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Abstract

Recent theories of visual attention, such as the oculomotor readiness theory of Klein
(1980), the premotor theory of Rizzolatti (1983), and the sequential attention theory
of Henderson (1992), propose a link between shifts in spatial attention and the
generation of saccadic eye movements. In this paper we show that a Winner-Take-
All model of spatial attention, combined with a simple model for the link between
attention and eye movements, can account for the variation in saccadic latency
observed in many oculomotor phenomena. These phenomena include the gap e�ect
(Saslow 1967), the e�ect of target jumps on saccadic latency (Becker and Jurgens
1979), the increase of saccadic latency as target eccentricity drops (Kalesnykas and
Hallett 1994), and the modulation of saccadic accuracy using target predictability
and saccadic latency (Co�e��e and O'Regan (1987)).
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1 Introduction

A growing number of experiments support the view that there is a direct
connection between saccadic eye movements and spatial attention (see, for
example, Klein (1980), Rizzolatti et al (1983), Henderson (1992), Kustov and
Robinson (1996)). In particular, it appears that the target location and the
timing of saccadic eye movements are a�ected by visual attention. This appar-
ent causal link between visual attention and saccadic eye movements suggests
that many phenomena involving saccadic eye movements can best be under-
stood as arising from the activity of visual attention. A detailed model of
visual attention should, therefore, be able to predict, or explain, phenomena
involving the timing of saccadic eye movements.
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In this paper we examine, via computational modeling, a possible role for
attention in a�ecting the timing and targeting of saccadic eye movements.
We present a winner-take-all based model of spatial attention, similar to that
proposed by Koch and Ullman (1985). We show that this model, when in-
corporating the spatio-temporal characteristics of low level feature detectors,
can account for a wide range of oculomotor phenomena. In particular, we will
use the model to account for the gap e�ect (Saslow 1967), the e�ect of target
jumps on saccadic latency (Becker and Jurgens 1979), the increase of sac-
cadic latency as target eccentricity drops (Kalesnykas and Hallett (1994), and
the modulation of saccadic accuracy using target predictability and saccadic
latency (Co�e��e and O'Regan 1987).

2 Models of Visual Attention and the Link to Saccadic Eye Move-

ment Generation

Many models have been proposed to explain various observed properties of
saccadic eye movements. With regard to the connection between saccades and
visual attention these models can be grouped into three types. The �rst type
of model treats the generation of saccadic eye movements as independent of
attention (see Becker and Jurgens (1979), Reulen (1984a,1984b), and Deubel
(1984) for examples).

The second type of model posits a connection between saccades and visual
attention, but requires only that attention be disengaged (or not directed to
any particular focus) for a saccade to occur. The target of such a saccade is
based on visual input. Perhaps the best example of such a model is that of
Fischer (1992,1993). In Fischer's model the target of a saccadic eye movement
is computed during the disengaged-attention phase by a localization system.

The third type of model assumes an even stronger involvement of attention,
by requiring that attention be engaged at a target location before a saccade can
be made to that location. This type of model has accrued much experimental
support and there have been many di�erent versions proposed.

One of the �rst theories of this sort was put forward by Wurtz and Mohler
(1976), who proposed that attention shifts were programs for saccadic eye
movements.

A detailed study of the link between spatial attention and saccadic eye
movements was performed by Klein (1980), who proposed what he referred
to as the oculomotor readiness theory. This theory posits that when atten-
tion to a particular spatial location is desired the observer prepares an eye
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movement to that location, and this preparation, or oculomotor readiness, in
turn enhances information processing at the target location. This oculomo-
tor readiness hypothesis was later modi�ed somewhat in light of subsequent
experiments (Klein et al 1992) to state that attention is tightly linked to exoge-
nously directed eye movement preparation, but is not linked to endogenously

directed eye movement preparation. Indeed, the mechanisms underlying en-
dogenous and exogenous orienting systems are not well known, and require
further study. In the present paper, we are only modeling exogenous stimuli
and hence feel safe in assuming that the oculomotor readiness theory is valid.

Posner (1980) provides a more relaxed view of the link between attention
and eye movements. He treats the two orienting systems as being functionally
related only. As in Klein's modi�cation of his oculomotor readiness theory,
Posner postulates a weaker connection between eye movements and covert
attention mainly on the observations that endogenous attentional shifts can
be made in ways that do not appear to a�ect eye movement preparations.
Posner suggests that covert attention and eye movements are both drawn
to exogenous (peripheral) stimuli, with covert attention moving more rapidly
towards the stimulus. His model does not suggest a causal connection between
eye movements and covert attention, however.

Perhaps the most extreme view of the connection between covert atten-
tion and saccadic eye movements is the premotor theory of Rizzolatti (1983).
This theory, which actually includes other body movements in addition to eye
movements, holds that the system that controls action is the same as that
which controls spatial attention. In particular, one of the main claims of the
premotor theory of attention is that \the mechanism responsible for spatial
attention are localised in the spatial pragmatic maps. There are no such things
as selective attention circuits de�ned as anatomical entities separated from the
spatial maps" (Rizzolatti et al 1994). A pragmatic map is a neural representa-
tion of space that is used for carrying out some action. A particular example
of such a pragmatic map would be the motor map present in the intermedi-
ate layers of the superior colliculus (Wurtz 1996). The premotor theory would
then say that the activity of the superior colliculus directly a�ects the allo-
cation of spatial attention. The premotor theory is rather controversial, and,
in particular has been attacked on the grounds that it does not explain the
results of the experiments done by Klein et al (1992). Rizzolatti has counter-
arguments, however, and the issue of the validity of the premotor theory is far
from settled.

A more recent theory of the link between attention and eye movements is
due to Henderson (1992), who proposed a sequential attention model wherein
\programming" of a saccade begins when attention shifts once processing of
the foveal input has been completed. The target of the eye movement is taken
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to be the new locus of attention. In cases where the foveal processing is rel-
atively light, the actual eye movement is modeled as occurring 80msec after
this shift in attention. Henderson modi�ed this sequential model somewhat,
to account for the observation that increased foveal load (di�culty in process-
ing foveal information) can reduce peripheral preview bene�t, suggesting that
eye movements begin to be planned before attention shifts, at some preset
processing deadline time. This does not a�ect the conclusion that saccades
are made to the locus of attention, however, but only modi�es the mechanism
which determines when eye movements are to be triggered.

The previous theories were based mainly on psychophysical evidence. There
is a growing body of neuro-physiological evidence as well. Desimone et al

(1989) found that local deactivation of small zones in the superior collicu-
lus impaired an animal's ability to attend to a target in the presence of a
distractor. Desimone (1990) points out that the oculomotor system and the
covert attention system both involve the targeting of stimuli and could use-
fully share some common neural hardware. He also points out that the e�ects
of a shift of gaze and a shift of covert attention are nearly identical on the
visual system. Kustov and Robinson (1996) generated saccades in monkeys by
electrical stimulation of the superior colliculus motor map. They found that
both exogenous and endogenous attentional shifts caused deviations in the
direction of the electrically evoked saccades. These deviations even occured
when the monkey makes hand movements in response to the cue. Thus these
deviations cannot be ascribed to conscious preparation of an eye movement.
These �ndings are in accord with our view of the premotor theory of attention,
in that preparation of a movement directly a�ects the allocation of attention,
and vice-versa.

