
Efficient Double-Precision Cosine Generation∗

Derek Nowrouzezahrai Brian Decker William Bishop
dnowrouz@uwaterloo.ca bjdecker@uwaterloo.ca wdbishop@uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1.
Tel: 519-888-4567 ext. 7159

Fax: 519-746-3077
Contact Author: Dr. William D. Bishop

Abstract

The trigonometric function ofcos(θ) plays an impor-
tant role in communication systems, digital signal process-
ing systems, and graphical systems. This paper presents a
technique for generating the cosine of an angle that is more
computationally efficient than the CORDIC algorithm and
its many variants for double-precision floating point cal-
culations. A hardware design implementation of the cosine
generator has been developed. Simulation results for an Al-
tera Stratix II FPGA implementation indicate that the hard-
ware design is both more efficient and more precise than
previous published implementations.

Keywords:

Cosine generation, computer arithmetic, FPGA,
CORDIC, IEEE floating point

1. Introduction

The calculation of cosine functions is crucial in digi-
tal signal processing, communications and graphical sys-
tems. With the ever increasing complexity of these systems
and the increasing demands on data rates and quality of ser-
vice, efficient calculation of the cosine function with a
high degree of accuracy is vital. The most widely imple-
mented algorithm used for calculation of the cosine func-
tion is the CORDIC algorithm introduced in 1959 by
Volder[4]. The CORDIC algorithm is based on sim-
ple adds and shifts to perform multiplication and division.

∗ This research was supported by Altera Corporation.

This makes the hardware demands for such a cosine cal-
culator rather minimal, except when high precision is
required. Consequently, current implementations of co-
sine calculators based on the CORDIC algorithm offer
single-precision results. This paper proposes an imple-
mentation of a double-precision cosine generator based on
a Taylor Series expansion of the cosine function as fol-
lows:

cos(θ) =
∞∑

n=0

(−1)nθ2n

2n!
, for all θ (1)

Given an input angleθ and using only the first eleven co-
efficients of the series, it is possible to calculate a double-
precision answer for the cosine function[5]. The coefficients
can be calculated and hardwired into registers for use in the
cosine calculation.

2. Algorithms for Cosine Generation

The implementations of cosine calculation algorithms is
analyzed in this section. The CORDIC algorithms in rota-
tion mode with and without redundant number systems [3]
are looked at, in addition to the algorithm proposed in this
paper.

2.1. CORDIC Algorithm

The CORDIC algorithm for calculation is based on the
following iteration:

xn+1 = xn − anyn2−n (2)
yn+1 = yn + anxn2−n (3)
zn=1 = zn − an arctan 2−n (4)

The arctan 2−n values are precomputed and stored. In
the rotation mode of CORDIC,an is chosen as follows:

an = +1, whenzn ≥ 0
an = −1, whenzn < 0

If |z0| ≤ Σ∞n=0 arctan 2−n, then: xn

yn

zn

 asn→∞K

 x0 cos(z0)− y0 sin(z0)
x0 sin(z0) + y0 cos(z0)

0


where K is equal to

∏∞
n=0

1
cos(an arctan(2−n)) [3].

Thus to compute the sine or cosine of an angle, one can
choosez0 = θ, y0 = 0 andx0 = 1

K . To achieve double pre-
cision results, iteratively computing the CORDIC algorithm
usually requires 1 cycle for each bit of precision. Thus, to
achieve precision equal to that of IEEE double-precision
floating point numbers for0.1 ≤ cos(θ) ≤ 1.0, 52 iterations
would be required, as this is the number of mantissa bits
maintained in this structure. However, for values less than
0.1, more iterations are required to achieve the precision of
IEEE double-precision floating point. Storing the input vec-
torsx0, y0, z0 in IEEE double-precision floating point rep-
resentation would defeat the purpose of the CORDIC algo-
rithm as floating point additions would be required and the
bit shift operation would require a floating point multiply.
For this reason, the input vectors are often stored in simple
binary representation. Consequently, additions for each iter-
ation are performed in a ripple-carry format. As a result, in-
creasing the precision required for these additions increases
the total delay of the adder. This can be alleviated, however,
by storing the iterations in a binary signed-digit represen-
tation. This is known as the CORDIC implementation with
Redundant Number Systems [3].

