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Abstract
We present a real-time relighting and shadowing method for dynamic scenes with varying lighting, view and
BRDFs. Our approach is based on a compact representation of reflectance data that allows for changing the BRDF
at run-time and a data-driven method for accurately synthesizing self-shadows on articulated and deformable
geometries. Unlike previous self-shadowing approaches, we do not rely on local blocking heuristics. We do not fit
a model to the BRDF-weighted visibility, but rather only to the visibility that changes during animation. In this
manner, our model is more compact than previous techniques and requires less computation both during fitting and
at run-time. Our reflectance product operators can re-integrate arbitrary low-frequency view-dependent BRDF
effects on-the-fly and are compatible with all previous dynamic visibility generation techniques as well as our own
data-driven visibility model. We apply our reflectance product operators to three different visibility generation
models, and our data-driven model can achieve framerates well over 300Hz.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Color, shading, shadow-
ing, and texture—

1. Introduction

Soft-shadowing and realistic bidirectional reflectance distri-
bution functions (BRDFs) are essential for the rendering of
convincing images. These effects are challenging to com-
pute in real-time since the integration of many lighting direc-
tions as well as a compact representation of the reflectance
data are required. The problem is compounded if the cam-
era, lighting and BRDF are all allowed to change while the
geometry is animating and deforming.

We present a general formulation for arbitrary BRDF shad-
ing of dynamic and deforming geometry that can readily
be applied to many existing dynamic visibility generation
techniques. Furthermore, our approach allows BRDFs to be
swapped dynamically at no additional run-time cost. We
use spherical harmonics (SH), leveraging their orthogonal-
ity and rotational invariance properties. This restricts us to
low-frequency soft shadows and glossy reflections.

We introduce reflection product operators (RPOs) to effi-
ciently convert visibility to view-dependent transfer by com-
bining BRDF factorization [KM99] with SH product matri-
ces. RPOs require only three seconds to compute and less
than 10 kilobytes of storage each. BRDFs can be swapped in
real-time, under dynamic viewing, lighting and shadowing

conditions, all while maintaining framerates over 300 Hz on
mid-range workstations.

We derive an efficient self-shadowing algorithm using com-
pact, data-driven models that accurately predict per-vertex
SH visibility for complex deforming geometry, such as
cloth. RPOs can be applied to several SH visibility gen-
eration approaches such as SH exponentiation by Ren et
al. [RWS∗06], dynamic height field shadowing by Snyder
and Nowrouzezahrai [SN08], shadow fields by Zhou et al.
[ZHL∗05], and the data-driven model we present in this
work. We apply RPOs to several of these approaches.

Our goal is to relight and shadow animated and deforming
geometries with dynamically changing BRDFs, while the
lighting and camera move. Our main contributions include:

1. A simple and modular reflectance representation, decou-
pled from dynamic visibility generation, that efficiently
incorporates view-dependent BRDF shading effects on
animating geometry.

2. Compact and accurate regression models for temporally
coherent self-shadows on complex deformable geometry.
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Figure 1: An animating character with self-shadows under varying lighting, view and BRDF (326 Hz.)

2. Previous Work

Classic precomputed radiance transfer techniques com-
pute and project the BRDF-weighted visibility for static
scene geometry into a compact basis prior to online render-
ing. At run-time, an arbitrary lighting function can be pro-
jected into the same basis and used to shade the scene. Spher-
ical harmonics [SKS02,KSS02], wavelets [NRH03,NRH04,
MHL∗06] and radial basis function (RBF) bases [TS06]
have been used to this end. Liu et al. [LSSS04] and Wang et
al. [WTL04,WTL06] apply the BRDF factorization of Kautz
et al. [KM99] to precomputed radiance transfer (PRT) so as
to reduce the storage requirements for non-diffuse BRDFs.
Our RPOs are motivated by their approaches.