3 A Computational Model

In this paper, we assume a speci�c computational model linking spatial at-
tention and eye movements that is very much along the lines of Rizzolatti's
premotor theory. We will use simulations of this model to show that the pre-
motor or ocular readiness approaches can account for a number of di�erent
oculomotor phenomena related to saccadic latency.

Our model brings together a number of ideas found in the literature. The
key features of this model are:

� Attention is associated with spatial pragmatic maps (e.g. neural maps serv-
ing the execution of actions) (Rizzolatti et al 1987).

� Spatial attention is driven by a winner-take-all interaction between elements
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of a spatial saliency map (Koch and Ullman 1985).
� Spatio-temporal integration for target speci�cation (Deubel 1984).
� Distributed representation of target location (McIlwain 1975, and Lee, Rohrer
and Sparks 1988).

� Triggering of reexive saccades based on transitions of the winner-take-all
network.

3.1 Attentional Dynamics

The purpose of this paper is to show that saccadic latency e�ects can be
explained in a premotor theory by considering that the main variable com-
ponent of saccadic latency is the time needed for spatial attention to shift to
the location of the target for the saccade. In order to test this idea we need
to have a model for the dynamical behavior of the attention shift process.

There are a number of computational models that describe the dynamical
mechanisms underlying attention shifts (e.g. Koch and Ullman 1985, Tsotsos
1990). These di�er greatly in their details, but generally the type of behavior
know as \Winner-Take-All". A winner-take-all system is one in which elements
compete against each other using mutual inhibition. The positive feedback in-
herent in such a system results in a stable state wherein one of the elements
(the \winner") is maximally enhanced and all the other elements are maxi-
mally inhibited.

[[FIGURES 1 AND 2 GO HERE]]

We assume a rather simple form of a winner-take-all system. This model
may di�er in detail from the precise neural implementation to be found in
the brain, but it is our belief that the qualitative nature of the dynamics of
winner-take-all networks are su�ciently generic that the precise form of the
implementation is irrelevant. The speci�c model of attention that we used in
our simulations is depicted in schematic form in �gure 1. In this model, feature
maps of various kinds are computed and combined into a \saliency" map. Dif-
ferent features can be weighted by di�erent amounts in producing this saliency
map (as in Koch and Ullman 1985). There are two types of feature detectors
posited in the model, transient and sustained. The transient feature detectors
are fast responding but have relatively low spatial resolution. The sustained
feature detectors are slower to respond but have higher spatial resolution. The
raw saliency map values are then modulated via a shunting inhibition by an
attentional signal. Shunting inhibition, which can be modeled by a division of
the input by the inhibiting signal, has been observed in the retina (Amthor
and Grzywacz 1991) and in cortex (Coombs et al 1955). The attention signal
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is produced by a process that is depicted in �gure 2. This inhibitory signal
arises from a saturating, leaky, integrator. The integrator temporally accumu-
lates the di�erence between a spatial average of the modulated saliency value
at that location and a local estimate of the maximum modulated saliency
value. If the spatial average modulated saliency at the location is greater than
the local maximum then the integrator will discharge, reducing the inhibition.
If, on the other hand, the average modulated saliency is less than the local
maximum value, the integrator will begin to charge, increasing the inhibition.
This positive feedback results in a winner-take-all process, wherein the lo-
cation with the locally greatest saliency will inhibit its neighbours, reducing
their activity even further and therefore strengthening its hold. When the in-
put feature activity changes, the winner-take-all network will take on a new
equilibrium, with new locations being inhibited and a new winning location
established. It is the pattern of inhibition that corresponds to \attention" in
our model. As this pattern changes due to changes in the input, so too does
the allocation of spatial \attention". The spatial average operation spreads
out the area of the winning location. If there is no spatial averaging then the
winning location is condensed to a single spatial unit.

The question arises as to where in the brain this winner-take-all dynamical
process takes place. If one takes the premotor theory in its strict form, this
process would take place in the motor maps that control eye movements. The
obvious candidate for this would be the intermediate layers of the superior
colliculus. The colliculus model of Arai et al (1994) includes inhibitory lat-
eral connections between neurons in the motor layer, which could give rise to
winner-take-all behavior. The experiments of Desimone et al (1989) that were
described earlier also implicate the superior colliculus in the control of atten-
tion. Other candidates for the locus of the winner-take-all process are cortical
regions such as the parietal lobe. The only �rm conclusion that can be made
at this time is that the location of the attentional winner-take-all system is
still very much an open research question.

3.2 Targeting and Triggering of Saccades

There are two major aspects to the generation of a saccadic eye movement.
The �rst is speci�cation of the target of the saccade, and the second is the
speci�cation of the time at which the saccade is to be executed. Other impor-
tant factors include the control of the movement once it is underway, in order
to ensure that the eye reaches its target. We will not consider these factors
in this paper, but will instead concentrate only on the determination of the
saccade target and the timing of the start of the saccadic eye movement.
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A recurring theme in both the eye movement literature as well as in the more
general neurophysiological community is that temporal and spatial factors are
often separately programmed (see for example, the discussion of the \WHEN"
and \WHERE" neural subsystems by Van Gisbergen et al. 1981). Thus it
seems likely that the mechanism responsible for determining when a saccade
is to be made is separate from the mechanism which determines the target
of the saccade. This is reected in our model, and we will consider these two
aspects separately in what follows.

3.2.1 Saccade Triggering

Recent studies (Munoz and Wurtz 1993) have demonstrated the presence
of a separate neural system dedicated to maintaining ocular �xation. Current
models of the functioning of the superior colliculus (Wurtz 1996) emphasize
the importance of the so-called \�xation cells" (Munoz and Wurtz 1993) in
the rostral pole of the superior colliculus in triggering saccades. Activity in
these cells suppresses saccadic eye movements. When these cells are inhibited,
a saccade is generated. Premotor theory suggests that every attentional shift
is associated with planning of an eye movement to the new location. A �xation
system such as that found in the superior colliculus would act to prevent eye
movements from occuring every time attention shifts.

In the above view of �xation, a saccade is triggered when ever �xation is
released, through inhibition of the �xation cells. It is our view that one way in
which this inhibition can be imposed is through the activity of the other cells
in the motor layers of the superior colliculus. These cells are normally inhibited
by the �xation cells, but they may also exert a reciprocal inhibitory e�ect on
the �xation cells. It is conceivable, then, that a shift in attention from one
location to another (or a transition in the winner-take-all network) may cause
enough transient activity in the superior colliculus motor map to su�ciently
inhibit the �xation cells, thereby triggering a saccade. The �xation cells could
also be inhibited by cortical input, such as from the frontal eye �elds. In this
way volitional saccadic eye movements could be triggered.