The overall delay of an adder designed for the binary
signed-digit number representation is static with respect to
bit resolution. However, the complexity of the adder for in-
puts in binary signed-digit representation is 4-fold that of a
ripple-carry adder for the same bit resolution. In addition to
this, the determination of the sign ofzn for the determina-
tion of an is not as easy since a single sign bit cannot be
checked. Summarizing, the drawbacks to the CORDIC al-
gorithm are as follows:

• Precision equivalent to IEEE double-precision floating
point requires significantly more iterations for values
closer to zero

• an is dependent on the sign ofzn, and depending on
the representation ofzn this step can potentially be dif-
ficult

• Increasing precision of the CORDIC algorithm re-
quires increased complexity of bit shift and addition
hardware

• Increased precision requires larger lookup table for
precomputedarctan 2−n terms

2.2. Proposed Algorithm

As mentioned previously, the Taylor Series for a cosine
function is as follows:

cos(θ) =
∞∑

n=0

(−1)nθ2n

2n!
, for all θ (5)

However, for calculations of cosine values we will re-
strict the range to−2π ≤ θ ≤ 2π. For standard IEEE
double-precision accuracy 64 bits are used to represent the
floating point number; 52 mantissa bits, 11 exponent bits,
and 1 sign bit. To allow for proper rounding, the cosine
function should be calculated to at least 55 mantissa bits.
Therefore, the bit in the last position of the mantissa car-
ries the following weight:

K = 2−55 ≈ 2.78 ∗ 10−17 (6)

Consequently, it is reasonable to evaluate the Taylor Se-
ries terms until the magnitude of the final term is less than
half that of the bit in the last position. By trial and error, it
is revealed that:

1
2
K ≥ θ

(2 ∗ 10)!
for |θ| < 33.76 (7)

This restriction onθ is well within the range−2π ≤ θ ≤
2π and consequently it is obvious that the use of 11 terms of
the Taylor Series expansion is sufficient to computecos(θ)
to double-precision accuracy. The Taylor Series expansion
for double precision then reduces to:

cos(θ) =
10∑

n=0

(−1)nθ2n

2n!
for − 2π ≤ θ ≤ 2π (8)

2.3. Comparison of Algorithms

For the CORDIC algorithm the total computational re-
quirements forxn+1 andyn+1 in each iteration is as fol-
lows:

• 2 binary bit shifts

• 1 binary addition

• 2 binary subtractions

Assuming for the moment that0.1 ≤ cos(θ) ≤ 1.0
for precision equivalent to IEEE double-precision floating
point, the following computations are required:

• 104 binary bit shifts

• 52 binary additions

• 104 binary subtractions

In the proposed Taylor Series expansion, a single cosine
calculation requires the following operations:

• 20 floating point multiplies

• 10 floating point additions

3. Cosine Generator Design

The cosine generator design precomputes Taylor Series
coefficients for the first 11 elements of the series. This re-
duces the computation requirements for calculating the co-
sine function down to simple add and multiply routines. Pre-
computing the coefficients eliminates the need for the divi-
sion required which is costly in terms of zperformance and
hardware requirements. Using this principle the hardware
implementation serves to computecos(θ) in the following
manner:

cos(θ) = 1−C0∗θ2+C1∗θ4−C2∗θ6+· · ·−C9∗θ20 (9)

For double-precision floating-point calculations, it
is necessary to calculate the coefficientsCi accurate to
19 decimal places. The following coefficients are re-
quired:

C0 = 0.5000000000000000000
C1 = 0.0416666666666666667
C2 = 0.0013888888888888889
C3 = 0.0000248015873015873
C4 = 0.0000002755731922398
C5 = 0.0000000020876756987
C6 = 0.0000000000114707455
C7 = 0.0000000000000477947
C8 = 0.0000000000000001561
C9 = 0.0000000000000000004

This model forms the basis for the hardware design of
the cosine generator.

3.1. Structure

Figure 1 highlights the structural design of the hardware
cosine implementation.

