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Many applications in rendering rely on integrating functions over spherical

polygons. We present a new numerical solution for computing the inte-

gral of spherical harmonics expansions clipped to polygonal domains. Our

solution, based on zonal decompositions of spherical integrands and dis-

crete contour integration, introduces an important numerical operationg

for spherical harmonic expansions in rendering applications. Our method is

simple, efficient, and scales linearly in the bandlimited integrand’s harmonic

expansion. We apply our technique to problems in rendering, including

surface and volume shading, hierarchical product importance sampling, and

fast basis projection for interactive rendering. Moreover, we show how to

handle general, non-polynomial integrands in a Monte Carlo setting us-

ing control variates. Our technique computes the integral of bandlimited

spherical functions with performance competitive to (or faster than) more

general numerical integration methods for a broad class of problems, both

in offline and interactive rendering contexts. Our implementation is simple,

relying only on self-contained spherical harmonic evaluation and discrete

contour integration routines, and we release a full source CPU-only and

shader-based implementations (< 750 lines of commented code).
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1 INTRODUCTION

Spherical integrals of functions on polygonal domains are funda-

mental to physically-based rendering (PBR) operations. The most

common of which include computing the integral of view-evaluated

BRDFs with incident radiance distributions at surfaces, and the vol-

umetric analogue of integrating phase functions and in-scattered

radiance. Until recently, aside from specialized problems that ad-

mit analytic solutions with axial moments [Arvo 1995] (effectively,
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integrals of circularly symmetric spherical monomials), the most

robust and efficient methods for computing these integrals relied

on numerical quadrature or Monte Carlo integration. Here, notable

exceptions are the recent methods proposed by Heitz et al. [2016]

and Lecocq et al. [2016], which we discuss in Section 2.

We propose a new numerical solution to integrals of bandlimited

spherical polynomials (i.e. any finite spherical harmonic (SH) ex-

pansion) over arbitrary polygonal domains (i.e., spherical polygons

with arbitrary angular variation), extending more limited analytic

solutions for clipped spherical monomial integrals to numerical

integrators for clipped finite/bandlimited SH expansions. We rely

on a (lossless) zonal decomposition of the SH integrand, which we

extend to leverage analytic axial moment integrals [Arvo 1995]. Our
computation scales linearly with the harmonic expansion of the

unclipped integrand, implicitly handling polygonal boundaries that

introduce infinite frequencies in the spherical integrand, such as

the shading cosine clamped to the upper hemisphere (an implicit

polygonal boundary formed by the horizon).

Our approach handles bandlimited integrands more efficiently

than previous exact numerical integration techniques. It is simple to

implement (we provide full, self-contained source code). We discuss

and apply our approach to several practical problems in rendering,

focusing on applications to surface and volumetric shading, e.g.,

computing outgoing radiance at surface points with an bandlimited

BRDFs, or out-scattered radiance at volumetric shading points with

bandlimited phase functions. In both cases, we support not only

diffuse polygonal light sources, but also polygonal sources with

bandlimited angular emission distributions, and polygonal “portals”

to environmental sources. Prior to integration, we must compute

the SH expansion of the integrand. Only a subset of the aforemen-

tioned scenarios admit analytic SH expansions, with the remainder

requiring numerical (pre)computation of the finite SH integrand

expansions. We discuss the practical details of this constraint in

Sections 5 and 6. Moreover, we show how our method can be com-

bined with control variates to integrate arbitrary non-bandlimited

functions; here we combine the benefits of SH, which have been

used in graphics since the early 1990s, with the generality of Monte

Carlo numerical integration.

We demonstrate our approach on both offline and interactive ren-

dering applications, incorporating our integrator into PBRT [Pharr

et al. 2016] as well as an open source shader-based rendering en-

gine. Finally, we discuss and illustrate how our integration approach

can be used to perform hierarchical sample warping [Clarberg and

Akenine-Möller 2008b; Clarberg et al. 2005; Jarosz et al. 2009] for

the product of BRDF times local area lights and applies to basis

projection of lighting for relighting applications [Sloan et al. 2002].
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Fig. 1. Axial moments integrate cosine-power lobes & diffuse emitters [Arvo

1995], while we generalize to cosine-power lobes & cosine-power emitters,

ZH expansions (not illustrated) and bandlimited emitters & BRDFs.

2 PREVIOUS WORK

We review relevant work on closed-form solutions to integration

problems in rendering, as well as applications that apply tailored

numerical solutions to the spherical polygonal integration problem.

Closed-form integration in rendering. Arvo’s 1995 seminal work on

computing axial moments, integrals of circularly-symmetric cosine-

power lobes over spherical polygons, was used to compute (unshad-

owed) reflected radiance on glossy surfaces from diffuse polygonal
light sources (Figure 1 left). Chen and Arvo [2001, 2000] extend

this formulation to linearly-varying luminaries. In a sense, Arvo’s

axial moments are “incomplete” as they allow an arbitrary cosine-

power lobe at a receiver, but only a diffuse lobe at the emitter. Our

work generalizes the form of the integrand from cosine-power lobes

to bandlimited spherical polynomials, subsuming these approaches.

This allows us to not only support circularly symmetric lobes also

at the emitter (Figure 1 middle), but in fact allows for bandlimited
spherical functions at both the receiver and emitter (Figure 1 right).

To do so, we decompose SH onto zonal harmonics (ZH; Section 3)

to handle bandlimited integrands and applications.

Lecocq et al. [2016] reduce the algorithmic complexity of comput-

ing axial moments using an approximate closed-form expression,

with only a modest impact on accuracy. Their approach still inherits

the fundamental limitations of cosine-power integrands and diffuse

polygonal luminaires; however, since our method builds directly

atop axial moments, it would be possible to apply similar approx-

imations to our work (see Section 7). Heitz et al. [2016] apply a

linear transformation on a cosine distribution to approximate mi-

crofacet BRDFs of arbitrary roughness, yielding fast and analytical

integration over clipped polygonal domains.

Previous work [Pegoraro and Parker 2009; Pegoraro et al. 2009;

Sun et al. 2005] has investigated analytic or semi-analytic solutions

to the air-light integral. This integration along a camera ray due

to a point source can also be viewed as integrating a circularly

symmetric spherical function (centered at the source) along the

spherical arc formed by the camera ray’s spherical projection onto

the source. We also treat spherical integration, but we consider a

different and broader class of spherical integrands, and we support

integrating along spherical polygons, not just spherical arcs.

Ramamoorthi and Hanrahan [2001] introduced the first analytic

expression for (approximate) unshadowed diffuse shading from

general spherical environment lights with SH, later extending the

work to bandlimited glossy reflections [Ramamoorthi and Hanra-

han 2002]. A similar extension to approximate scattering from hair

fibers also leverages SH [Mehta et al. 2012]. We instead consider

the problem of integrating bandlimited spherical integrands over

polygonally-clipped subsets of the full directional integration domain.