In our model, we take the view that saccades can be triggered by transitions
of the attentional winner-take-all system. That is, a reexive or exogenous
saccade is triggered when the level of attentional inhibition at any location
drops from its maximum level (set by the saturation of the winner-take-all
integrator) to zero. The dynamics of the winner-take-all are such that the
value of the shunting inhibition signal at any location will, in steady state, be
either at its minimum or maximum values. The requirement that the inhibition
signal drop from its maximum to zero at a given location before a saccade is
made to that location, provides a form of \inhibition-of-return". That is, a
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location that was previously �xated must become inhibited before a saccade
can be made to it. This should not be taken as a full explanation of the
classical inhibition of return phenomena, however, as it does not require that
a previously attended location become inhibited relative to other, unattended,
locations. Note that the inhibition dropping to zero at a location only triggers
the saccade. Depending on the feature activity elsewhere the target of the
saccade may not be that particular location. In single target cases the saccade
will usually be made to the location which triggers the saccade, however. Using
the terminology of Posner (Posner et al 1982) our model states that a saccadic
eye movement is triggered when attention is \engaged" at a new location. This
is in contrast to models, such as that proposed by Fischer (1992), in which
eye movements are triggered when attention is \disengaged" from its current
location.

The experiments of Henderson (1992) suggest that eye movement planning
can start before attention shifts when the foveal processing load is high. He
suggests that there is a temporal deadline measured from the start of �xation
at which the eye must move. This could be handled in our model by positing a
signal which inhibits the �xation cells in the superior colliculus after a certain
length of time since the previous saccade. This could be simply implemented
with a temporal integrator that is reset after each saccade, and whose output
inhibits the �xation cells.

3.2.2 Saccade Targeting

The premotor theories, and similar theories, do not say very much about how
the target of the saccadic eye movement is determined. We propose the simple
idea that the target of the saccadic eye movement is taken to be the centre of
mass of the modulated feature activity, as reected by the visual input to the
superior colliculus. This centre of mass need not be computed explicitly, as the
command for the eye movement can be represented in distributed form using
a population coding (Lee, Rohrer, and Sparks 1988) of the motor command
for the saccade, as is the case in the superior colliculus (Wurtz 1996).

It should be noted that in taking this approach, the saccade target is always
de�ned. There is no distinct saccadic programming module which computes
the saccade target in response to some trigger stimulus. The target is always
de�ned, and the saccade target is that which is de�ned at the moment of
triggering (or shutting down of the �xation cell activity).
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3.3 Endogenous vs. Exogenous Orienting

Most models of attentional orienting assume that there are two parallel
systems (see e.g. Sereno (1992)), one handling endogenous (or volitional) ori-
enting, the other exogenous (or reexive, image-based) orienting. Our model
follows this view, and assumes, furthermore, that both systems act on the
same substrate, the facilitation or inhibition of low level feature detectors. In
this paper we have explicitly modeled the dynamics of only the \exogenous"
attentional activity. Although the dynamics of \endogenous" attention are not
modeled, the e�ect of endogenous attention on eye movements can be straight-
forwardly included in our model by proposing that volitional eye movements
occur through high-level modulation of the low-level substrate that under-
lies reexive saccadic eye movements. The e�ect of endogenous inputs can be
implemented by adding in a new input component to the saliency map that
enhances the salience at the location to be volitionally attended to. Positional
priming can also be handled in this fashion. Sustained or repetitive feature
detector activity at a given location may build up, via a neural temporal
integration mechanism, a short term increase in salience at that location.

There are, however, a number of experiments that suggest that this sim-
ple view needs to be elaborated somewhat. Rafal et al (1989) showed that
inhibition of return does not occur following attentional shifts driven by en-
dogenous cues, and Briand and Klein (1987) showed that exogenous and en-
dogenous cues operated di�erently in feature integration. Likewise, the exper-
iments performed by Klein (1980) showed that endogenous shifts in attention
did not appear to facilitate saccadic eye movements to the attended locations.
This suggests that the link between saccades and endogenous attention is not
as direct as that between saccades and exogenous attention.

In light of these apparent di�erences between exogenously and endogenously
directed attention, it is evident that the model we are describing in this paper
should only be taken to refer to exogenous processes. The oculomotor phe-
nomena that we describe and explain with our model in the following section
all are concerned with exogenous stimuli only.

4 Phenomena Related to the Timing of Saccadic Eye Movements

In this section we describe a number of oculomotor phenomena that have
been observed in humans. To our knowledge, none of the current models of
saccadic eye movement generation can account for all of these oculomotor
phenomena. We show, via computer simulations, that in each of these cases,
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our model of attention and eye movement generation is able to account for
the phenomenon.

4.1 Saccadic Latency and the Dynamics of Attention

Of interest is the time interval predicted by our model between the appear-
ance of a target stimulus and the triggering of a saccade towards that target.
The length of this time interval is often referred to as the saccadic latency. In
the following sections we describe a number of oculomotor phenomena that are
mainly concerned with saccadic latency. We will show that these phenomena
are readily explained by our model.

In our model, saccadic latency depends on the dynamics of the attentional
system. These dynamics are set primarily by two factors. The �rst is the
temporal response of the feature detectors that feed into the winner-take-all
network, and the second is the dynamics of the winner-take-all network itself.

A number of researchers (Breitmeyer and Ganz (1976), Lennie (1980), Yan-
tis and Jonides (1984)) have suggested that the transient e�ects observed
in tasks requiring visual attention (e.g. those reported by Nakayama and
Mackeben (1989), and by Posner, Cohen, and Rafal (1982)) may be due to the
transient responses of low level feature detectors. The dynamics of the feature
detectors arise from the temporal properties of their constituent neurons.

A detailed analysis of the dynamics of the winner-take-all is given in the
Appendix. There it is shown that, if the initial feature value at a given location
is too small compared with the value at the currently winning location, the
network will not switch. If the feature value is high enough, switching will take
place. Most importantly for understanding of saccadic latency phenomena,
the switching time is seen to be proportional to the integrator time constant
(1=k) and the salience winning feature. The salience at a given location is
de�ned here as the sum of the attentionally modulated feature outputs at
that location.

4.2 The Gap E�ect

Saslow (1967) observed that saccadic latencies were reduced when the tem-
poral gap between the o�set of the �xation stimulus and the onset of the target
stimulus was increased. This phenomenon has come to be known as the \gap
e�ect". Furthermore, it was observed that saccadic latencies increase when
there is a temporal overlap between the �xation o�set and the target onset.
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Reulen (1984a) measured saccadic latencies as a function of the asynchrony
between �xation o�set and target onset in seven subjects. He found that the
data �t a simple schematic model. This function, shown in �gure 3, consists
of three parts: 1) an overlap asymptote, 2) a transition region, and 3) a gap
asymptote.

[[FIGURE 3 GOES HERE]]

The gap/overlap e�ect is readily apparent in simulations of our model. The
time units for the simulation are arbitrary, however, and so no absolute com-
parisons of the simulation results with observed data can be made. In �gures
4 and 5 we show the saccadic latencies predicted by our model for a range of
stimulus asynchronies. In �gure 4 we vary the saliency of the target stimulus,
while in �gure 5 we vary the saliency of the �xation stimulus. Note that the
shape of the curves follow the form observed by Saslow (1967) and Reulen
(1984a) and depicted in schematic form in �gure 3. Note also the relative in-
sensitivity of the value of the gap asymptotic latency to the �xation saliency
compared with the value of the overlap asymptotic latency.

