Lecture 5: Transformations

2.5 Transformations

2.5.1 Definition: Transformation

A *transformation* is a function $\mathcal{A}: \mathcal{U} \to \mathcal{V}$ whose domain $\mathcal{D}\{\mathcal{A}\}$ and codomain $\mathcal{C}\{\mathcal{A}\}$ lie in vector spaces over the same field.

Such as transformation is called *linear* if for all $u, u_1, u_2 \in \mathcal{D}\{A\}$ and $\alpha \in \mathcal{F}$,

$$\mathcal{A}(u_1 + u_2) = \mathcal{A}(u_1) + \mathcal{A}(u_2)$$
$$\mathcal{A}(\alpha u) = \alpha \mathcal{A}(u)$$

Examples:

(a) $A: \mathbb{R}^n \to \mathbb{R}^m$, Au = v (matrix multiplication) expanding, we obtain

$$\begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}.$$
 Note that we typically use a slightly different notation for the

linear operator $\mathcal A$ and its matrix representation A. The former is a general operator without any reference to specific bases of $\mathbb R^n$ and $\mathbb R^m$, whereas the latter is defined with respect to specific bases.

Given A and $v \in \mathbb{R}^m$, the following questions can be raised concerning the above set of linear equations:

- 1. Can we find conditions on \mathcal{A} and $v \in \mathbb{R}^m$ under which at least one vector $u \in \mathbb{R}^n$ exists such that $\mathcal{A}u = v$?
- 2. If such vectors (solutions) exist, can we determine the number of linearly independent vectors $u \in \mathbb{R}^n$ such that Au = v?

These questions are answered by studying the range space and nullspace of ${\mathcal A}$.

Since
$$\mathcal{A}:(\mathbb{R}^n,\mathbb{R})\to(\mathbb{R}^m,\mathbb{R})$$
,

$$\mathcal{R}\{\mathcal{A})\coloneqq\left\{v\in\left(\mathbb{R}^{m},\mathbb{R}\right):\exists u\in\left(\mathbb{R}^{n},\mathbb{R}\right)\ni v=\mathcal{A}u\right\}\text{ is a subspace of }\left(\mathbb{R}^{m},\mathbb{R}\right).$$

Letting $A = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix}$, $\alpha_i \in \mathbb{R}^m$, we have $v = u_1 \alpha_1 + u_2 \alpha_2 + \cdots + u_n \alpha_n$, where $u_i \in \mathbb{R}$ is the i th-component of the input vector u.

Hence, $\mathcal{R}\{\mathcal{A}\}$ is the set of all linear combinations of the columns of A. But $\mathcal{R}\{\mathcal{A}\}$ is a linear space, therefore its dimension is defined and is equal to the maximum number of linearly independent vectors in $\mathcal{R}\{\mathcal{A}\}$. Thus,

 $\dim\{\mathcal{R}\{\mathcal{A}\}\}\ = \max$ maximum number of linearly independent columns of A $= \max$ maximum number of linearly independent rows of A = largest order of all non-vanishing minors of A

The existence of a solution $u \in \mathbb{R}^n$ is answered by checking whether the given v is in $\mathcal{R}\{A\}$. The number of solutions is found from $\mathcal{N}\{A\}$ (more on this later.)

- (b) The identity function $\mathcal I$ on $\mathcal U$ is a linear transformation $\mathcal I:\mathcal U\to\mathcal V,\quad \mathcal Iu:=u$.
- (c) The integral of a real-valued continuous function is a linear transformation. $\mathcal{A}: C\big[a,b\big] \to C\big[a,b\big]$

$$1.(\mathcal{A}u)(t) := \int_{a}^{t} u(\tau)d\tau, \quad t \in [a,b]$$

$$2.(\mathcal{A}u)(t) := \int_{a}^{t} h(t,\tau)u(\tau)d\tau, \quad h(t,\tau) \text{ continuous on } a \le t \le b, \ a \le \tau \le b$$

(d) $\mathcal{A}:\mathcal{L}_p\left[a,b\right]\to\mathcal{L}_p\left[a,b\right]$ is a linear transformation, where $\mathcal{L}_p\left[a,b\right]$ is the space of real-valued, Lebesgue-measurable functions for which the (Lebesgue) integral $\int\limits_a^b \left|u(\tau)\right|^p d\tau$ exists and is finite.

$$(\mathcal{A}u)(t) := \int_{a}^{t} h(t,\tau)u(\tau)d\tau, \quad h(t,\tau) \text{ continuous on } a \le t \le b, \ a \le \tau \le b$$

for p=2 , we get the space of finite-energy function $\mathcal{L}_2\left[a,b\right]$.

Notation:

Let M be a subspace of $\mathcal V$. Then:

 $\tilde{M}~$ is its set complement, i.e., $M \cup \tilde{M} = \mathcal{V}$,

 $M^{^c}\,$ is its subspace complement, i.e., $M\oplus M^{^c}=\mathcal{V}$.