This would, for example, allow us to extend Ramamoorthi and Han-

rahan’s work to compute exact unshadowed diffuse shading from

environment lights or shading from bandlimited anisotropic BRDFs

and environment lighting masked by a polygonal occluder.

Zonal decomposition. Zonal decompositions are often used in in-

teractive rendering to accelerate relighting applications. Perhaps

the most common of such representations are spherical radial basis

functions (SRBFs) and their variants [Green et al. 2006; Han et al.

2007; Tsai and Shih 2006;Wang et al. 2009]. These spherical Gaussian

bases are powerful when computing very fast approximations to ren-

dering problems, but they can require time-consuming and numeri-

cally challenging fitting to match ground truth profiles: specifically,

optimal projection (in an L2-sense) and reconstruction are challeng-

ing since representing arbitrary distributions with SRBFs relies on

solving (costly) non-linear optimization problems. Delegating this

fitting to precomputation, much like traditional precomputed radi-

ance transfer (PRT) [Sloan et al. 2002], allows these approaches to

very quickly compute plausible approximations, albeit not yet in the

context of clipped spherical polygonal integration. The application

of SRBFs to this problem is an interesting avenue of future work,

given their representational potential. We instead are concerned

with accurate numerical solutions to integrals of bandlimited spher-

ical polynomials clipped to polygonal domains. To do so, we rely on

harmonic expansions (with well-defined projection, reconstruction,

and convergence properties) of the unclipped integrands. We extend

these theoretical advantages of the SH representation to serve a

practical, challenging integration problem: clipping the spherical

integration domain to a polygon will introduce infinite frequencies,

but our integration routine is robust to these. We need only to re-

main mindful of the bandlimit of the unclipped integrand, keeping

in mind of course that the SH expansion of the integrand must be

computed prior to integration. In some cases, this can be done ana-

lytically, but in general it requires a (well-defined and well-behaved)

numerical precomputation. We discuss the practical implications of

this requirement in Sections 5 and 6.

Nowrouzezahrai et al. [2012] present a mapping of spherical poly-

nomials expressed in the SH basis to weighted sums of rotated, cir-

cularly symmetric zonal harmonics, which they use to compute fast

rotations of SH vectors. This representation is similar in spirit to the

use of ZH for representing bandlimited functions on the sphere in

the geophysics and computational physics community [James 1969;

Kempski 1995; Lessig et al. 2012], however tailored to the accuracy-

performance trade-offs of image synthesis applications. We base

our expansion on this representation (Section 3). Lessig et al. [2012]

derive a similar result using reproducing kernel Hilbert spaces, fur-

ther analyzing the conditioning of the change-of-basis. Soler et al.

[2015] use a similar harmonic decomposition into isotropic kernels

in order to efficiently filter spherical signals.

Control variates. When an integrand can be partitioned into com-

ponents that admit different (and potentially advantageous) solu-

tions, control variates can be used to design Monte Carlo estima-

tors that combine closed-form and numerical solutions [Fan et al.
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2006; Lafortune and Willems 1994]. Previous work has combined

specialized analytic solutions with control variates [Clarberg and

Akenine-Möller 2008a; Mehta et al. 2012; Novák et al. 2014]. We

show how our approach can be combined with control variates to

solve a broad class of integration problems in rendering, illustrat-

ing concrete results in the case of shadowed outgoing radiance on

surfaces and in volumetric participating media.

Quadratures on the sphere. We propose a numerical integration

solution for bandlimited integrands clipped to spherical polygo-

nals. Several spherical quadratures rules exist and some can handle

spherical triangles. Contrary to spherical cubature rules (such as

Gia and Mhaskar [2009]), specific cubature rules defined for spheri-

cal triangles remove the additional error caused by the integration

domain. Most of the time, quadrature rules are designed on the

planar projection of the spherical triangles. We refer readers to the

surveys of Hesse et al. [2010] and Cools and Rabinowitz [1993] on

such topic. These rules require to incorporate a non-bandlimited

Jacobian which make them non-exact for bandlimited integrands.

Our technique directly supports spherical polygonal domains, with-

out the need for triangulation, change of variable and is exact for

bandlimited integrands.

More recently, Beckmann et al. [2014] presented a method that

relies on precomputing the integral of SH basis functions over spher-

ical triangles (a problem our approach solves), and they noted that

no closed form existed for this “numerically delicate problem”; their

method instead relies on high-precision approximations [Beckmann

et al. 2012]. Note that such a precomputation requires at least N 2

evaluations of the N 2
basis elements, for an order-N integrand,

which leads to an O(N 4) time performance. Also, this precomputa-

tion depends on the spherical triangle and cannot be factored before

pixel shading like our method permits. This signal-independent pre-

computation is akin to the (one-time) zonal harmonic factorizatoin

necessitated by our general SH integration technique.

Our approach is better suited to problems in computer graphics,

where efficiency and modularity are equally important design con-

siderations: our integrator scales as O(N 2) due to lobe sharing and

incremental product accumulation (Section 4), as well as adapting

to arbitrary polygonal domains. We additionally show how control

variates can be used to adaptively sample higher-frequency content

without choosing a sampling rate (i.e., quadrature rule) apriori.

Relighting. PRT projects light transport operators and external

lighting onto a basis, and conduct a fast “analytic” reconstruction of

the double- (i.e., [Ng et al. 2003; Sloan et al. 2002]), triple- (i.e., [Ng

et al. 2004a]), or multi-product integrals [Sun and Mukherjee 2006]

entirely in the basis space (e.g., SH, Haar wavelets, SRBFs). While

these operations can be interpreted as closed-form approximations,

the key trade-offs in PRT techniques lie in the compactness of the

chosen basis and its representational power. PRT produces plau-

sible (but ultimately inaccurate) results. We are able to integrate

bandlimited polynomials over polygonal domains, and no basis is

capable of simultaneously treating this class of integrand as well
as the polygonal boundary without, e.g., requiring a larger

1
basis

1
Spherical monomials are an obvious alternative to SH, however SH basis functions

span the same space with fewer basis functions (beyond an order-1 expansion).

expansion or introducing potentially unbounded error in the inte-

gral approximation. While more powerful spherical distributions

have been applied in graphics, SH expansions remain an important

tool for many interactive graphics applications. We use SH expan-

sions to express our bandlimited unclipped integrands, which we

then clip to a polygonal domain prior to integration (potentially

introducing infinite frequencies into the integrand; our method is

robust to these infinite frequencies), an interesting setting that has

motivated other recent advancements in interactive graphics [Heitz

et al. 2016]. We leave the problem of integrating fully general spher-

ical distributions over clipped polygonal domains to future work,

with an potentially interesting direction being the exploration of

the expressive power of linearly-transformed SH expansions. We

discuss how our approach can also be used in the context of PRT

applications (Section 6), however we pay more attention to more

general rendering problems.