In �gure 4 we see that varying the target salience essentially shifts the
latency curve up or down, and has only a slight e�ect on the magnitude
of the gap e�ect. This was observed by Kingstone and Klein (1993), and
Walker et al (1995) who showed that giving instructions to direct attention to
a target location did not lead to any decrease in the magnitude of the gap e�ect
although there was an overall reduction in latency. In our model the role of the
instructions given would be to increase salience at the target location, which
would result in the shift of the latency curve shown in �gure 4. A functionally
similar result was observed experimentally by Reuter-Lorenz and coworkers
(Reuter-Lorenz 1991), who showed that the gap e�ect is una�ected by the
luminance of the target.

In both the gap and overlap conditions, our model predicts that the relative
saliency of the target and �xation stimuli a�ects the saccadic latency. This
e�ect has been observed in human subjects in many studies (e.g. Wheeless
et al. 1967, Unema 1995). These studies have shown that saccadic latencies
increase when the salience (e.g. luminance) of the target stimulus is reduced.

[[FIGURES 4 AND 5 GO HERE]]

The shape of the latency/asynchrony curves can be straightforwardly un-
derstood in terms of our dynamical model of attention. For example, the gap
asymptote is approached when the �xation stimulus and the local maximum
network have both decayed to zero at the time when the new target appears.
In this case the new target stimulus is unimpeded in switching the winner-
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take-all. The latency will then consist of only the time required for the target
stimulus to discharge the shunting inhibition integrator at its location. Thus
the latency at the gap asymptote will depend only on the time constant of
the shunting inhibition integrator, the target saliency and the time constant
of the transient channel. The switching time in this condition does not de-
pend at all on the �xation stimulus salience. Likewise, the overlap asymptote
is approached when the target stimulus is able to win the winner-take-all
competition away from a continually present �xation stimulus (i.e. in�nite
overlap). As the saccade trigger is based on the state of the winner-take-all
competition, any increase in overlap time beyond the overlap asymptotic la-
tency merely results in the �xation stimulus persisting after the saccade has
already been made, and so can have no e�ect on the saccadic latency. This is
the reason for the asymptotic behavior.

The precise value of the overlap asymptotic latency depends on the switch-
ing time of the winner-take-all competition. As seen in the appendix the
switching time is proportional to the shunting inhibition integrator time con-
stant. If the target stimulus has a feature value that is much larger than the
�xation stimulus value, the switching time is inversely proportional to the
target stimulus value. For smaller feature values of the target stimulus rela-
tive to the �xation stimulus, the switching time is inversely proportional to
both the target stimulus value and the ratio of the target to �xation stimulus
values. For ratios of the target stimulus value to the �xation stimulus value
that are close to the minimum required for switching, the switching time is
inversely proportional to the di�erence between this ratio and the minimum
ratio. Hence, in this case, switching times can be very large. If the ratio is too
small, no switching of the winner-take-all will occur and no saccade will be
generated.

4.3 Modulation of the Global E�ect with Saccadic Latency

Coren and Hoenig (1972) observed that the amplitudes of saccades to point
targets can be systematically a�ected by the presence of distractors. Saccades
tend to bring the eye to the \centre-of-gravity" of the target+distractor com-
plex. This phenomenon, called the global e�ect by Findlay (1982), has been
observed in many other experiments and with various stimulus con�gurations.

Co�e��e and O'Regan (1987) presented experimental results which point at
two ways in which the e�ect of distractors on the landing position of the eye can
be reduced. These are: increasing latencies and increasing the predictability of
the target location. Their experimental paradigm was to have the subject make
saccadic eye movements to a cued letter in a string of 10 letters presented in
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the periphery of the visual �eld. When subjects made saccades with very short
latencies, the landing position of the eye overshot the cued location for targets
on the end of the string nearest to the �xation point and undershot the cued
location for targets on the end of the string furthest from the �xation point. As
latencies were increased, the amount of over- or under-shoot was decreased. No
target location under- or over-shoot was observed when only single letters were
present, indicating that it was the presence of the other, non-cued, letters in
the string that were giving rise to the under and overshoots. They also found
that, when the trials were arranged in blocks wherein the target location
was the same, the over- and under-shoots were reduced relative to cases in
which the target locations were randomised from trial to trial. It was noted
by He and Kowler (1989) that the inuence of target probability does not
necessarily improve the accuracy of saccades, as the actual target may lie in
a location of low target probability. They found that saccades were biased
towards locations that have a high probability of the target appearing. This
suggests, as does the target predictability experiment of Co�e��e and O'Regan,
that visual memory or other higher level processes can a�ect the endpoint of
a saccadic eye movement.

[[FIGURE 6 GOES HERE]]

We use the arrangement depicted in �gure 6 as the input for our simulation.
We use a grid of 15 points. The �xation stimulus is located at the 5th point
and the distractors are located at positions 8 through 12. Initially the �xation
saliency is set to a small, non-zero value (0.01), and the target and distractor
saliencies are set to zero. All inhibition values are initialised to 1. After 3�106

time steps the �xation saliency is set to zero and the distractor saliencies are
set to a value of 0.5 units. The target saliency is set to twice the distractor
saliency at this time. The target location is varied from run to run of the
simulation. The saccade triggering portion of the model is ignored for the
purposes of these runs. We measure the centroid of the modulated saliency
values every 50 � 103 time steps after the onset of the target. There is no
overlap or gap between the onset of the target and distractors and the o�set
of the �xation. These centroids reect, in our model, the landing position of
the saccade (ignoring motor e�ects) assuming that a saccade is generated with
the appropriate latency.

[[FIGURE 7 GOES HERE]]

As can be seen in �gure 7, our simulations show the same behavior as ob-
served by Co�e��e and O'Regan. The over-shoot of near targets and the under-
shoot of far targets is seen to decrease as latencies increase. This is due to two
e�ects in our model. The �rst is the transient and sustained components of
the feature detectors. For short latencies the feature detector response is dom-
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inated by the transient component which has a low spatial frequency cuto�,
e�ectively blurring the target and distractors together. At longer latencies the
sustained component dominates, which has a higher spatial frequency cuto�,
and hence creates less blurring of the target and distractors. The second fac-
tor contributing to the dependence of feature centroid on latency is the action
of the winner-take-all network. Increasing the latency allows more time for
the ultimate winning feature location to suppress its neighbouring distractors,
thus reducing the e�ect of the spatial blurring. In our simulation, the �rst
factor dominates at longer latencies (after the peak of the transient response,
which occurs at around 500�103 time steps in our simulation), and the second
factor dominates at short latencies.

Our simulations also showed that, when there are no distractors present, the
centroid of the modulated feature activity is close to the target location for
all latency values. This shows that the under- and over-shoots seen in �gure
7 are due to the distractors.

The results of Co�e��e and O'Regan for the case of target plus distractors ex-
hibit a systematic shift in the eye-landing-position/target-position curves to-
wards the �xation point. This cannot be explained by the e�ect of the salience
of the �xation point, as the shift is observed at all latencies, and does not ap-
pear in the case of no distractors. Co�e��e and O'Regan suggest that this e�ect
is due to cortical magni�cation. Points in space closer to the �xation point will
have more photoreceptors and hence more cortical neurons associated with it,
and so will be weighted more heavily in a centroid calculation. As our simu-
lation does not model this cortical magni�cation, it should not produce any
shift in the centroids towards the �xation point.