Proposition:

Let $\mathcal{A}: \mathcal{U} \to \mathcal{V}$ be a linear transformation.

- (a) ${\mathcal A}$ maps the zero of ${\mathcal U}$ into the zero of ${\mathcal V}$,
- (b) The nullset $\mathcal{N}\{\mathcal{A}\}$, and range set $\mathcal{R}\{\mathcal{A}\}$ are always linear spaces. $\mathcal{N}\{\mathcal{A}\}$ is often denoted by $\operatorname{Ker}\{\mathcal{A}\}$ (the *kernel* of \mathcal{A}), and $\mathcal{R}\{\mathcal{A}\}$ is often denoted by $\operatorname{Im}\{\mathcal{A}\}$ (the *image* of \mathcal{A}),
- (c) The support set of $\mathcal{S}\{\mathcal{A}\} = \tilde{\mathcal{N}}\{\mathcal{A}\}$ is not a linear space (because it does not contain the zero vector),
- (d) Each $\mathcal{N}\{\mathcal{A}\}^c$ is a subspace which lies entirely inside the set $\tilde{\mathcal{N}}\{\mathcal{A}\} \cup \{\theta\}$. The quotient space $\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$ is one of the subspaces $\mathcal{N}\{\mathcal{A}\}^c$, and is unique.

2.5.2 Structure of Linear Transformations (LT)

Many of the properties of an LT, \mathcal{A} , are determined by the nature of $\mathcal{N}\{\mathcal{A}\}$, $\mathcal{R}\{\mathcal{A}\}$ and their complements $\mathcal{N}\{\mathcal{A}\}^c$, $\mathcal{R}\{\mathcal{A}\}^c$, respectively.

We shall represent the relationship between these spaces by the illustrative diagram shown below.

Notes:

- 1. $\mathcal{N}\left\{\mathcal{A}\right\}^c$ is a subspace, so it includes $\theta_{\mathcal{U}}$. We generally denote such a complement as a support space $S_{sp}\left\{\mathcal{A}\right\}$.
- 2. $\mathcal{D}\{A\} = \mathcal{N}\{A\} \oplus \mathcal{N}\{A\}^c$
- 3. $C\{A\} = R\{A\} \oplus R\{A\}^c$

We will show next that if the LT \mathcal{A} is restricted to any of the complement subspaces $\mathcal{N}\left\{\mathcal{A}\right\}^c$, say $\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$ in the domain $\mathcal{D}\{\mathcal{A}\}$ and to its range $\mathcal{R}\{\mathcal{A}\}$, e.g., we eliminate $\mathcal{N}\{\mathcal{A}\}$ and $\mathcal{R}\{\mathcal{A}\}^c$, then the remaining linear transformation \mathcal{A}_r is onto and one-to-one. Therefore it is invertible.

Thus, \mathcal{A}_r establishes a one-to-one correspondence between points in $\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$ and points in $\mathcal{R}\{\mathcal{A}\}$, and these two subspaces have the same dimension. We show this in a series of lemmas, keeping in mind the illustrative diagram shown below.

Lemma 1:

The linear transformation $\mathcal{A}: \mathcal{U} \to \mathcal{V}$ is one-to-one iff $\mathcal{N}\{\mathcal{A}\} = \{\theta_{\mathcal{U}}\}$.

Proof:

(necessity) If \mathcal{A} is one-to-one, then

$$u\in\mathcal{N}\{\mathcal{A}\} \Longrightarrow \mathcal{A}u=\theta_{\mathcal{V}}=\mathcal{A}\,\theta_{\mathcal{U}} \Longrightarrow u=\theta_{\mathcal{U}} \,\,\text{(\mathcal{A} is one-to-one.) That is, $$\mathcal{N}\{\mathcal{A}\}=\left\{\theta_{\mathcal{U}}\right\}$.}$$

(sufficiency) If $\mathcal{N}\{\mathcal{A}\} = \{\theta_{\mathcal{U}}\}$, then

$$u_1 \neq u_2 \Rightarrow u_1 - u_2 \not\in \mathcal{N}\{\mathcal{A}\} \Rightarrow \mathcal{A} \ (\ u_1 - u_2) \neq \theta_{\mathcal{V}} \Rightarrow \mathcal{A} u_1 \neq \mathcal{A} u_2 \ \text{, that is, } \ \mathcal{A} \ \text{ is one-to-one.}$$

Let $\mathcal{A}_{\rm l}$ be the D-restriction of \mathcal{A} to $\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$, i.e., discard $\mathcal{N}\{\mathcal{A}\}$.

Lemma 2:

The linear transformation $\,{\cal A}_{\!_{\rm l}}:{\cal D}\{{\cal A}\}/{\cal N}\{{\cal A}\}\to{\cal V}\,$ is

- (a) one-to-one,
- (b) $\mathcal{R}\left\{\mathcal{A}_{1}\right\} = \mathcal{R}\left\{\mathcal{A}\right\}$.