Dynamic visibility generation techniques for animated
scene geometry originated in Zhou et al.’s work [ZHL∗05].
They tabulate a set of SH visibility functions in a volume
surrounding each rigid scene object. At run-time, to shadow
a receiver point, the k-nearest samples in the shadow fields
of each object are interpolated and combined using an SH
product operation. Kautz et al. [KLA04] rasterize the block-
ing triangles from each receiver point into a low-resolution
buffer, projecting this visibility data into the SH basis and
shading the scene under varying lighting conditions. Real-
time rendering is limited to small scenes with few triangles,
but view-dependent BRDFs can also be supported at inter-
active rates for these scenes. Sloan et al. [SLS05] represent
local shading effects, such as translucency, on deformable
models in the Zonal Harmonics (ZH) basis, which allows
rapid rotation into arbitrarily deforming frames. This tech-
nique cannot capture global shadowing effects. Wang et al.
[WXZ∗06] approximate an analytical SH operator for an-
gular scaling and shadow deforming geometry with diffuse
BRDFs.

Ren et al. [RWS∗06] represent articulated characters as a set
of spheres and accumulate visibility in log SH space. Cheap
SH additions and exponentiation replace expensive SH prod-
ucts for visibility calculations. The accumulated visibility is
used for diffuse shading under varying distant lighting. Sloan
et al. [SGNS07] extend this technique with an image-based
splatting approach. Snyder and Nowrouzezahrai [SN08] cal-
culate the shadowed diffuse shading for dynamic height
fields with a multi-scale image pyramid visibility algorithm.

While their approaches are best suited for objects that can
easily be approximated by spheres, our data-driven visibility
models can also handle more complex deformable objects,
such as cloth. We demonstrate the versatility of our RPOs by
applying them to these two visibility generation techniques,
as well as the technique we will introduce shortly.

Dachsbacher et al. [DSDD07] and Dong et al. [DKTS07] re-
formulate the rendering equation, treating visibility implic-
itly with a GPU-accelerated finite element solver. They com-
pute direct and indirect lighting with non-diffuse BRDFs for
static scenes and simple animations at interactive framer-
ates. Ritschel et al. [RGK∗08] couple low-resolution shadow
mapping with a GPU-accelerated instant radiosity algorithm
in order to render complex and dynamic animations with di-
rect and indirect illumination under varying illumination and
BRDFs at interactive framerates. Annen et al. [ADM∗08]
approximate environment lighting with a set of area lights
and use a fast shadow mapping algorithm to shade dy-
namic scenes at interactive to real-time framerates. Our self-
shadowing models run at real-time framerates and RPOs al-
low the BRDF to be changed on-the-fly.

Data-driven visibility techniques precompute shading for
several frames of an animation and fit a model to this data.
Kirk and Arikan [KA07] and Kontkanen and Aila [KA06]
fit a linear model of the joint angles of an articulating char-
acter to ambient occlusion (AO) data. Nowrouzezahrai et
al. [NSK∗07, NKSF08] apply a similar approach, fitting a
reduced dimensional linear model to SH diffuse transfer vec-
tors and ZH visibility for simple articulating characters.

Feng et al. [FPJY07] precompute transfer matrices at the ver-
tices of a deforming mesh, for many frames of an animation.
A novel incremental clustering and dimensionality reduction
approach is used to compress the original dataset by a factor
of 100. We, on the other hand, decouple the visibility from
the BRDF and only fit a data-driven model to the visibil-
ity component that varies during animation. In doing so, we
achieve an order of magnitude higher performance, orders
of magnitude less storage and precomputation time, and the
ability to change the BRDF on-the-fly.
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3. Terminology and Review

At every point x we wish to shade, the hemispherical binary
visibility function, Vx(s), is defined as

Vx(s) =
{

0 if ray(s) = 1 and s ·Nx ≥ 0,
1 otherwise,

(1)

where s is a point on the unit sphere S2, ray(s) is a function
that is 1 if a ray in direction s is occluded by geometry, and
Nx is the normal at x. Projecting this function onto a finite,
predetermined subset of the SH basis functions yyyi yields the
coefficient vector vvv = {v1, . . . ,vk} such that vi = 〈Vx,yyyi〉 =∫

Vx(s)yyyi(s)ds.