We also simulated conditions in which the salience of the target relative
to the distractors was varied. The results were that the over- and under-
shoots are reduced when the salience of the target is increased relative to
the distractors. It is our view that this provides an explanation of the target
location predictability e�ect observed by Co�e��e and O'Regan, as well as the
results of the experiments done by He and Kowler (1989). In this view spatial
priming due to repetitive target presentation at a speci�c location results in
an enhanced salience for features at that location (by an endogenous process
which is not modeled by us). This enhancement of the target location has the
same e�ect as the increase of target salience used in our simulation.

Our model predicts that targets de�ned by equiluminant colour changes
should not exhibit the global e�ect, as this e�ect relies on the transient com-
ponent of the saliency map. It is well known that the response characteristics
of colour opponent cells in the retina are primarily sustained (Gouras (1968)),
with little transient response. Thus saccadic latencies to targets de�ned by
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equiluminant colour changes only should be long, and the inuence of dis-
tractors should be minimal. Supporting this view is an experiment described
by Theeuwes (1995) which shows that equiluminant colour changes do not
capture attention.

4.4 Retinal Eccentricity and Saccadic Latency

Wyman and Steinman (1973) noted a small narrow central peak in saccadic
latency as a function of retinal eccentricity. Kalesnykas and Hallett (1994)
examined in detail saccadic latency for a wide range of retinal eccentricities
and several di�erent stimulus conditions. They found that latencies increase
sharply for very small eccentricities and increase slowly at high eccentricities.
The peak at small eccentricities is broader for less salient stimuli. For exam-
ple, for target stimuli near detection threshold, the peak is about 4 degrees
wide, while for target stimuli 1000 times foveal detection threshold the peak
is only about 1.5 degrees wide. Target colour did not seem to a�ect the peak,
ruling out e�ects due to wavelength dependent absorption of light by macular
pigments. They also found that the presence of the central latency peak did
not depend on head or eye position, and the peak appeared even when latency
was plotted against saccadic amplitude rather than retinal eccentricity.

Our model provides an explanation for the increase in saccadic latency
for targets with small retinal eccentricities. In the appendix it is shown that
saccadic latencies reect the time taken for the winner-take-all network to
shift from one stable state to another. This time is a function of the di�erence
between the target saliency and the value of the local maximum function
times some weight less than one. The response of the local maximum network
to an impulse (e.g. from a point stimulus at the �xation location) decays
exponentially with the distance away from the impulse location. If the target
is far from the �xation, the local maximum value will be that of the target
salience. If the target is near to the �xation, and if the salience at the �xation
location is greater than the target salience, then the local maximum value
may be larger than the target value, hence the winner-take-all transition time
will be longer than when the target is far from �xation. As the target salience
increases the distance at which the local maximum value becomes equal to the
target salience becomes smaller. Thus the eccentricity at which the saccadic
latency begins to increase should decrease as the target saliency increases.

[[FIGURE 8 GOES HERE]]

In �gure 8 we show the results of a simulation in which the location of
the target stimulus relative to the �xation stimulus was varied. The onset of

15



the target stimulus coincided with the o�set of the �xation stimulus in this
simulation. Two di�erent target stimulus values were used, one just above the
�xation stimulus value and one 20 times this level. We see that our model pro-
duces a rise in saccadic latency as target eccentricity decreases similar to that
observed in humans. In addition, it is seen that the drop-o� in latency with
eccentricity is slower for low saliency targets than for highly salient targets,
in accordance with the results of the experiments of Kalesnykas and Hallett
(1994).

Our model does not take into account the dependence of photo-receptor
density on retinal eccentricity found in the human retina, and so may not
reproduce all aspects of the variation in saccadic latency with eccentricity
observed in experiments on humans.

4.5 Saccadic Programming and Saccades to Stepped Targets

The process of specifying the position of the target of a saccadic eye move-
ment has often been referred to in the eye movement literature as \saccadic
programming" (see, for example, Abrams (1992), Abrams and Jonides (1988),
Findlay (1992), He and Kowler (1988), and Sereno (1992)). This programming
process has typically been viewed as consisting of two components, amplitude
programming and direction programming. In addition, these computational
components or modules, are usually thought of as distinct processes that are
initiated, run for a while, and then provide a result. The underlying idea is
that saccadic latencies reect the time taken by these processes to produce
the required amplitude and direction parameters for the saccade. The point
of view inherent in the idea of saccadic programming can be seen clearly in
the following quote (from Abrams (1992)):

\Table 5.3 shows the probability that subjects cancelled or modi�ed the the
initial motor program and looked directly to the �nal target location. ...as
more and more motor programming has been completed, it becomes more
di�cult to halt the execution of the program."

Note the key phrases, \initial motor program", \motor programming has been
completed", and \halt the execution of the program". These phrases all im-
ply the existence of a distinct motor programming process or computational
module.

This view of saccade generation, however, is by no means the only view
that can be used to explain the observed data. It is our contention that ex-
plicit saccadic programming of either saccade amplitude or direction is overly
complicated and unneccesary. Rather, we propose that the pattern of the low
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level feature detector activity, as modulated by visual attention, is used to de-
termine both the timing and target of the saccadic eye movement. Following
the proposal of Lee, Rohrer, and Sparks (1988), our model assumes that the
command for the saccadic eye movement is coded in a distributed fashion by
a population of neurons, whose activity is attentionally modulated. Thus the
target will be speci�ed by the centre of mass of this pattern of activity, and is
continually available. The execution of the saccade is triggered by the shift in
attention to the new location. The actual saccade target will then be the at-
tentional centre-of-mass at this moment in time. No saccadic \programming"
need take place. The amplitude and direction of saccades are implicit in the
target locations, and are always available. There is no programming process
that needs to be initiated or that needs to be reset, modi�ed, or restarted in
response to a change in target position.