Product importance sampling. Another interesting area where in-

tegrals over (spherical) polygonal domains arise is in hierarchical

sample warping for product importance sampling in Monte Carlo in-

tegration [Clarberg and Akenine-Möller 2008b; Clarberg et al. 2005;

Jarosz et al. 2009]. Here, uniform input samples are warped to match

a target distribution—e.g. the product of the view-evaluated BRDF

and lighting—and used for Monte Carlo integration. During hierar-

chical warping, integrals of the basis functions must be evaluated

over polygonal domains. Prior techniques are limited to basis func-

tions and integration subdomains that admit analytic solutions (i.e.

Haar or SH over axis-aligned integration regions only), restricting

them to distant lighting. We discuss and show how our integration

technique lifts these restrictions and allows product sampling even

for local area lights (Section 6.1).

A recent approach solves the problem of importance-sampling

an environment map viewed through a portal that masks all but

a portion of it. Bitterli et al. [2015] devise a portal-centric repa-

rameterization of the environment to importance sampling within

the visible region. While their method is efficient even for high-

frequency environments, it does not support product sampling with

the BRDF, and it requires a separate tabulated environment map for

each portal. Our method can directly integrate bandlimited spherical

integrands—such as a bandlimited product of the BRDF and environ-

ment map—over a polygonal portal (Section 5.1). We demonstrate

this with surface shading and in volumetric participating media.

We can also apply our technique to extend these works to product
sample the BRDF and environment through the portal (Section 6.1).

3 INTEGRATING SPHERICAL POLYNOMIALS

We will derive a numerical solution to integrals of the form:

I =

∫
P

f ( ®ω) d ®ω , (1)

where f is an bandlimited spherical integrand in the Cartesian co-

ordinates ®ω = (x ,y, z), possibly composed of a sum and/or product

of spherical polynomials, and P is a polygon (or its spherical projec-

tion). To do so, we perform a specialized harmonic expansion of f ,
before reducing the problem to that of computing a set of simplified

cosine-power integrals that admit closed-form solutions.
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P

f ( ®ω)

=
∑

fml

yml ( ®ω)

∑
fml ·

=
∑
αm̄l,m

zdl (
®ω) = y0

l (
®ω → ®ωd )

®ωd

∑
fml ·∑
αm̄l,m ·

=
∑
pk

cos
k θd

®ωd

Fig. 2. We decompose bandlimited spherical integrands (left) into their SH expansion (left-middle), before reducing their representation using zonal harmonic
factorization [Nowrouzezahrai et al. 2012] (right-middle) into a set of cosine-power integrals (right).

We review harmonic representations in Section 3.1, discuss their

limitations when computing integrals of the form above, and derive

our numerical solution in Section 3.2. We detail our efficient im-

plementation in Section 4, leveraging recurrences in cosine-power

integrals to reduce the cost of our method, which competes with

(and often outperforms) more general numerical strategies.

3.1 Preliminaries

We adopt the following notation: italics for coefficients/scalars (e.g.

fml ), boldface barred italics for column vectors (e.g.
¯f ), boldface for

points and directions (e.g., x, ®ω), and sans serif for matrices (e.g.M).

Spherical Harmonics. Let f ( ®ω) be a spherical function, with ®ω=
(x ,y, z)= (θ ,ϕ) ∈S2

and (θ ,ϕ) the spherical coordinates of the unit
direction (x ,y, z) on the surface of the 2-sphere, S2

.

Projecting f onto an SH basis function yields coefficients

fml =

∫
S2

f ( ®ω)yml ( ®ω) d ®ω, (2)

with f ’s projection coefficient vector
¯f = [f 0

0
, f −1

1
, . . .] and the SH

basis functions defined as

yml (θ ,ϕ) = Km
l

{
cos (mϕ) Pml (cosθ ), m ≥ 0

sin (|m |ϕ) P
|m |

l (cosθ ), m < 0

, (3)

where −l ≤ m ≤ l indexes the band-l basis functions, Pml are asso-

ciated Legendre polynomials, and Km
l are normalization constants.

Each of the 2l + 1 band-l basis functions are degree-l polynomials

in the Cartesian coordinate (x ,y, z) of (θ ,ϕ) [Sloan 2008].

A bandlimited reconstruction
˜f of f is obtained by weighting SH

basis functions by the coefficient elements of
¯f as

f ( ®ω) ≈ ˜f ( ®ω) =

N−1∑
l=0

m=l∑
m=−l

fml yml ( ®ω) = ¯f · ȳ( ®ω) (4)

where ȳ( ®ω) = [y0

0
( ®ω),y−1

1
( ®ω), . . .] is a vector of the SH basis func-

tions. An order-N reconstruction requires N 2
coefficients (for all

bands l < N ) and is exact if f is order-N bandlimited.

Zonal Harmonic Factorization. Zonal harmonics (ZH), them = 0

subset of the SH basis, are circularly-symmetric functions around

cosθ = z. Each canonically-oriented band-l ZH y0

l (
®ω) is a degree-l

polynomial in z. Sloan et al. [2005] apply the Funke-Hecke theo-

rem to show that a weighted ZH function (oriented with z with

coefficient дl ) can be rotated to align with an arbitrary direction

®ω ′
, as fml = n∗l дl y

m
l ( ®ω ′). Here, the resulting SH expansion coef-

ficients fml are simply scaled SH functions evaluated at ®ω ′
, and

n∗l =
√

4π/(2l + 1) are the convolution coefficients [Sloan et al. 2005].

Several works in the computational physics and geophysics lit-

erature propose ZH as a representation for bandlimited spheri-

cal functions [James 1969; Kempski 1995; Lessig et al. 2012], and

Nowrouzezahrai et al. [2012] propose a similar zonal harmonic fac-
torization (ZHF) of the SH basis to the graphics community. We

choose to build atop this ZHF:

yml ( ®ω) =

l∑
m=−l

αml,m z
(l 2+m)

l ( ®ω) , (5)

where zdl (
®ω) = y0

l (
®ω → ®ωd ) is the band-l ZH rotated to align

with the d th pre-computed lobe direction ®ωd . Note that Equation 5

can be thought of as the dual of the SH Addition Theorem, which

states that the weighted sum of SH basis functions can be used to

express a single rotated ZH basis function. Here, Equation 5 states

that the weighted sum of rotated ZH basis functions can be used to

express a single (canonically oriented) SH basis function. The ZHF

weighting coefficients αml,m and lobe directions are related, per band

l , as follows:

N
∗
l


α−ll,−l . . . α−ll,l
...

. . .
...