Accumulating visibility across multiple blockers can be
performed, in the most general case in SH, by taking the
product of many SH visibility functions [ZHL∗05]. The
product of two SH functions, aaa×bbb, requires the application
of the SH triple product order-3 tensor to the two vectors
[RWS∗06]: 〈aaa× bbb,yyyi〉 =

∫
a(s)b(s)yyyi(s)ds = ∑ jk Γi jkaaa jbbbk.

For r rigid objects, the accumulated visibility vector is

vvvi = (vvv111× . . .× vvvrrr)i

= ∑
j1k1

Γi j1k1 vvv j1 vvvk2 . . . ∑
jr−1kr−1

Γkr−2 jr−1kr vvv jr−1 vvvkr . (2)

SH products are costly, in practice limiting the number of
terms, r, accumulated in the visibility vector. Alternatively,
blocking spheres can be accumulated in a log SH space:

vvvi = exp

(
∑
b

vvvlog
b

)
i

(3)

where vvvlog
i represents the log SH shadowing due to a single

blocking sphere tabulated as a function of the ratio of the
sphere’s radius to its distance from the receiver point.

Dynamic height field visibility can be generated in real-
time with a multi-resolution pyramid of horizon map val-
ues, {ω0, . . . ,ωn}, taken at many discretized azimuthal di-
rections, {φ0, . . . ,φn} [SN08]. The visibility function is

Vx(s) =
{

0 if sθ ≤ ωi for i such that sφ ∈ [φi,φi+1],
1 otherwise.

(4)
Canonically tabulated visibility wedges are rotated using fast
SH Z-rotations and combined to form the final SH visibility

vvv = ∑
n−1

Rz(φi)vvv[ωi,ωi+1]. (5)

Shading in SH is based on the rendering Equation [Kaj86]

Lx(ωo) =
∫

S2
Lin(ω)Vx(ω) fx(ω,ωo)max(ω ·Nx,0)︸ ︷︷ ︸

f̄x(ω,ωo)

dω (6)

where ωo is the outgoing viewing direction, Lx is the outgo-
ing radiance at x, Lin is the incoming radiance at x, fx is the
BRDF, and f̄x is the cosine–weighted BRDF restricted to the

Figure 2: Self-shadowing using the replacement rules of
[RWS∗06] (1st and 3rd images), and our data-driven results.

upper hemisphere defined by Nx. We denote the SH projec-
tions of Lin and f̄x (evaluated at the outgoing direction) as lll
and fff o = 〈 f̄x(ω,ωo),yyy(ω)〉. We will use subscripts to index
the elements of these SH coefficient vectors.

In the most general setting, calculating the outgoing radiance
with SH projections of each of the terms in the integrand
requires a costly application of the triple product tensor

Lx(ωo)≈∑
i jk

llli vvv j fff o
k Γi jk . (7)

Alternatively, the BRDF and visibility terms can be "baked"
into a transfer term during precomputation, resulting in a
more efficient double-product integral computation:

ttto
i = ∑

jk
vvv j fff o

k Γi jk ⇒ Lx(ωo)≈∑
i

llli ttto
i . (8)

Wang et al. [WTL04,WTL06] and Liu et al. [LSSS04] factor
BRDFs using the method of Kautz et al. [KM99] to combine
the light factor terms, Ub(ωi), with the visibility, and evalu-
ate the view factor terms, W b(ωo), at the outgoing direction

fx(ωi,ωo)≈∑
b

Ub(ωi) W b(ωo) ⇒ t̃ttb
i = ∑

jk
vvv j uuub

k Γi jk

Lx(ωo)≈∑
b

W b(ωo)∑
k

lllk t̃ttb
k . (9)

The disadvantage of these approaches to the triple-product
formulation is that the BRDF cannot be changed at run-time.
Feng et al. [FPJY07] fit a non-linear model to these large
transfer datasets for all vertices and animation frames.

