffuse-specular transport. Here, we only show the results of volume

photon density techniques as we found (G-)PT and (G-)BDPT yield

very high variance estimators. Please refer to our supplemental

document for comprehensive results, including relative error maps

and interactive comparisons.

In the Bathroom scene (Figure 8, second row), the main light

source has a high frequency occluder that reduces the efficiency
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Fig. 8. Equal-time rendering of primal- and gradient-domain methods for the Staircase, Bathroom and Spotlight scenes. For scenes dominated by specular-
diffuse-specular light transport, such as Bathroom and Spotlight, gradient-domain volumetric photon density estimation (G-VPM, G-BRE, G-Beam)
significantly outperforms gradient-domain path-based techniques (G-PT and G-BDPT). For full rendering results, please refer to our supplemental document.

of direct reconnection. Here, our gradient-domain techniques still

outperform all primal-domain techniques.

Spotlight (Figure 8, last row) is our most challenging scene,

as most of the illumination comes from complex specular light

transport, since luminaire lenses are modelled realistically. Our

techniques are very robust, presenting at least a 2× reduction in

relMSE for G-VPM and G-BRE, compared to VPM and BRE. G-Beam

also improves upon Beam, albeit only marginally. This small gain

can be attributed to the fact that the primal-domain Beam technique

can already efficiently treat specular light transport.

Anisotropic Phase Function. Figure 9 shows relative gain between

primal- and gradient-domain photon plane in Laser scene along

with other volumetric density estimation techniques. This scene is

challenging because it has a point light source with a single fixed

lighting direction for laser. We use direct reconnection for shift

mapping here because there does not exist a diffuse vertex on the

light source for manifold exploration to work. Gradient-domain
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Fig. 9. The Laser scene rendered with primal- and gradient-domain volu-
metric density estimation. For isotropic and low anisotropic phase functions,
gradient-domain methods outperform primal-domain variants, including
photon planes. Top left: the relMSE ratio between primal- and gradient-
domain volumetric density estimation methods (10 minutes). Gradient-
domainmethods are less effective with increasing phase function anisotropy.

techniques still work effectively for this scene, but the gain reduces

when the data representation becomes higher dimensional such as

beams and planes as the primal-domain method is already efficient.

In this experiment, we also investigate the influence of anisotropic

phase function in gradient-domain rendering. We excluded single

scattering and varies the phase function from 0.0 to 0.9. We found

that photon plane is more effective data representation for primal-

domain density estimation in scenes with near-isotropic phase func-

tions. However, when the phase function is strongly directional,

all primal-domain techniques result in noisy estimations. Gradient-

domain techniques, by contrast, can still perform better and result

in less noisy estimations.

Dense Participating Media. Figure 10 shows a scene with a glass

of milk and a glass of orange juice. Manifold exploration can han-

dle the dielectric interface of the glasses and successfully gener-

ates offset paths for gradient-domain methods. In this experiment,

we set the radius to be 0.5% of the bounding box diagonal of the

participating medium for all the techniques. Similar to previous

experiments, our gradient-domain techniques consistently outper-

form their primal-domain counterparts. We also observe that, with

dense media, gradient-domain methods inherit the noise that primal-

domain rendering results also exhibit in these scenarios.
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Fig. 10. Equal-time renderings (five minutes) of the Glass scene. Our
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(x6), both primal- and gradient-domain rendering have large bias but the
gradient domain method still outperforms, especially in early iterations.

Bias vs. Variance. In volumetric photon density estimation, there

is trade-off between bias and variance, which is controlled by the

kernel size. In general, using smaller kernel size results in higher

variance and lower bias in the primal images, which favors the de-

noising capability of gradient-domain techniques. Larger kernel size

results in larger bias, in which cases gradient-domain techniques

become less effective. Figure 11 demonstrates the trade-off with var-

ious kernel size with (G-)BRE. As can be seen from the convergence

plot in this figure, it could be just safe to set a small kernel size for

gradient-domain volumetric photon density estimation techniques.

Performance Gain. To justify the performance of our techniques,

Figure 12 visualizes statistics of shift mapping in our test scenes, and

Figure 13 shows the relative gain between two classes of gradient-

domain techniques, one with a naïve shift mapping that only uses

simple shift, and the other with our approach with optimizations
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(includingmixed shift and kernel relaxation inmanifold exploration).

As can be seen in the Spotlight scene in Figure 13, the naïve

approach exhibits noisy gradient estimation because of the overhead

caused by expensive manifold exploration due to specular light

transport. From the statistics in Figure 12, mixed shift can account

for about 30% of the total number shifts, and so with mixed shift

and all optimizations applied, we show that a significant amount

of manifold walks can be skipped, resulting in overall gains in the

convergence plot in Figure 13. Visual comparison of the gradients

estimated by the naïve and our approach is also shown in this figure.