α ll,−l . . . α ll,l

︸                   ︷︷                   ︸
Al

=


y−ll ( ®ωl 2 ) . . . yll (

®ωl 2 )

...
. . .

...

y−ll ( ®ωl 2+2l ) . . . yll (
®ωl 2+2l )


−1

︸                                         ︷︷                                         ︸
(Yl )

−1

. (6)

Here,N
∗
l is a diagonal matrix with eachn∗l repeated 2l+1 times, for

0 ≤ l < N , and any choice of lobe directions shared across bands l
(i.e., d ∈ [0, 2N − 1]; Section 4) that results in an invertible Yl in

Equation 6, yields a valid ZHF. We use a low-discrepancy pattern

to generate ®ωd . We discuss the choice of lobe directions, and their

implications, in more detail in Section 6.2). We can now re-write

Equation 5’s generalization across all SH functions in matrix-vector

form as ȳ( ®ω) = A z̄( ®ω), where A is a band-diagonal matrix with

sub-matrices Al , and z̄( ®ω) is a vector of all zdl (
®ω) functions.

3.2 Bandlimited Integrals Clipped to Spherical Polygons

Given the SH coefficients fml of a function f ( ®ω), it is trivial to com-

pute the integral of f over the entire sphere

∫
S2

f ( ®ω) d ®ω =
√

4π f 0

0
.

ACM Transactions on Graphics, Vol. 37, No. 2, Article 19. Publication date: March 2018.



Integrating Clipped Spherical Harmonics Expansions • 19:5

Computing the integral restricted to (the spherical projection of)

a polygon (Equation 1) is, however, much harder. If the polygon is

axis-aligned in (θ ,ϕ), then analytic expressions exist [Jarosz et al.

2009], but this kind of canonical orientation is too restrictive for

general spherical integration applications.

One common approach to solving this problem is to rewrite Equa-

tion 1 as an integral over the entire sphere, modulating the integrand

f by a mask v( ®ω) that is 1 for ®ω ∈ P and 0 elsewhere, and so

I =

∫
S2

f ( ®ω)v( ®ω) d ®ω ≈ ¯f · v̄ , (7)

where the representation of v as an SH coefficient vector v̄ would

require an infinite number of coefficients to yield the correct re-

sult, unless f is bandlimited: indeed, any spherical function with a

sharp discontinuity (such as visibility, or polygonal emitters, etc.)

will have infinite frequency content. Still, some integrands f in

rendering may admit bandlimited expansions, however even then

the formulation of Equation 7 remains problematic for the simple

reason that computing the SH projection ofv would require a costly

numerical sampling-based integration. In fact, our work can also be

used to more efficiently compute the SH projection of v , in addition

to simply directly solving for I in Equations 1 and 7.

We instead present a numerical solution |based on closed-form

solutions of simpler contour integrals, over the boundary ∂P of P,

that can exactly integrate masked bandlimited spherical integrands.

Our Formulation. Since integration is a linear operator, we can

substitute the SH expansion of f into Equation 1 and exchange the

order of the integral and sum to obtain:

I =
∑
l,m

fml

∫
P

yml ( ®ω) d ®ω . (8)

We will use ZHF and axial moments to reduce and solve the problem

of computing Equation 8.

Integrating SH over P. ZHF defines a linear mapping ȳ( ®ω) =

A z̄( ®ω) (Section 3.1), so we substitute Equation 5 into Equation 8

and convert to matrix-vector form over all basis functions to obtain

I =
∑
l,m

∑
m,d

fml αml,m

∫
P

zdl ( ®ω) dω = ¯f A z̄p , (9)

and so we have now reduced the problem from that of computing

Equation 1, to computing ȳP , to computing the elements of z̄p :

namely, the integral of rotated zonal harmonics zdl (
®ω) = y0

l (
®ω →

®ωd ) over the spherical polygon P. To do so, we will map the ZH

basis into terms that admit closed-form axial moment integrals.

Integrating ZH over P. Each rotated ZH zdl (
®ω) is a Legendre

polynomial (Equation 3) in ( ®ω · ®ωd ) = cosθd . Specifically, each

band-l ZH function zdl is a degree-l polynomial in z, such that

zdl ( ®ω) = y0

l ( ®ω → ®ωd ) =

l∑
k=0

pk cos
k θd , (10)

and pk are coefficients that weight powers of the z monomial,

aligned with the lobe direction ®ωd (i.e., z = cosθd ), to form ZH

basis functions. For example, for y0

2
(θ ) =

√
5/(16π )(3 cos

2 θ − 1), we

have p0 = −
√

5/(16π ), p1 = 0 and p2 = 3 ×
√

5/(16π ). Substituting

Algorithm 1: Integrator routine: Initialize is called once, after
which Integrate can be called many times with different inputs.

Initialize(N ) : // Precompute AP product & dirs. { ®ωd }

1: // Generate ZHF lobe directions for order-N
2: { ®ωd } = UniformSphericalDirections(2N − 1)
3: P = ComputeP({ ®ωd }) // SphericalIntegration.hpp:58

4: Y = SHMatrix({ ®ωd }) // SphericalIntegration.hpp:194

5: AP = inverse(Y) ×P

Integrate(P,
¯f , N ) :

1: c̄p= AxialMoments(P, { ®ωd }, N ) // AxialMoments.hpp:277

2: return transpose( ¯f ) ×AP × c̄p

Equation 10 into 9 and re-writing matrix-vector notation yields our

full decomposition, illustrated in Figure 2,

I =
∑
l,m

∑
m,d

∑
k

fml αml,m pk

∫
P

cos
k θd dω = ¯f A P c̄p , (11)

we obtain a sum of cosine-power integrals,

∫
P

cos
k θd dω, over P.

Matrices A and P are constant and we precompute their product, so

evaluating Equation 11 reduces to evaluating the entries of c̄p , the
cosine power integrals, which we can readily compute in closed-

form using axial moments [Arvo 1995]. We discuss how sharing

directions ®ωd across bands allows us to eliminate redundant work

and reuse intermediate axial moment computation (Section 4).

4 OPTIMIZED EVALUATION

Naïvely implementing Equation 11 has O(N 3) time complexity in

the degree N of f : each band l requires 2l + 1 axial moment compu-

tations (to evaluate the band’s 2l + 1 elements of c̄p ), each of which

scales with O(l) [Arvo 1995]. This O(l2) cost per band results in

O(l2
max

) cost for all l ∈ [0, l
max

], where l
max
= N − 1.