In contrast, RPOs combine BRDF factorization and SH
product matrices, resulting in three key advantages:

1. The representation is compact, requiring orders of mag-
nitude less computation and storage than previous work.

2. We can change the BRDFs during run-time while avoid-
ing the expensive triple-product evaluation.

3. Our data-driven model (Sec. 5) need only fit the varying
visibility, not the larger, more complicated transfer data.

c© 2008 The Author(s)
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We apply our RPOs to visibility generated using the hy-
brid SH exponential method (HYB), combining an optimal
linear approximation with scaling and squaring to compute
the SH exponential (see Section 4.3 in [RWS∗06]), and a
modified version of a dynamic height field visibility ap-
proach [SN08]. Furthermore, our accurate data-driven self-
shadowing model complements previous work, such as that
of Ren et al. [RWS∗06]: while their model robustly handles
cast shadows from articulated and deforming geometry, Fig-
ure 2 shows that our method more accurately captures self-
shadows.

4. Reflection Product Operators

We introduce a simple representation for BRDFs that al-
lows us to dynamically change the material properties of our
scene. This representation is compact (less than 10 kilobytes
per BRDF) and is used to convert dynamically generated SH
visibility to SH transfer while avoiding explicit storage and
run-time evaluation of the triple product tensor.

We start by factoring BRDF data, represented by a matrix
of incident and outgoing directional samples, using the SVD
factorization technique of Kautz and McCool [KM99]. Note
that any factorization technique that generates light-only and
view-only factors is suitable. Next, we project the k light
and view terms, Ub(ωi) and W b(ωo), into the SH basis. We
subsequently compute and store the SH product matrix for
each of the projected light factors

uuub = 〈Ub,yyy〉, wwwb = 〈W b,yyy〉, Mb
i j = ∑

k
uuub

k Γi jk . (10)

To calculate the outgoing radiance, assuming we have syn-
thesized the dynamic SH visibility, we explicitly decouple
the visibility and BRDF from transfer in Equation 9

Lx(ωo)≈∑
b

wwwb · yyy(ωo)∑
k

[
lllk

(
Mbvvv

)
k

]
. (11)

Here we perform the SH product of the BRDF light-factors
and the visibility (inside the square brackets) and dot them
with the SH light vector (right most summation), and the left
most summation over the k BRDF factors also includes the
SH expansion of the BRDF view terms. The key benefit of
this reformulation is that many Mbs and wwwbs can be precom-
puted and swapped in at run-time while vvv can be generated
dynamically. To accelerate the run-time calculation of Equa-
tion 11 we pre-compile a GPU shader function, F, (for each
BRDF) that efficiently evaluates the matrix-vector multipli-
cations and takes the product with the expanded view factor
terms: Fb has inputs vvv, Mb, wwwb, yyy(ωo), and a single output
tttb representing the bth BRDF factor of the transfer. These
functions are the reflection product operators. Projecting the
BRDF factors into SH and generating the shader functions
is performed nearly interactively for each BRDF during ini-
tialization.

The storage required for an RPO with a k term BRDF factor-

Figure 3: Various BRDFs rendered with RPOs (8.5 kilo-
bytes each) under environmental and directional lighting.

ization is, at most (depending on sparsity of the light-factor),
k× n2(1 + n2) floats, for an n-order SH expansion. We typ-
ically use k = 8 and n = 4, for a total of only 8.5 kilobytes
per BRDF assuming 32-bit floats. We only reproduce low-
frequency shadowing and reflectance effects, and so an 8
term expansion is suitable for our needs [WTL06]. Figure 3
illustrates the application of our RPOs for analytic and mea-
sured BRDFs [MPBM03] under various lighting conditions.

5. Data-driven Visibility Generation

We propose a flexible, data-driven model for synthesizing
per-vertex visibility data on articulated and deformable ge-
ometries, such as character animations and cloth simula-
tions. In this section, we will discuss several of the key
issues involved in successfully applying data-driven ap-
proaches to the problem of low-frequency shadow synthe-
sis. Among these are the parameterization of the input and
output spaces, clustering and dimensionality reduction con-
siderations, shading data generation, and most importantly,
the choice of a compact, predictive model.