In addition, we note that these gains are more significant for G-VPM

as this methods uses a bigger radius.

6.3 Limitations
Despite generating smoother results, each iteration of a gradient-

domain iteration is slower than its primal-domain variants’ iteration,

due to the overhead of shift mapping and gradient computation. In

our experiments, G-VPM is about 30% slower per iteration, G-BRE

twice as slow, and G-Beam up to four times slower. We use equal-

time comparisons for all error comparisons, however. Please refer

to our supplemental material for more detailed timing statistics.

The additional transformation in mixed shift can cause large light

subpath perturbations, compared to a simple shift. This increases

variance in the gradient estimation for mixed shifts however, in

practice, we compensate for this by reducing the cost when kernels

overlap. Mixed shift also generally results in a higher number of

successful shifts, which contributes to variance reduction. While

kernel overlap reduces during progressive density estimation, this

poses no issues in practice as the simple shift’s cost also reduces.

G-VPM, G-BRE, G-Beam, and G-Plane inherit the limitations of

their primal-domain counterparts: for example, radiance estimation

with VPM and BRE could be too noisy to generate a good throughput

image, resulting in noisy gradient and Poisson reconstruction. This

could happen in scenes where photon visibility is complex to sample.

These issues could be addressed by incorporating, for example, a

Markov chain Monte Carlo sampler.

Gradient-domain methods are much less sensitive to the initial

setting of the kernel radii compared to primal-domain techniques,
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however rendering error is dominated by bias and not variance

when employing extremely large initial radii (see x6 in Figure 11).

Gradient-domain reconstruction is not able to reduce this bias, and

so designing new reconstruction schemes that take this bias into

account can be an interesting avenue of future work.

7 CONCLUSION
Weproposed the first gradient-domain formulation of light transport

in participating media, resulting in four new rendering algorithms:

gradient-domain volumetric photon mapping (G-VPM), gradient-

domain beam radiance estimate (G-BRE), gradient-domain photon

beams (G-Beam) and gradient-domain photon planes (G-Plane). To

do so, we introduced novel shift mappings tailored to each rendering

algorithm that apply to volumetric transport and photon density

estimation formalisms. Our experiments validate that G-VPM and

G-BRE both consistently outperform their primal-domain GPM and

BRE variants. G-Beam and G-Plane also significantly outperform

the primal-domain Beam and Plane algorithms in diffuse scenes.

There are two key theoretical insights we gain from our investi-

gation of the various gradient-domain volumetric photon density

estimation (and path-based) techniques. First, while it is gener-

ally accepted that gradient-domain methods for surface rendering

improve upon their primal-domain counterparts (and, there, usu-

ally by a significant margin), we show that gain in the volumetric

setting scales differently: while gradient-domain methods still out-

perform their primal-domain counterparts, the benefits of moving

to the gradient-domain depends on the dimensionality of the den-

sity estimation primitives being used. The efficiency gap between

gradient- and primal-domain volumetric density estimators narrows

for higher-order primitives, e.g., when moving from using beams
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to using planes. This a somewhat counter-intuitive result: in im-

ages rendered with photon beams and planes, the noise distribution

in the throughput and gradient images has lower frequency. This,

however, can lead to non-optimal Poisson reconstruction when us-

ing gradients. Designing a method that takes care to consider, e.g.,

the frequency in the throughput and gradient images may be an

interesting direction of future work.

Second, we showed how to exploit the unique aspect of biased ren-

dering methods in the gradient domain. As with primal-domain pro-

gressive photon density estimation, we found it perfectly reasonable

to employ biased but consistent shift mappings during progressive

gradient-domain photon density estimation: e.g., with density ker-

nel overlaps that reduce the computational cost of the shift mapping

(mixed shift), or by employing a manifold exploration relaxation

scheme. In fact, such biased (but consistent) shift mappings have

never been presented in the prior art.

We expect these insights to open new avenues of exploration for

more efficient shift mapping schemes. This is particular interesting

in the context of shift mappings that currently employ manifold

exploration as, while being useful, the manifold exploration opera-

tion can form a computational bottleneck as it was not originally

designed for gradient-domain shift mappings. Our work also points

to several promising open questions that deserve future investiga-

tion. For example, can Monte Carlo-based shift mappings be devised

to enable (efficient) volumetric rendering in gradient-domain uni-

and bi-directional path tracing? Can Monte Carlo and (volumetric)

density estimation formalism be combined, much like in the primal-

domain [Křivánek et al. 2014], to form a unified model of image

synthesis in the gradient domain.
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