The axial moment’s O(l) cost stems from a recurrence that re-

quires integrals for cosine powers 0≤k < l to be computed before the

integral for power l can be obtained. A naïve implementation wastes

this incremental computation. Using lobe sharing [Nowrouzezahrai

et al. 2012], where a subset of 2l+1 of the 2N −1 directions ®ωd are

used for each band-l ZHF, we need to only evaluate an axial moment

at the highest band lmax and store the intermediate cosine power in-

tegrals for use in the remaining l < l
max

bands. Lobe sharing and

cosine-power amortization are important optimizations, the latter

of which is necessitated by the scalability of edge-integration w.r.t.

the cosine-power [Arvo 1995]; note, however, that applying Lecocq

et al.’s 2016 approximation here would improve the performance

of our integration routine, at the cost of accuracy. Still, doing so

and analyzing the degree of this error (in the context of integrat-

ing SH expansions, as opposed to cosine-power distributions) is an

interesting avenue of future work. Our technique’s pseudocode in

Algorithm 1 refers to our documented open source implementation,

and we also provide shader source code for our interactive demo.

5 APPLICATIONS

Integrals of the form in Equation 1 arise inmany rendering problems,

and we will directly apply our integrator to several of these, below.

This section focuses on the most direct applications in surface and
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Fig. 3. Outgoing radiance due to a polygon light (left) and a portal-masked environment (right) where each shading point is lit by a different region of the

environment. The renderings demonstrate these two types of sources in a scene inspired by Arvo [1995].

volumetric shading, but we also discuss applications to other use

cases related to rendering in Section 6.1.

Specifically, we apply our integration routine to the computation

of outgoing radiance on surfaces with bandlimited BRDFs, and

in-scattered radiance in volumetric participating medium with a

bandlimited phase function, both from polygonal light sources and

portal-masked environment sources (Section 5.1). We first consider

scenes without occluders before generalizing our integrator to more

complex scenes, using control variates to handle any additional terms

in the scattering equations (Section 5.2).

5.1 Surface and Volume Shading

For any application, we need to map the problem to an appropriate

choice of f ( ®ω) (or, more specifically, its harmonic representation
¯f )

and a definition of the polygonal domain P. Any problem that can

be mapped in this way can be solved with our method.

Surface Shading with Polygonal Sources. The outgoing radiance
towards a viewer in direction ®ωo , from a polygonal light with a

diffuse emission profile, visible at a surface point x with BRDF fx, is
defined by the reflection equation [Pharr et al. 2016]:

Lo (x, ®ωo ) = Le

∫
Px

fx( ®ωo , ®ω) d ®ω , (12)

where Px is the spherical projection (centered at x) of the polygonal
light (Figure 3, left). Note that different shading points will corre-

spond to different polygonal domains, different viewing directions,

and (potentially) different BRDFs.

By defining f ( ®ω) = Le fx( ®ωo , ®ω) and P = Px, we need only com-

pute
¯f before being able to apply our integration routine. In the case

of certain analytic BRDFs, the coefficients of
¯f may be computed

analytically; however, for arbitrary (i.e., data-driven) BRDFs, these

coefficients need to be precomputed once per BRDF.

When possible, we use analytic expressions for
¯f (e.g., in the

case of diffuse and Phong BRDFs) but in all other cases, including

measured materials from the MERL [Matusik et al. 2003] database

and anisotropic BRDFs, we precompute a doubly-projected BRDF

matrix Fx of the BRDF. We evaluate the projection at ®ωo as
¯f =

Fx ȳ( ®ωo ). Concretely, the elements of the BRDFmatrix are: (Fx)i, j =∫
S2

fx( ®ωo , ®ω)yi ( ®ω)yj ( ®ωo ) d ®ω d ®ωo . We incorporate occlusion using

control variates in an offline rendering context (Section 5.2), and we

implement real-time surface shading from polygonal sources in a

shader-based rendering system (Figure 12).

Surface Shading with Portal-masked Environments. If, instead of

a polygonal light our scene has a distant environment light (i.e.,

with arbitrary directional variation) which is only visible through

a polygonal window, or portal, our method still applies. Here, the

reflection equation now includes the environmental emission L
env
( ®ω)

and Px corresponds to the portal (Figure 3, right):

Lo (x, ®ωo ) =
∫
Px

fx( ®ωo , ®ω)Lenv
( ®ω) d ®ω . (13)

In addition to different shading points having different view-directions

and BRDFs, now they also “see” different portions of the environ-

ment through different (in relative coordinates) portals.

Here, we use f ( ®ω) = L
env
( ®ω) fx( ®ωo , ®ω) and P = Px (the portal

geometry now, not a polygon light’s geometry) to apply our inte-

gration routine. The main difference from the previous application

is that now the SH projection
¯f = ¯fx ×

SH

¯L is that of the product
between the view-evaluated BRDF and the environment map. We

obtain the BRDF SH coefficients
¯fx exactly as with the polygonal

lights, and we can readily compute the projection coefficient of the

lighting environment
¯L (once, at initialization, with numerical inte-

gration), however computing
¯f would require a costly SH product

computation (i.e., ×
SH
) between the BRDF and lighting environment

SH coefficients, at every shade point (each integral evaluation).

We instead precompute and store an SH product matrix L for

the lighting environment once at initialization. This matrix only

changes upon environment rotation. Specifically, we precompute the

individual SH product matrix elements of the lighting environment,

(L)i, j =
∫
S2

L
env
( ®ω)yi ( ®ω)yj ( ®ω) d ®ω, using Monte Carlo integration

with Ns samples, as

(L)i, j ≈
1

Ns

Ns∑
s=1

L
env
( ®ω)yi ( ®ωs )yj ( ®ωs )

pdf(ωs )
, (14)

with a uniform spherical sampling distribution with pdf(ω) = 1

/
4π .

This computation requires roughly 1 second for a 1024×512 lighting

environment. We show how to combine our technique with control

variates, in order to handle occlusion, in Section 5.2.

SH productmatrices are related to the SH tripling 3-tensor Γ, where
the elements (Γ)i, j,k =

∫
S2
yi ( ®ω)yj ( ®ω)yk ( ®ω) d ®ω of the tensor are
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Fig. 4. In-scattered radiance in a participating medium due to a polygon light (left) and a portal-masked environment (right) where each shading point is lit by

a different region of the environment. The renderings demonstrate these two types of sources in a scene inspired by Arvo [1995].

often referred to as the Clebsh-Gordan coefficients, as follows: any

SH product matrix can be computed as a tensor-vector product of

Γ and the SH coefficient vector of the associated product term [Ng

et al. 2004b].

In the case of of portal-masked environment shading, the ele-

ments of L could have alternatively been computed as (L)i, j =∑
k (Γ)i, j,k (¯L)k however, as we need only compute the product ma-

trix infrequently (i.e., only when the lighting changes), we chose to

directly compute its elements (using Equation 14) to avoid precom-

puting and storing the Γ tensor. If we wished, however, to support

more local lighting variation, one could compute SH coefficients for

some local lighting emissionmodel before employing the triple prod-

uct tensor-vector contraction equation to compute the necessary

SH product matrix.