5.1. Input Parameterization

Data-driven models map multi-dimensional inputs to out-
puts. A suitable set of input parameters that fully describe
the current state, x, of an animation is required. For skinned
characters, a natural parameterization of this input space is
the set of all joint angles in the character’s skeleton. For
deformable models, such as cloth animations, no such nat-
ural parameterization exists. Similar to Kalogerakis et al.
[KNS∗09], for cloth simulations we use the full set of di-
hedral angles as the current state and then reduce the size
of this space using dimensionality reduction techniques (see
below). We have found that this parameterization allows our

c© 2008 The Author(s)
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Figure 4: Right: example clusters with associated PCA di-
rections. Left: how the # of clusters affects the visibility error.

data-driven models to capture the complex shadows between
folds and wrinkles, and to generalize for similar cloth states.

Dimensionality reduction is performed over the input pa-
rameterization to find a linear lower-dimensional subspace
suitable for representing the input state. We apply principal
components analysis (PCA) to the input parameters defined
at each training data point, where X = Pi(x− x̄) is the re-
duced dimensional input vector, Pi is the input projection
matrix composed of the n retained eigenvectors of the in-
put space, and x̄ is the mean of the input dataset. For typ-
ical animation sequences we retain enough dimensions to
capture ∼90% of the input variance. At run-time (Sec. 6),
the full-dimensional input vector is projected into the lower-
dimensional vector prior to being mapped into an appropri-
ate output space (Sec. 5.2.)

Generating suitable training data is important to ensure
that our model can generalize to novel animation sequences.
In our experience, there are two effective methods to do so.
Firstly, if an animation sequence exists that spans a wide
range of input scenarios, then it may be used. One such ex-
ample would be an animation sequence for an articulated
character containing many stretching movements, covering
the plausible motion of all the joint angles. Alternatively,
regularly sampling the space of input parameters also gen-
erates a suitable training data set for our model.

5.2. Output Parameterization

Ultimately, we must reconstruct a spherical signal (repre-
sented by its SH coefficients) at each vertex of a mesh, and so
a natural choice for the output space is the mesh vertices. We
leverage the spatial coherence and redundancy in the high-
dimensional output without sacrificing visual accuracy.

Clustering and dimensionality reduction can be used to
improve the performance of our model and reduce its stor-
age requirements. The SH visibility at adjacent vertices does
not vary significantly, and we leverage this redundancy with
a spatial clustering approach similar to [SHHS03, KA06],
although other clustering techniques [FPJY07] may also be
suitable. Our clustering scheme also addresses the issue of
maintaining spatially and temporally smooth local tangent
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Figure 5: Top right: the effect of output variance on visibil-
ity error. Bottom: notice how shadow details from the left leg
onto the right leg, and just above the left knee, are affected
by the reduced percentage of retained variance.

frames on our mesh surface, which improves the coherence
of the data and is necessary if a local frame representation
of the visibility and BRDF is to be used (see Section 5.4).
From our experiments, naïve approaches such as defining
tangent directions according to local triangle edge directions
fail. We segment one frame of the animation (a single mesh)
into its rigid components. For articulated characters we per-
form mean-shift clustering based on the skinning weights of
the skeleton, while for other models we use the technique of
[JT05]. As a result, triangles with similar rotation sequences
are clustered together into as-rigid-as-possible mesh com-
ponents. We then perform PCA over mesh vertices in each
cluster. Projecting the PCA directions into the tangent planes
of each vertex yields tangent directions that are temporally
coherent when animated and spatially smooth. Figure 4 il-
lustrates an example clustering with its PCA directions for a
deforming muscle, and the relationship between the number
of clusters and the model error.

We also perform PCA over the SH coefficients at vertices
within each cluster, typically retaining ∼95% of the vari-
ance. Here, Y = Po(y− ȳ) is the reduced dimensional out-
put space, Po is the PCA output projection, y is the output
vector (SH coefficients defined at mesh vertices) and ȳ the
data mean. Figure 5 illustrates the effect output variance on
shadow reconstruction and model error.