The oculomotor phenomenon most often used as support for the saccadic
programming theory is the behavior observed in \double-step" experiments,
such as those performed by Becker and Jurgens (1979). In this type of experi-
ment the target initially jumps to a position P1 and then subsequently jumps
to a position P2 before the saccade is made. The subjects are instructed to
move their eyes to the target as soon as it appears. In these experiments sub-
jects typically move their eyes either to the �rst target location, followed by a
second saccade to the second target location, or directly to the second target
location. In many cases, however, the eye lands in a location somewhere be-
tween the two target locations. The amplitude of the �rst saccade of a double
step response appears to be determined primarily by the secondary latency,
which is the time delay between the second target step and the onset of the re-
sponse (i.e. the saccadic latency minus the interstep interval). For short delay
times the eye moves to the �rst target location while for longer delay times the
eye moves to the second target location. For intermediate delay times there
is a transition region where the eye moves to a location somewhere between
the two target locations. The minimum secondary latency for which the eye
moves away from the �rst target location is called the modi�cation time by
Becker and Jurgens. This terminology arises from the observation that, from
the saccadic programming viewpoint, the modi�cation time is the minimum
delay that must elapse if the second step is to modify the amplitude of the
saccade that is being prepared in response to the �rst step. It was found by
Becker and Jurgens that this modi�cation time depended greatly on the na-
ture of the second step as compared with the �rst. The modi�cation time was
longest, on the average (203 msec), when the second step was in the same
direction as the �rst (the \Lengthen" case). A somewhat shorter modi�cation
time (172 msec) occured for the case that the second step was in the opposite
direction as the �rst and crossed over the original �xation point (the \Change-
direction" case). Shorter still (81 msec) was the case where the second step
was back towards the original �xation location (the \Shorten" case).
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We ran three di�erent simulations to see whether our model could replicate
these observations. In each of these simulations, the �xation mark is located
at point 7 (counting from zero) of a 15 point discrete grid, and the �rst target
location is at point 10. In the �rst simulation, the second target location is fur-
ther away from the �xation, at point 12. In the second simulation, the second
target location is nearer to the �xation, at point 8. In the third simulation the
second target location is on the other side of the �xation, at point 4 (which is
at the same distance from the �xation location as the �rst target location). For
each simulation we varied the time interval between movements of the target.
We summarize the results of these three simulations in �gure 9. This �gure
shows the centroid of the salience map as a function of the secondary latency,
or delay time. This corresponds to the \amplitude transition functions" of
Becker and Jurgens, from which we can estimate the modi�cation times.

[[FIGURE 9 GOES HERE]]

4.5.1 Discussion

In our simulations we observe that the secondary latency decreases as the
time between target steps increases. Another way of interpreting this is to say
that secondary latencies are smaller when the �rst saccade is to the initial
target and are larger when the �rst saccade is to the �nal target. This is in
accord with the Becker and Jurgens experiments where it was found that for
long reaction times (primary latencies) the response was directed to the �nal
target location, while for short reaction times the response was directed to
the initial target location. In these experiments the inter-step time was �xed,
and reaction times varied randomly, with some response occurring quickly
and some more slowly. In our simulation no random elements were introduced
and thus �xing the inter-step interval also �xed the reaction time. Thus we
had to vary the inter-step interval to obtain the dependence of saccade target
location to reaction time. It is expected that adding in random variation to
our model will result in the same sort of variation of saccade targeting as
a function of reaction time for �xed inter-step interval as in the Becker and
Jurgens experiment.

The shape of the curves shown in �gure 9, are seen to be comparable to
the amplitude transition functions observed by Becker and Jurgens. From
these curves we can determine roughly the modi�cation times for each case,
by estimating the secondary latency at which the tangent to the curves in
the transition between initial and �nal target responses intersects the low
secondary latency asymptote. The modi�cation time so determined is seen to
be longest for the \Lengthen" case (about 125 time steps) and shortest for the
\Shorten" case (about 50 time steps), as in Becker and Jurgen's experiments.
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In our simulations saccadic latencies were longest for the \Shorten case", at
least for �nal target responses. This is explained by the inhibitory e�ect of
the decaying trace of the �xation stimulus. Presumably this e�ect is only
signi�cant if the second target location is very close to the �xation stimulus,
that is, within two degrees of visual angle (Kalesnykas and Hallett (1994)). In
the experiments of Becker and Jurgens, the location of the second target in
the shorten case was about 15 degrees away from the �xation point, and so
should not exhibit any increase of saccadic latency due to low eccentricity.

Becker and Jurgens claim that the amplitude of the �rst saccade of a double
step response is determined primarily by the time delay between the second
target step and the onset of the response (i.e. the saccadic latency minus
the interstep interval). The model that they propose to explain these results
invokes a bilateral (directional) decision mechanism combined with a time
averaged amplitude computation. The decision mechanism takes in a retinal
error signal and compares it to a pair of thresholds (one for left-ward errors, one
for right-ward errors). If one of these thresholds is exceeded, a decision signal
for the appropriate direction is generated after some delay. The threshold
signal immediately inhibits the other direction decision signal. Thus, if the
retinal error changes sign (as in a crossed double step) the original direction
decision signal will be blocked, and the new direction decision signal will be
generated, after a fresh delay period. Thus, the decision time for a crossed
double step will be longer than for an uncrossed double step. Once a decision
signal has been generated the average of the retinal error over a time window
(of 110 msec) is computed and used to specify the amplitude of the saccade.
The actual saccadic motion is triggered at the end of the time window. Note
that, in this model, the directional programming of the saccade occurs before
the computation of the saccade amplitude. Hence, this model predicts that
a change in target direction will lead to a greater latency than a change in
target displacement.

However, as Sereno (1992) points out, targets lying in a di�erent direction
(but at the same distance from �xation) are typically far apart. Hence saccadic
latencies, which in our model depend on the time required for attention to
shift, should be longer in moving to the new target. When only amplitude is
changed, the distance from the �rst target to the new target is smaller, and
hence latencies should be shorter, as compared with the case where direction
is changed. Sereno refers to this problem with the interpretation of the double-
step results as an \attentional confound". In our view, there is no \attentional
confound"; rather it is the pattern of attentional activity that determines
the parameters of the saccade. Our simulations with stepped target stimuli
support this view. There is no need to assume separate direction and amplitude
saccadic programs, and, indeed, no need for any saccadic program at all. The
view that attentional activity increases at the �rst target location, tipping
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the scales of the winner-take-all network towards that location, is su�cient
to explain the double step phenomena. The longer the time period between
the target steps, the greater the buildup of attentional activity at the �rst
target location, and hence the greater the time needed to shift to the second
location, and the greater the probability that the saccade will be made to the
�rst target location.

It should be noted that our simulations of the double step paradigm have
only looked at the �rst saccade. The timing of the second saccade has not been
investigated. The reason for this is that the model as it stands is a retinotopic
model. This means that the circuitry for generating the attentional inhibition
signal is �xed relative to retinal coordinates. As the eye moves in a saccade, the
location of the target on the retina will shift relative to the winning location
of the winner-take-all, and will therefore cause another attentional shift (and
another saccade). A more realistic model would perhaps place the attentional
signal generation in a spatiotopic map, such as one using a head-centred coor-
dinate system. In this case the location of the winner-take-all would shift along
with the eye movement and so no extra shift in attention would be needed
to be made after the saccade. The timing of the second saccade in a double
step response will therefore depend on whether we assume a retinotopic or
spatiotopic substrate for generation of the attention signals. We are currently
investigating the reformulation of our model in spatiotopic coordinates, and
will revisit the double-step experiments when this is complete.

5 Summary

Motivated by premotor theories of attention, this paper has shown that a
low-level, winner-take-all based model of attention, combined with a simple
approach to the implicit speci�cation of saccade parameters can account for
a wide range of phenomena related to saccadic eye movements.

The viewpoint espoused in our model di�ers fundamentally from most ex-
isting models of saccadic eye movement generation. Its principal aspects are
that:

� The targets of saccades are not \programmed" by any modular process,
but are continuously de�ned by the pattern of activity of the attentionally
modulated feature values.

� Saccades are triggered when attention is \engaged" at a new location (unless
suppressed by a volitional �xation or gating signal).