Environmental portals are used for lighting design in films. Bitterli

et al. [2015] note that a portal is equivalent to a polygonal light with

the environment map acting as a directionally varying emission

profile, so our method also applies to this dual setup. Unlike Bitterli

et al. however, who look to warp samples according the portal-

masked environment, we directly compute the outgoing radiance in

this scenario (additionally taking a bandlimited BRDF into account).

We also support arbitrary polygons, while Bitterli et al.’s approach

only handles quads. In Section 6.1, we detail additional applications

of our method, including hierarchical sample warping, which could

extend Bitterli et al.’s technique to importance sampling according

to the product of the BRDF and portal-masked environment, as

Bitterli et al. proposes for future work.

Volume Shading with Polygonal Sources. The two applications

above can be extended to compute in-scattered radiance towards

a viewer in direction ®ωo from a point x in a participating medium

with phase function px. For diffuse polygonal lights, the equation
for in-scattered radiance is (see Figure 4, left)

Lo (x, ®ωo ) = Le

∫
Px

px( ®ωo , ®ω)T (x → x ®ω ) d ®ω , (15)

whereT (x → x ®ω ) = e−σt |x−x ®ω |
is the transmittance between x and

the line-of-sight point on the light x ®ω from a ray in direction ®ω, and
Px is once again the spherical projection of the light.

We set f ( ®ω) = px( ®ωo , ®ω) and P = Px for this application, and use

closed-form expressions for the phase function p’s SH coefficients

p̄x. We treat isotropic, Henyey-Greenstein, and Schlick scattering

profiles, all of which admit analytic projection; however, SH pro-

jections can also be precomputed numerically for phase functions

that do not admit closed-form projection. To compute the final pixel

color, we raymarch along eye rays and apply our integrator to Equa-

tion 15 at the marching points by evaluating the transmittance at the

center of the polygon and using our control variates to compensate

for the true variation of transmittance and occluded geometry (Sec-

tion 5.2). This strategy performs well, especially for distant sources

and/or media with slowly varying scattering properties.

Volume Shading with Portal-masked Environments. Finally, if we
generalize surface shading with portal-masked environments to the

volumetric setting, the in-scattered radiance is

Lo (x, ®ωo ) =
∫
Px

px( ®ωo , ®ω)T (x → x ®ω )Lenv
( ®ω) d ®ω , (16)

where each point along an eye ray “sees” a different portion of the

environment (Figure 4, right). We set f ( ®ω) = px( ®ωo , ®ω)Lenv
( ®ω) and

P = Px. We now need to use a product matrix in order to obtain

the product’s SH coefficients:
¯f = p̄x ×

SH

¯L = L p̄x.
As before, we can efficiently precompute the product matrix for

the environment L once. As before, we march along eye rays to

compute accumulated outgoing radiance and use control variates

to compute the residual of our point-wise evaluation of transmit-

tance and T . Finally, we only treat transmission from the raymarch

shading point up to the portal geometry and no further (since the

environment is infinitely distant, and so not technically visible if

the scene is engulfed in, i.e., a homogeneous media).

5.2 Generalization with Control Variates

The representational and functional properties of SH have promoted

its adoption in many problems in computer graphics, and our inte-

gration technique adds to the benefits of SH. In many integration

settings, however, integrands may not be bandlimited and SH might

not immediately appear as an ideal representation; here, we show

that by applying even a naïve control variate strategy, we can grace-

fully handle arbitrary integrands in a generic (and efficient) way,

all while leveraging many advantages of the SH representation. For

example, the applications above do not account for visibility (due to
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occluders, with the exception of the portal’s surroundings), nor do

they fully account for spatial variation in transmittance.

If product
2
terms in f ( ®ω) cannot be easily represented with spher-

ical polynomials, we can express a new integrand as f = f1 × f2
and solve this problem with a control variate Monte Carlo estimate:

I =

∫
P

f ( ®ω) d ®ω = If1 −

∫
P

(f1( ®ω) − f ( ®ω)) d ®ω

= If1 −
1

N

N∑
i=1

f1( ®ωi ) (1 − f2( ®ωi ))
/

pdf( ®ωi ) , (17)

where we still apply our method for If1 , and the second term in

Equation 17 is a Monte Carlo (MC) estimate of the “difference” be-

tween I and If1 : N sampling directions ®ωi are chosen according

to a sampling probability distribution function pdf( ®ωi ). The only
important requirement is that we are able to sample the integrand
f1( ®ω) of If1 as well as the additional term f2( ®ω). Concretely, we need
to be able to represent f1 exactly using an SH expansion.

Concretely, for the four applications in Section 5.1, modeling the

effect of occluders necessitates an additional visibility term f2( ®ω)
= vx( ®ω) in the integrands of Equations 12–16. From a practical

standpoint, compared to an MC estimate of Equation 1, our method

provides the exact unoccluded result (for bandlimited integrands),

whereas an MC estimate would require time to converge to a noise-

free rendering; for scenes with occluders or non-bandlimited inte-

grands, both techniques have noise that dissipates as N increases,

with the noise being concentrated more in the shadow regions for

our method.

In general, f ( ®ω) can be arbitrarily complex and, as long as f1( ®ω)
is a good approximation of it in certain instances, applying our nu-
merical solution with a control variate is a reasonable solution: our

solution accounts for the bandlimited portion of an integrand, de-

ferring the residual (higher-frequency) effects to MC integration.

Note that we use only the most basic form of control variates, with-

out applying any additional variance reduction techniques, such as

importance sampling and/or stratification schemes (all PBRT ren-

derings, however, use multiple importance sampling of the light

and/or polygon and BRDF). We leave applications of other vari-

ance reduction strategies atop our control variate solution to future

work.

6 RESULTS AND DISCUSSION

We validate the accuracy of our method, both in unoccluded settings

and with control variates, against ground truth computed with

importance-sampled Monte Carlo. We compare shading errors in

a variety of scenes and lighting setups, testing the applications

outlined in Section 5.1. In all cases, our method performs at least

as well as optimized importance-sampling code on the surface and

volume shading scenarios.

Dragon (Figure 6) and SanMiguel (Figure 10) scenes use Lamber-

tian and Phong BRDFs, whereas Spheres (Figure 5) uses measured

MERL BRDFs. Dragon and Spheres are rendered with polygonal

and portal lights. Fog (Figure 9) illustrates volume scattering with

both polygonal and portal lights and anisotropic phase functions,

2
A sum of additional integrand terms is trivial to handle, as I = If

1
+ Iother can be split

into several integrals and treated independently.

Our Method PBRT

RMSE = 0.00698 (14.78s, 65spp) RMSE = 0.00768 (14.76s, 100spp)

Fig. 5. The Spheres scene uses measured MERL BRDFs using an order 15

SH expansion.