5.3. Linear vs. Non-linear Predictive Models

Our predictive models, fit to training data, will map reduced
dimensional inputs to reduced dimensional outputs. Unlike
the local interpolation of [FPJY07], our regression models
generalize to unseen animations with low storage require-
ments and few training poses. We investigate the suitability
of both linear and non-linear models in this regard.
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Figure 6: Fitting a model to single joint visibility variation.

Linear models are the simplest to address and, in certain
cases, may generate suitable results [KA07,KA06,NSK∗07,
NKSF08]. We have found that a linear model, combined
with a prior to ensure that small changes in the input result
in small changes in the output, is suitable for reconstructing
visibility for articulated characters with mild deformations.
However, for highly deformable animations, this model did
not yield acceptable results. Linear models with higher-order
feature vectors (FVs) tend to overfit the data and make gen-
eralization difficult (see Figure 7.)

Non-linear models are better suited to our datasets. Fig-
ure 6 shows how, for a single joint of an articulated char-
acter, the visibility data at a vertex behaves like a smoothed
step function. Various linear and non-linear model fits to this
case are illustrated. A non-linear model (per cluster) is espe-
cially necessary if the data will be visualized with a non-
diffuse BRDF, since diffuse BRDFs smooth the discrepancy
between a linear model’s results and the ground truth. For
each SH coefficient, we fit a regularized single-layer neural
network with tanh neurons:

Ỹ(X ) =
N

∑
n=1

cccn tanh(dddn ·X +d0)+ c0 , (12)

where Ỹ is the reduced dimensional generated output, X is
the reduced dimensional input, N is the number of neurons,
cccn and dddn are the model’s weight coefficient vectors and
c0 and d0 are bias terms. The parameters of the model are
fit by minimizing the following objective function using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer:

σ(cccn,dddn) = ∑
i
‖Ỹ −Y‖2 +α

N

∑
n=1

(‖cccn‖2 +‖dddn‖2) , (13)

where the regularization term, α, and the number of neurons
are chosen with cross-validation. This model is well-suited
for our data. The BFGS optimizer is well-suited for this non-
linear optimization problem and we have found that 5000 it-
erations are typically enough for the optimizer to converge
onto a satisfactory minimum. Figure 7 compares model er-
rors on representative animations. In all cases, we use fewer
than 200 training frames.

Regularization is applied using 4-fold cross-validation to
avoid overfitting the training data and to increase model

generalization. We have targeted our models for applica-
tions which require generalization, such as interactive games
where a character model might interact unexpectedly with
the environment through a physics engine. Alternatively, our
models may also be used for data-compression purposes, and
thus generalization would not be necessary since only the
training data need be reproduced at run-time. In this case,
regularization should be avoided since the goal of compres-
sion can be thought of as requiring the training data to be
reproduced as accurately as possible.
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Figure 7: Visibility error of each model on novel poses.

5.4. Shading Dataset Considerations

There are many suitable representations of the SH data to
which we can fit our model. We will analyze, in the context
of model fitting and reconstructing the outgoing radiance,
how to handle the cosine foreshortening term, and local ver-
sus global co-ordinate frame representations of the visibility
data.

The cosine foreshortening term in the rendering equa-
tion can either be absorbed into the BRDF (and thus, the
reflection product operator), or it can be analytically re-
incorporated at run-time using the following product matrix

Ci j = ∑
k

[∫
s∈S

max(Nx · s)yyyk(s)ds
]

Γi jk (14)

which has a simple analytic form. Although absorbing the
cosine with the BRDF can in some cases adversely affect the
effectiveness of the factorization, in our experience this was
not the case for low-frequency BRDFs. Furthermore, Figure
8 shows that fitting a model to the non-cosine weighted visi-
bility results in much lower reconstruction errors [NKSF08].
For these reasons, we fit our models to the visibility and use
cosine-weighted BRDF data for the RPOs.