We showed, via computer simulations, that our model can replicate a wide

20



range of oculomotor behavior, such as the gap e�ect, the global e�ect, the ef-
fect of target eccentricity on saccadic latency, and the temporal characteristics
of the initial saccade in the response to stepped target motion. In replicating
these phenomena with our model, we are able to provide insights as to their
underlying mechanisms. For example, from the viewpoint of our model, the
reasons for the gap e�ect become apparent. In the overlap condition the fea-
ture detector activity at the target location and that at the �xation location
compete against each other in the winner-take-all competition. In the gap con-
dition, the target location is unopposed in this competition and thus wins it
quickly, with a speed dependent on the target salience. The increase in sac-
cadic latency as the eccentricity of the target decreases is seen to arise due
to the greater strength of the decaying trace of the �xation stimulus in the
winner-take-all competition as the target gets closer to the �xation location.
Likewise, the global e�ect is easily understood as resulting from the spatio-
temporal characteristics of the feature detectors, and the speci�cation of the
saccade target in terms of the overall spatial pattern of the attentionally modu-
lated activity of the feature detectors. Phenomena which have been heretofore
used as a primary justi�cation of the \saccadic programming" theory, such
as the oculomotor response to stepping targets, can be accounted for by our
model in a way which obviates the need for explicit programming of saccades.
In our model, changing the location of a target before a saccade has been gen-
erated to that target merely changes the landscape of attentional modulation
activity, and delays the time needed for inhibition at a given location to be
su�ciently reduced to trigger a new saccade to that location.

The results of the simulation of our model also provide strong support for
theories which propose a strong link between the operation of spatial attention
and saccadic eye movement systems, as they show that these theories can
account for a wide range of oculomotor phenomena.
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Appendix A. Simulation Details

In each of the simulations shown in this paper we used a discrete one-
dimensional grid of 15 elements. The integrators were implemented with Eu-
ler's method using a small time step size compared with the time constants of
the systems involved (typically around 5� 105 time steps).

The feature detectors were modeled as simple step functions passed through
either a sustained or transient temporal �lter. The sustained temporal �lter
was modeled as an exponential averager implemented with the following dif-
ference equation:

yt = ASyt�1 + (1� AS)xt

where xt is the input to the �lter at time step t and yt is the �lter output
at time step t. AS is the sustained �lter coe�cient. In the simulation we set
AS = 0:9999984, which corresponds to a time constant of �S = �1= ln(AS) =
6:25 � 105 time steps. The transient temporal �lter was modeled as a sim-
ple di�erentiator followed by a di�erence of two exponential averaging �lters,
having coe�cients AT1 = 0:9999978, and AT2 = 0:9999982. This yields a
bandpass �lter whose impulse response reaches a peak at �T = (ln lnAT2 �

ln lnAT1)=(lnAT1 � lnAT2) = 5:02� 105 time steps.

The shunting inhibition factor � was set to 5 in the simulations, and the
inhibition integrator constant k was set to 0:0005.

[[FIGURE A-1 GOES HERE]]

We implemented the spatial averaging process of �gure 1 by means of the
resistive grid circuit shown in �gure A-1a. Such circuits have often been used
as models of electronic spread in dendritic trees and horizontal cells in the
retina (Mead, 1989). Likewise, the local-maximum function was implemented,
in our simulations, by a nonlinear di�erence equation modeling the resistive
netowrk shown in �gure A-1b.:

dMi

dt
=

1

C

 
D(Vi �Mi)

RV

+
(Mi�1 � 2Mi +Mi+1)

RH

�
Mi

RL

!

The subscript i indexes the individual nodes in the network. In the continuous
network limit this equation becomes:

dMi

dt
=

1

�

d2M

dx2
�

RH

�RL

M +
RH

�RV

D(V �M)
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where � = RHC. This is a di�usion equation with a dissipative term and a
forcing function D(V �M), where D(y) indicates a recti�cation operation (i.e.
D(y) = y if y < 0, and 0 otherwise). There is mounting evidence that neurons
exhibit the type of rectifying behaviour (Nichols and Lopatin, 1997) that is
required in this model. In addition, there have been a number of models of
cortical function that invoke the recti�cation properties of neurons (Carandini
et al (1996, and Nestares and Heeger, (1997)).

Di�usion serves to propagate the maximum input value across the network.
The forcing function a�ects the di�usion only if the input value V is greater
than the local maximum value M . The dissipative term forces the local max-
imum value M to zero when all inputs are zero. The steady state response
of the network to an spatial impulse is an exponential decay away from the

location of the impulse, of the form M(x) = M0 exp
�
�
q

RH
RL

x
�
. The decay

rate, and hence the \locality" of the local maximum computation, is set by
the leakage resistance RL. If RL is large the spatial scale of the local maxi-
mum function is large. If the input at a particular location is less than the
local maximum value, M , then the forcing function at that location will be
zero, and the output there will follow the exponential decay away from the
winning location.

Please note that the maximum network provides a localized measure only,
but has the advatage of requiring only local interactions between neural ele-
ments.

The resistive grid spatial averaging and local maximum networks that we
modeled in our simulations had no dynamics associated with them (i.e. they
had no capacitive or inductive elements). For more complete modeling, dy-
namics should be added into these networks. It is our belief, however, that
the time constants of these networks would be much lower than the time con-
stants of the feature detectors and of the winner-take-all betwork, and would
therefore have little e�ect on the qualitative details of our simulations.

We made no e�ort in our simulation development to relate the simulation
time steps to time constants that would be observed in a biological system.
Thus, the simulation results can be used only for qualitative comparisons and
predictions of psychophysical observations.
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Appendix B. Analysis of the Winner-Take-All Dynamics

In this appendix we examine the dynamics of a simpli�ed version of the
winner-take-all network used in our simulations.

We examine the case where we have two competing feature locations close
enough so that we can ignore the spatial fallo� in the local maximum network.
We also assume that there is no spatial averaging. With these assumptions we
can model the winner-take-all with the following equations:

y1 =
x1

1 + �I1

y2 =
x2

1 + �I2

_I1 = �k(y1 � �max(y1; y2))

_I2 = �k(y2 � �max(y1; y2))

where � < 1, x is the feature input and y is the modulated feature value after
shunting inhibition is applied. The attentional modulation signal I is obtained
as the solution to the above pair of �rst order nonlinear di�erential equations.

In addition, we apply the following inequality constraints to _I:

if I = 0; _I � 0

if I = 1; _I � 0

These constraints implement the saturation of the temporal integrators. They
restrict the phase space of the system (I1; I2; _I1; _I2) to the region de�ned by
0 � I1 � 1; 0 � I2 � 1.