Our Method PBRT

RMSE = 0.00346 (14.05s, 35spp) RMSE = 0.0095 (14.78s, 50spp)

RMSE = 0.00551 (16.51s, 35spp) RMSE = 0.00646 (16.69s, 50spp)

Fig. 6. Dragon: a shiny dragon on a matte ground with a color gradient

environment (green to red) portal light and an area light. We use an order 9

SH expansion for this scene.

and San Miguel illustrates our approach on a scene with complex

coarse- and fine-scale geometry. We demonstrate interactive shad-

ing results with an unoptimized shader port of our CPU code, in the

Crytek Sponza with uniform and portal light sources, using dif-

fuse, Phong, and data-driven BRDFs, all approximated using order-5

SH (Figure 12). Here, timings include the entire shading algorithm,

including polygonal horizon clipping and SH product computation

(when necessary). In this example, we use a multi-lobe BRDF (com-

bining a diffuse clamped-cosine lobe with an order-5 SH expansion

of a data-driven BRDF from the MERL dataset) and a multi-lobe

order-5 portal-masked environment mapped emitter.

All images were captured on an Intel i5 2.6GHz with 8 GB of RAM

and an Intel Iris 6100 mobile GPU with 1.5 GB of VRAM.

6.1 Additional Applications

Section 5 discussed some immediate applications of our method;

however, several other problems lend themselves to our technique.
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Density Random Jittered Quasi-Random

Fig. 7. We importance sample spherical polynomials over polygons (left)

with hierarchical sample warping. This procedure can be applied to random

points, but also preserves stratification of higher-quality sequences.

1 point 16 points 64 points 256 points

Fig. 8. Hierarchical sample warping distributes points by sparsely integrat-

ing over spherical subdomains (shown in Figure 7 projected onto the sphere).

The number of evaluations for one point is exactly (2D + 1) where D is

the recursive depth. Subsequent points only need to integrate unexplored

regions which, in the worst case, scales linearly with sample count.

We will present two such applications below, mapping them to our

integrator (as with the four applications in Section 5.1).

Hierarchical Sample Warping. Prior work on importance sam-

pling the product of the BRDF and lighting [Clarberg et al. 2005;

Jarosz et al. 2009] relies on a hierarchical strategy to warp uniformly

distributed random points to these target distributions. To do so, the

warping routine needs to compute integrals of the sampling distri-

bution over restricted sub-domains on the sphere. Previous works

either rely on approximations that require prohibitive amounts of

precomputation and storage, only support axis-aligned sub-domains,

or do not treat both the BRDF and lighting when warping. We can

use our method to warp samples, for the first time, according to:

the product of the BRDF, lighting and portal, or the product of the
BRDF and a local polygon light with a general directional emission

distribution (Figure 7).

We directly extend prior hierarchical warping algorithms [Clar-

berg et al. 2005; Jarosz et al. 2009] by exchanging the integration

routine used to compute the integrals of the target density function

over integration sub-domains. To simplify the hierarchical decompo-

sition, we only consider quadrilateral polygons for this application.

In the general case, we would require a 2D parameterization of

the polygon in order to quickly decompose it (see below). Prior

approaches start at the root (the entire integration domain) and, at

each level, compute integrals over four axis-aligned rectangular sub-

domains in spherical coordinates. We instead start with the light’s

(or portal’s) spherical projection as our root and hierarchically sub-

divide this spherical quad into four child quads arranged in a 2 × 2

grid. At each stage we compute the integral of the target density over

the four spherical quads to warp input points into their respective

quadrants. This forms a quadtree-like subdivision of the integra-

tion domain (see Figure 8) based on which quadrants the points fall

within as they are warped. After reaching a maximum recursion

depth D, we obtain points distributed according to f within the

spherical quad bounds (Figure 7) as well as corresponding pdf val-

ues for each point. For BRDF × quad-light product-sampling we set

¯f = ¯fx, and for BRDF × lighting × portal triple-product-sampling

we set
¯f = ¯fx ×

SH

¯L, both as described in Section 5.1.

Basis Projection. In PRT, light transport is precomputed, projected

onto a basis, and stored in a scene. At run-time, the projection of

dynamic lighting is used to relight the scene with a basis-space

multi-product integration [Ng et al. 2003; Sloan et al. 2002; Sun

and Mukherjee 2006]. Projecting the lighting can sometimes be

optimized with additional precomputation, but some dynamic com-

putation is needed whenever lighting changes (e.g., rotation of the

pre-projected light in SH, or re-projection for Wavelet bases).

We can use ourmethod to compute lighting projection coefficients

in many scenarios, some of which were previously infeasible as they

relied on costly sampling-based numerical integration.

For distant polygonal sources P, we can (pre)compute their pro-

jection coefficient Li onto an arbitrary basis function b( ®ω) with
¯fi =

∫
S2

b( ®ω)yi ( ®ω) d ®ω, as this integral corresponds to the coupling

coefficient of b onto SH. Of course, if we seek an SH projection of

the lighting, then
¯fi = ¯fml = σ̄l,m , where σ̄ is a Kroenecker delta

vector that only “activates” a single SH basis. Interestingly, even

the coupling coefficient itself can be computed with our method,

for certain basis functions b( ®ω). For example, Haar Wavelet basis

functions have piecewise constant form over the sphere, and so they

are an immediate candidate for an application of our technique in

this exact manner.

For local polygon lights, with spherical projections Px at each

shade point x, we apply the same procedure at every shade point,

Our Method PBRT

RMSE = 0.289 (22.05s, 17spp) RMSE = 0.405 (26.3s, 50spp)

RMSE = 0.193 (30.32s, 17spp) RMSE = 0.24533 (29.06s, 50spp)

Fig. 9. The Fog scene with participating media: a homogeneous fog with

a Henyey-Greenstein phase function (anisotropy д = 0.5), which scatters

light towards the observer. Our method integrates both a uniform area light

(top) and portal light with directional variations (bottom). We used an order

3 SH expansion for this scene.
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Our Method PBRT Our Method PBRT

0.000

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

RMSE = 0.0026 (167s, 6spp) RMSE = 0.0043 (169s, 10spp) Differences to ground truth

Fig. 10. The SanMiguel scene illustrates our method on complex geometry, such as the foliage and chairs. We used an order 3 SH expansion for this scene.

instead of once per frame. Supporting arbitrary local polygonal

sources in PRT previously required costly precomputation over spa-

tial locations in the scene [Kristensen et al. 2005] or approximate

gradient-based interpolation [Annen et al. 2004]. The key contri-

bution here is that, in addition to integrating SH expansions over
polygons, one can simplify our method to integrate individual SH
basis functions over the polygonal domain.