Choosing the coordinate frame used to represent the SH
visibility is a critical decision. With a local co-ordinate frame
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Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



D. Nowrouzezahrai, E. Kalogerakis & E. Fiume / Shadowing Dynamic Scenes with Arbitrary BRDFs

Geometry Dataset Input/Ouput Clustered Model Size (MB) FPS Fitting Time (H:M)
(# vertices) Size Variance % Linear Quadratic NN Linear Quadratic NN Linear Quadratic NN
Pai (11.6k) 258.7 MB 90/95 8.3 8.5 9.0 325 312 268 0:12 0:16 14:32
Fit (20.1k) 412.8 MB 80/90 16.1 16.9 17.9 165 160 141 0:17 0:23 16:03

Angela (24.8k) 137.5 MB 90/95 14.0 14.5 16.1 127 121 108 1:02 1:38 32:14
T-rex (21.6k) 109.5 MB 90/95 16.1 16.5 17.4 112 105 98 0:38 0:48 26:43
Cloth (7.7k) 26.1 MB 90/99 2.8 3.1 3.6 332 328 321 0:27 0:45 12:08

Human (1.6k) 13.3 MB 90/99 1.4 1.5 1.8 348 339 326 0:08 0:11 5:11

Table 1: Sizes, execution times and fitting times of the reduced dimensional linear and neural network models. Since we use
RPOs, our original datasets only consist of SH visibility and are much smaller than animated transfer datasets.
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Figure 8: Model errors with and without the cosine term.

representation of the visibility, the BRDF data may be ex-
pressed in its natural 4D parameter space, however at run-
time the lighting would need to be rotated into the local
frame of each shading point to obtain lll in Equation 11. Al-
ternatively, with visibility expressed in a global co-ordinate
frame, the lighting need not be rotated but the BRDF be-
comes a normal-dependent 6D function and an RPO would
have to be tabulated for a discrete set of normals (or tangent-
frames for anisotropic BRDFs.) We compare our models
with each type of data and summarize the results in Figure
9.
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Figure 9: Model errors with different SH coordinate frames.

We chose local SH visibility since our models consistently

fit this data with lower error. We will address the issue of
efficiently rotating the lighting into the tangent frame.

Zonal harmonics lighting is used to solve the local-frame
lighting rotation problem. SH Environmental lighting is ap-
proximated with a set of ZH lobes since rotating ZH signals
into the per-vertex local co-ordinate frames is much more
efficient than rotating general SH signals [SLS05]. We per-
form ZH lobe fitting in a slightly different manner than pre-
vious work [Slo08, SLS05]. Given the SH coefficients of an
environment light, lll, we sample a small number (e.g. 1500)
of uniformly distributed directions on the unit sphere. Each
of these directions is treated as a potential lobe direction and
we calculate the residual of a single-lobe ZH fit, for each
color channel, and for each candidate lobe direction. The
coefficients are calculated using Equation 18 of [SLS05]

lll∗l =

l

∑
m=−l

yyylm(s∗)llllm

l

∑
m=−l

yyy2
lm(s∗)

(15)

where s∗ is the candidate lobe direction and lll∗l is the ZH
band coefficient. The best fit direction and coefficients ob-
tained from this procedure are used to seed a BFGS opti-
mization that minimizes an error function for the single-lobe
ZH fit to the lighting. Both the lobe coefficients and can-
didate direction are free variables during optimization and,
from our experience, it is not necessary to use gradients dur-
ing optimization. We suspect this is because the initial sam-
pling seeds the optimizer very close to the final result. The
process is repeated for each ZH lobe. In all our examples, we
found 3 ZH lobes to be sufficient for low-frequency lighting.
Figure 10 illustrates 3-lobe ZH fits to SH environment maps.
The entire process takes 3 seconds per environment map.