It can be easily seen that there are no �xed points of the system in the
interior of this region. To see this observe that in each of the two possible
cases (y1 < y2) and (y1 > y2) either _I1 or _I2 is non-zero:

y1 < y2 : _I2 = �ky2(1� �) < 0

y1 > y2 : _I1 = �ky1(1� �) < 0

Furthermore, it can be shown that there are only two �xed points on the
boundary of the constrained phase space region. These occur at I1 = 0; I2 = 1
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and I1 = 1; I2 = 0. At the point (I1; I2) = (1; 0) we have that

_I1 = �kx2

�
R

1 + �
� �max

�
R

1 + �
; 1
��

_I2 = �kx2

�
1� �max

�
R

1 + �
; 1
��

where R = x1=x2. If R > 1 + � we have that _I1 < 0, and hence no �xed point
exists. If R < 1 + � then

_I1 = �kx2

�
R

1 + �
� �

�

This will be greater than or equal to zero when R � �(1 + �). If _I1 is greater
than zero when I1 = 1, the saturation will keep I1 = 1. Thus _I1 = 0 when
R � �(1 + �).

_I2 = �kx2(1� �) � 0

The saturation at I2 = 0 will force _I2 to zero in this case. Thus the point
(I1; I2) = (0; 1) is a �xed point whenever R � �(1 + �). By symmetry, there
will be a �xed point at (I1; I2) = (1; 0) whenever R � �(1 + �).

Thus the behavior of the system is to sit at one of the two �xed points until
the value of R changes to a value su�cient to ip the �xed points. The system
will then move to the new �xed point.

In our model of saccade generation, saccades are triggered by \engagement"
of attention onto the target. This is de�ned in our model to occur when the
level of shunting inhibition at the target location reaches zero. In terms of the
above notation, this occurs when I1 ! 0. Here we take I1 to be the target
shunting inhibition and I2 to be the �xation shunting inhibition. The saccadic
latency is then, in our model, the time taken for I1 to move from one to zero,
after R is set to a value su�cient to cause switching.

The motion of I1 from one to zero will, in general, consist of three phases.
In the �rst phase, the motion is along the I2 = 0 constraint line (where I1
is �xed at one). The �rst phase may be absent if R is large enough. In the
second phase the motion is in the interior of the con�guration space. If this
motion terminates on the I2 = 1 line for I1 > 0 there will be a third phase.
If the system reaches the I1 = 0 line before I2 reaches one, there will be no
third phase. The third phase consists of motion along the I2 = 1 constraint
line. Each of these motions will have its own time scale.

29



Let us consider the situation where R > (1 + �). In this case, when I2 = 0,
we have that

_I1 = �
kx2

(1 + �I1)
R(1� �)

which is always negative, and

_I2 = �
kx2

(1 + �I1)

 
(1 + �I1)

(1 + �I2)
� �R

!

which will be non-positive for I2 = 0 (and hence keep I2 on the lower saturation
limit) when I1 � (�R�1)=�. Thus, phase 1 ends when I1 has discharged to the
levelmin(1; (R��1)=�). IfR � (1+�)=� then there will be no phase 1. During
phase 2 the system moves through the interior of the con�guration space.
Whether phase 3 is present or not is dictated by the particular constraint
line that was arrived at during phase 2. This will depend on the relative
(dis)charging rates of I1 and I2 during this time. It can be seen from the
above equations for _I1 and _I2 that when R < (1+�)=(2��1) _I1 has a greater
magnitude than _I2. Hence, in this case, the constraint line at I1 = 0 will be
reached �rst. If R > (1 + �)=(2� � 1) then the constraint line at I2 = 1 will
be reached �rst.

We see that are four cases to consider, if switching is to occur. The �rst
case arises when (1 + �)� < R < (1 + �). In this case phase 1 exists but
there is no phase 3. The second case occurs when (1 + �) < R < (1 + �)=�,
in which there is a phase 1 but no phase 3. The third case occurs when
(1 + �)=� < R < (1 + �)=(2� � 1) in which there is no phase 1 but there
may be a phase 3. The fourth case arises when R > (1 + �)=(2� � 1) where
there is no phase 1 but there is a phase 3.

CASE 1: In this case _I2 is small compared with _I1, thus both phase 1 and
phase 2 can be thought of as a motion along the I2 = 0 constraint line. Thus
we can combine the times in phase 1 and phase 2 to give:

T1;2 =
I1(T1;2)� I1(0)

_I1
�

1 + �

kx2(R� �(1 + �))

This is an upper bound obtained by setting 1 + �I1 = 1 + �. Note that this
time grows without bound as R approaches �(1 + �) from above.

CASE 2: Case 2 is similar to case 1, save that the formula for _I1 is di�erent.
As in case 1, we can get an upper bound for the time spent in phases 1 and 2
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by assuming that 1 + �I1 = 1 + � during this time. Then:

T1;2 �
1 + �

kx2(1� �)

CASE 4: In case four, there is no phase 1, and the phase 2 trajectory will
end up on the I2 = 1 constraint line. We can get an upper bound for the phase
2 time by assuming that the phase 2 trajectory is along the I1 = 1 line. The
time is then

T2 �
1 + �

kx2(R�(1 + �)� 1)

The time taken in phase 3 can be bounded above by letting the term 1 + �I1
that appears in the formula for _I1 be �xed at 1 + � during this phase,

T3 �
1 + �

kx2R(1� �)
=

1 + �

kx1(1� �)

Note that T3 >> T2 for typical values of � and � and that T3 is independent of
the losing feature value, x2. Thus, only the winning feature value signi�cantly
a�ects the switching time in this case.

CASE 3: In case three there is no phase 1 and the phase 2 trajectory can
end up either on the I1 = 0 constraint line or the I2 = 1 constraint line.
Depending on which constraint line the trajectory ends up one can apply the
bounds of either case 2 or case 4.

In each of the above cases, it can be seen that the switching time is pro-
portional to the time constant (1=k) of the shunting inhibition integrator. For
large R the switching time depends primarily on the inverse of the winning
feature value. For values of R close to �(1+�) the switching time is inversely
proportional to R � �(1 � �) and hence can be very large. For intermediate
values of R, the switching time will depend on the values of both the winning
and losing feature values.
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Figure Captions

FIGURE 1. A schematic view of our neural network model of spatial visual
attention.

FIGURE 2. A model of the attentional modulation signal generation.

FIGURE 3. Reulen's piecewise linear model of the relationship between sac-
cadic latency and stimulus asynchrony.

FIGURE 4. Simulations of the model exhibiting the gap/overlap e�ect for
various values of the saliency of the target stimulus.

FIGURE 5. Simulations of the model exhibiting the gap/overlap e�ect for
various values of the saliency of the �xation stimulus.

FIGURE 6. The con�guration used in the simulation of the global e�ect.

FIGURE 7. Simulations of the model responses to target and distractors. Each
curve represents a di�erent saccadic latency. Latency values are given in 1000's
of time steps in the legend. The vertical axis is the centroid of the modulated
feature activity, and is taken as the saccade command position. Increasing
saccadic latency, l, is seen to reduce the global e�ect.

FIGURE 8. Saccadic latency as a function of the distance of the target stimulus
from the �xation location. Curves for high and low target saliency are shown.

FIGURE 9. Results of the simulation of saccades to stepped targets. The
centroid of the feature activity at the time of the saccade as a function of the
secondary latency or delay time. Three types of movements of the target are
shown - away from �xation (Lengthen), towards �xation (Shorten), and to the
other side of the �xation (Change Direction).

FIGURE A-1. a) A resistive network model of the local spatial average oper-
ation. b) A resistive network model of the local spatial maximum operation.

42