Both the distant and local polygonal lighting projection scenarios

above can be extended to computing the projection coefficients for

a portal-masked environment map, too. The polygonal domains

remain the same, and only
¯f changes to

¯fi =
∫
S2

L
env
( ®ω)b( ®ω)

yi ( ®ω) d ®ω, which can be precomputed once for each basis function

b( ®ω) to allow for dynamically changing portal shapes. To project

the (potentially dynamic) portal onto SH,
¯fml = L σ̄l,m .

6.2 Discussion

Scalability. As shown in Figure 11, our method’s rendering time

scales linearly with number of SH coefficients (square of the poly-

nomial degree). A naïve implementation scales quadratically.

A naïve shader port of our method (Figure 12) is a proof-of-

concept of its potential in interactive shading. Heitz et al. [2016]

linearly warp the polygonal integration domain to induce an effec-

tive integrand warp to form anisotropic single-lobe distributions.

Their method warps a cosine distribution, whereas we represent

integrands in SH. One avenue of future work could combine these

ideas to explore the expressive power of linearly-warped SH.
Both our and Jarosz et al.’s 2009 hierarchical sample warping

approaches evaluate SH integrals over many spherical sub-domains.

In both cases, the number of such integrals scales linearly with

the average recursion depth of the warp, and at most linearly with

the number of samples (since points only need to integrate basis

functions in previously unexplored regions). If the user specifies a

maximum depth , then Jarosz et al.’s method can precomputed all

necessary SH integrals, while our method cannot leverage such an

optimization since the integration domains differ at each point.

Numerical Stability. Albeit closed form, axial moments can suffer

from numerical instability and precision loss at high cosine powers.

Since we rely on this method, we unfortunately inherit this limita-

tion. With double precision, Arvo’s (and our) method remains stable
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Fig. 11. Our method scales linearly with the number of SH coefficients

(square of the SH order). We plot computation time with respect to number

of SH coefficients for our SH integration method (function Integrate of

Algorithm 1). We ran the integral computation of a single triangle 1000

times and report the average timing.

up to about order 20. Applying Lecocq et al. [2016] approximation

to our method could reduce numerical issues, at the price of bias.

Beyond order 20 SH expansions, numerical imprecisions in the axial

moment computation can affect the precision of our SH integra-

tion as the reliance of the ZHF mapping on accurate cosine-power

evaluation grows.

Zonal Harmonic Factorization Lobe Directions. The choice of the
ZHF lobe directions ωd can impact the numerical stability of the

ZHF [Nowrouzezahrai et al. 2012]. Nowrouzezahrai et al. use a sto-

chastic optimization in order to promote sparsity in the ZHF, an

optimization better suited to their core application (efficient SH

rotation); however, our application (SH expansion integration) does

not require any such sparsity. Still, we experimented with various

strategies for choosing the ωd : uniform spherical sampling, low-

discrepancy sampling, random sampling, and the original ZHF spar-

sity mapping. We found that a low-discrepancy sample set yielded
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[Heitz et al. 2016] 17.1 ms Multi-lobe BRDF Diffuse + Multi-lobe Emitter Multi-lobe BRDF & Emitter
15.8/26.3 ms [Arvo 1995; Lecocq et al. 2016] 31.1 ms 27.6 ms 48.9 ms

Fig. 12. Crytek Sponza in an interactive renderer. Left to right: existing methods [Arvo 1995; Heitz et al. 2016; Lecocq et al. 2016] are fast and support

single-lobe profiles. A direct shader port of our method supports SH expansions for the BRDF and for the emitter (i.e., portal lights), albeit at a performance

cost: while interactive, it is not yet suitable for game engine integration. Timings are captured at 720p and 100% pixel coverage and we include performance

statistics for three separate single-lobe methods: for [Arvo 1995; Lecocq et al. 2016], we use a Phong exponent that matches an average GGX roughness of 0.5.

better mappings, in the context of the ZHF matrix conditioning. As

the SH order increases, ZHF matrix conditioning becomes more of a

numerical issue, but for our applications the effect of different lobe

direction settings was marginal. Since we use lobe sharing, we need

only choose d = 2l
max
+ 1 = 2N − 1 directions.

High-frequency Integrands & Generality. As with any technique

that uses a Fourier basis like SH, our approach requires many SH co-

efficients for high-frequency signals. While our approach is general

and broadly applicable to many problems, specialized techniques

may outperform our approach for high-frequency integrands. For

instance, we support a product of BRDF× lighting × portal while

Bitterli et al. [2015] only support lighting × portal, but their ap-

proach coupled with MIS may be a more practical solution if the

BRDF contributes little to the variance and the environment map is

extremely high frequency.

Variance in Control Variates. Control variates allow us to apply

our integrator to more general Monte Carlo integration problems.

As our results have shown, this can lead to variance reduction

if our integral (e.g. product of BRDF and lighting) accounts for

much of the variation of the full shading. There are, however, a few

important caveats to consider: since control variates probabilistically

estimate the difference between two integrals, a control variate’s

sample can take on negative values (unlike radiance). It is therefore

important to not clamp negative values until all pixel samples have

been averaged. Moreover, while both our method and standard MC

converge with more samples, the distribution of the error across the

image will be different. For instance, standard MC produces a noise-

free result in fully occluded regions and—in general—a noisy result

in partially occluded and fully illuminated regions. Our control

variates solution, on the other hand, produces a noise-free (and

unbiased for bandlimited integrands) result in fully illuminated

regions and a noisy result in partially- and fully-occluded regions.

While we show improvement in the total RMSE across an image for

several scenes, the relative error for dark, mostly occluded regions

may be perceptually more noticeable.

7 CONCLUSION

We presented a new numerical technique for integrating spherical

harmonic expansions over polygonal domains, broadening the class

of applications that benefited from related closed-form solutions for

polygonal integration. We directly apply our integration routine to

problems in surface and volume shading, as well as discussing its

extension to other families of rendering techniques (i.e., product

importance sampling, lighting projection in PRT).

Using control variates, we extend the applicability of our tech-

nique to integrands with non-analytic terms, all while remaining

competitive with specialized importance-sampling MC estimators.

Our implementation is simple and efficient, and we provide full

source code that integrates readily into existing offline and shader-

based interactive renderers (only < 750 lines of commented code

for the self-contained integration routine).

In futurework, seeking higher-dimensional solutions to the nested

line-area integrals that arise in participating media and subsurface

scattering could be very interesting. Moreover, many interesting

approximation problems can be solved (i.e. similarly to Lecocq et al.

[2016] and Heitz et al. [2016]) to improve the performance and

flexibility of our approach in the context of interactive rendering.

Our current implementation is fast enough to admit interactive ren-

dering on GPUs, with our video demonstrating a proof-of-concept

shader implementation, but we are more interested in (much) faster

approximations that remain suitable for our applications.
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