Figure 10: SH lighting and 3-lobe ZH fits (in pairs.)
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6. Precomputation and Run-time Algorithms

Generating the reflection product operators requires a
straightforward implementation of Section 4:

1. Each BRDF is tabulated as a matrix of values for (local)
incoming and outgoing directions.

2. Any SVD algorithm (we use MATLAB’s svd function)
executed on the matrix yields the light and view factors.

3. Each of the k retained factor pairs are projected into SH.

4. The light factor coefficients are used to determine the en-
tries of the symmetric SH product matrix, Mi.

5. A pre-compiled shader function optimizes the
matrix-vector product and view factor expansion:
Fb( vvv, Mb, wwwb, yyy(ωo), tttb ) with tttb =

[
wwwb · yyyo

](
Mbvvv

)
.

Figure 11: RPOs applied to dynamic height fields (32 Hz.)

This process takes no longer than 3 minutes per BRDF. At
run-time, the following steps are executed in order to shade:

1. Query the input parameters of the current frame of the
animation, x, and project them into their reduced dimen-
sional representation: X = Pi(x− x̄).

2. The data-driven model mapping is applied: Y = Ỹ(X ).

3. The reduced dimensional output is projected to the full
dimension (mesh vertex) space: vvv = y = [Po]TY+ ȳ.

4. Equation 11 is computed with the RPOs.

Our visibility models can be fit in a fraction of the time of
previously proposed methods. Table 1 summarizes model
statistics for various datasets. Our models achieve high com-
pression as well as predictability for novel animations.

7. Results

All of our results are captured at 800x600 on a P4 3.0 GHz
CPU, with 2 GB RAM and an nVidia GeForce 8800 GTX
with 768 MB VRAM. All data-driven shadows are generated
using the NN model with 64 clusters. All RPOs use 8-term
BRDF factorizations. The HYB technique of [RWS∗06] is
used for cast shadows and, except for the humanoid datasets,
we generate the spherical blocker approximations using k-
means clustering over the mesh vertices (Fig. 12). For dy-
namic height fields, a modified version of the algorithm pre-
sented in [SN08] is used (Fig. 11): we sub-sample the visibil-
ity and shade with RPOs at full resolution (5122, or 522k tri-
angles). Our visibility model compares favorably to ground
truth renderings even for highly deformable models (Fig.
13.)

ground truth generated ground truth generated

ground truth generated ground truth generated

Figure 13: Ground truth comparisons for novel poses.

8. Discussion and Future Work

We have presented both linear and non-linear approaches to
synthesizing visibility data. The linear models require less
precomputation time and storage, are slightly more efficient
to evaluate at run-time, and can provide plausible results (es-
pecially under diffuse shading) which are temporally coher-
ent. These models are suitable for games with many articu-
lated characters lit by dynamic lighting.
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Figure 12: RPOs applied to our data-driven model (108 to 326 Hz) and SHexp (62 Hz) with dynamic view, lighting and BRDFs.

The non-linear model provides a much better trade-off be-
tween accuracy and speed, capturing the non-linear trend
(sharp discontinuities) of local-coordinate SH visibility with
high fidelity and few neurons, and can generalize to novel
animations just as well as the linear models. This model,
however, is slightly more complex to implement than linear
models and requires more precomputation. For very com-
plex deformations, such as our cloth examples, we recom-
mend using the neural network models.

For all models, providing training data that samples the in-
put space sufficiently is a very important requirement. For
example, given a training dataset composed of a walking
animation sequence where the arms never cross above the
plane of the shoulder blades, the user can expect the mod-
els to perform very well on running sequences. However, for
any sequences where the character raises its arms above its
head, the models will not be able to completely predict the
shadows cast by the arms onto the head.

Currently, our data-driven models only reproduce self-
shadowing effects. We address this limitation in our exam-
ples by combining many different visibility generation ap-
proaches; however, a promising area of future work is the
application of data-driven techniques to cast shadows. This
is a challenging problem since a parameterizable volumet-
ric representation of visibility is required, resulting in much
larger training datasets and models. Moreover, incorporating
indirect illumination with varying BRDFs is another area of
future work with challenging problems, since the incident

radiance at shading points is a complex, non-linear function
of the BRDFs in the scene.
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