As illustrated by the figure, six double-precision, float-
ing point multipliers, and three double-precision, floating
point adders are needed to complete each stage of the co-
sine calculation. However, the Altera floating point multi-
plier megafunction chosen for implementation has a five-
stage pipeline compared with a single stage pipeline for the
design the floating point adder [1]. This allows the addition

Total ALUTs 7634/48352 15%
Total Registers 4516 -

DSP Block 9-bit Elements 156/288 54%

Table 1. Hardware Implementation Synthesis
Results

to catch up with the multipliers in the final stages of cal-
culation resulting in the use of only a single adder. A nega-
tive effect to the overall design is that the multiplier pipeline
cannot be fully utilized since each stage of the computation
requires the multiplier outputsθ2n from the previous stage.

3.2. Hardware Synthesis

The hardware design was synthesized using Altera Quar-
tus Version 4.2 for a Stratix II device[2]. The results of this
design can be seen in Table 1. Each of the floating-point
multiplier requires 26 of the Stratix IIs 9-bit DSP elements,
accounting for the 156 required in this design.

3.3. Simulation Results

When the design was simulated, it was found that the
maximum clock frequency was 69.24 Mhz. This is reason-
able the complexity required to implement floating point
adders and multipliers. As a result of the 5 clock cycle la-
tency of the multipliers, the overall design can generate a
result in a total of 42 clock cycles. This results in each co-
sine calculation being computed in 606.6 ns with an overall
throughput of 1.649 MS/s for all ranges ofθ. Since many of
the coefficients underflow the IEEE double-precision float-
ing point multiplier, for certain restrictions onθ they can
be considered to be zero. Figure 2 shows simulation re-
sults based on a range forθ, specifically which stage in
the calculation the result can be pulled from to achieve
double-precision accuracy. Table 2 illustrates the through-
put of cosine calculations for the ranges onθ.

4. Conclusions and Future Work

We have managed to create a cosine generator which
is able to produce double-precision results with very
high throughput. However, the current implementa-
tion can be further optimized through the design of a single
cycle double-precision floating point multiplier. A de-
sign in this manner would significantly reduce the number
of clock cycles to complete each cosine calculation. How-

+xx C0

xx C1

xx C2

θ
1

+
+

xx C3

xx C4

xx C5

xx C6

xC7x
xx C8

xC9x
+

+

+

+ +

+

+ cos(θ)

+
x

Legend

Double-Precision
Floating Point Adder

Double-Precision
Floating Point Multiplier

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Figure 1. Cosine Generator Block Diagram

θ Range Number of Clock Maximum
Coefficients Cycles Performance

0 - 2 3 25 2.77 MS/s
3 - 7 4 26 2.66 MS/s
8 - 16 5 31 2.23 MS/s
17 - 27 6 32 2.16 MS/s
28 - 43 7 33 2.10 MS/s
44 - 61 8 34 2.04 MS/s
62 - 81 9 41 1.69 MS/s
82 - 90 10 42 1.65 MS/s

Table 2. Cosine Generator Throughput

ever, it would be expected that a degradation in maximum
clock speed would be experienced.

References

[1] Altera Corp. Floating-Point Multiplier. Functional Specifi-
cations A-FS-04-01, Altera Corp., San Jose, California, Jan
1996.

Pipeline Stages as a Function of Input Angles

0

1

2

3

4

5

6

7

8

9

10

0 to 1 1 to 8 8 to 62 62 to 90

Approximate Range of Input Angles in Degrees

N
u

m
b

er
 o

f
P

ip
el

in
e

S
ta

g
es

Figure 2. Number of Required Stages in the
Pipeline

[2] Altera Corp. Stratix II Device Overview. Data Sheet DS-
STXGX-2.2, Altera Corp., San Jose, California, Dec 2004.

[3] J. Duprat and J. Muller. The CORDIC algorithm: New results
for fast VLSI implementation.IEEE Transactions on Com-
puters, 42(2):168–178, Feb. 1993.

[4] J. Volder. The CORDIC computing technique.IRE Trans-

actions on Electronic Computers, EC-8(3):330–334, 1959.
Reprinted in E. E. Swartzlander,Computer Arithmetic, Vol.
1, IEEE Computer Society Press Tutorial, Los Alamitos, CA,
1990.

[5] W. Bishop. Design of a Low Power High Performance Co-
sine Generator. Technical report, University of Waterloo, Wa-
terloo, Canada, N2L 3G1, Dec 1994.