Proof:

- (a) $\mathcal{N}\{A_{\mathbf{l}}\} = \{\theta_{\mathcal{U}}\} \Rightarrow \mathcal{A}$ is one-to-one by Lemma 1.
- (b) $v \in \mathcal{R}\{\mathcal{A}\} \Rightarrow \exists u \in \mathcal{D}\{\mathcal{A}\} \ni v = \mathcal{A}u$. Decompose u into its components in the nullspace and the quotient space: $u = u_1 + u_2$, $u_1 \in \mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$, $u_2 \in \mathcal{N}\{\mathcal{A}\}$, which is possible since $\mathcal{D}\{\mathcal{A}\} = \mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\} \oplus \mathcal{N}\{\mathcal{A}\}$. Then, $v = \mathcal{A}(u_1 + u_2) = \mathcal{A}u_1 = \mathcal{A}_1u_1$. Hence, $v \in \mathcal{R}\{\mathcal{A}_1\}$. Conversely, $v \in \mathcal{R}\{\mathcal{A}_1\} \Rightarrow v \in \mathcal{R}\{\mathcal{A}\}$ (because restrictions always keep, or decrease the range.) Therefore, $\mathcal{R}\{\mathcal{A}_1\} = \mathcal{R}\{\mathcal{A}\}$.

Let \mathcal{A}_r be the C-restriction of \mathcal{A}_l to $\mathcal{R}\{\mathcal{A}\}$, i.e., discard $\mathcal{R}\{\mathcal{A}\}^c$.

Lemma 3:

The linear transformation $\mathcal{A}_r: \mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\} \to \mathcal{R}\{\mathcal{A}\}$ is one-to-one and onto.

Proof:

By Lemma 2(b), $\mathcal{R}\left\{\mathcal{A}_{i}\right\} = \mathcal{R}\left\{\mathcal{A}\right\}$, so \mathcal{A}_{r} is the codomain restriction of \mathcal{A}_{i} to its range. Such a restriction is always an onto transformation (Proposition in 2.3.2.) Furthermore, since \mathcal{A}_{i} is one-to-one, so is \mathcal{A}_{r} (Proposition in 2.3.2.)

Theorem: (summary)

Let $\mathcal{A}:\mathcal{U}\to\mathcal{V}$ be a linear transformation. If \mathcal{A}_r is the restriction of \mathcal{A} to $\mathcal{A}_r:=\mathcal{A}\cap \left(\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}\times\mathcal{R}\{\mathcal{A}\}\right)$, i.e., $\mathcal{A}_r:\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}\to\mathcal{R}\{\mathcal{A}\}$, then \mathcal{A}_r is one-to-one and onto, and is therefore invertible: $\mathcal{A}_r^{-1}:\mathcal{R}\{\mathcal{A}\}\to\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$.

Note:

If we replace $\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}$ by any complement subspace $\mathcal{N}\left\{\mathcal{A}\right\}^c$ (or $S_{sp}\left\{\mathcal{A}\right\}$), the above theorem still holds but because $\mathcal{N}\left\{\mathcal{A}\right\}^c$ is not unique, we may obtain different inverse transformations $\mathcal{A}_r^{-1}:\mathcal{R}\{\mathcal{A}\}\to\mathcal{N}\{\mathcal{A}\}^c$.

Examples:

(a)
$$\mathcal{A}: \mathcal{X} \times \mathcal{Y} \to \mathcal{X} \times \mathcal{Y}$$
, $\mathcal{X} = \mathcal{Y} \cong \mathbb{R}$, $\mathcal{A} \begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

Here $\mathcal{D}\{\mathcal{A}\} = \mathcal{C}\{\mathcal{A}\} = \mathcal{X} \times \mathcal{Y} \simeq \mathbb{R}^2$.

• Nullspace
$$\mathcal{N}\{\mathcal{A}\} = \operatorname{span}\left\{\begin{bmatrix} 0\\1\end{bmatrix}\right\} = \mathcal{Y}$$

• Range
$$\mathcal{R}\{\mathcal{A}\} = span \begin{Bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{Bmatrix} = \mathcal{X}$$

• Support set
$$S{A} = \{(x, y) \in \mathcal{X} \times \mathcal{Y} : x \neq 0\}$$

$$\bullet \quad \text{Support space } S_{sp}\left\{\mathcal{A}\right\} = \operatorname{span}\left\{\begin{bmatrix} a \\ b \end{bmatrix}\right\} \text{ for any } \ a \in \mathcal{X}, \, b \in \mathcal{Y} \, , \, \, a \neq 0 \, .$$

• Quotient set $\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\} = \{\text{set of lines parallel to the y-axis}\}$

- $\begin{array}{lll} \bullet & \mathcal{A}_r & \text{is the restriction of} & \mathcal{A} & \text{to any} & S_{sp} \left\{ \mathcal{A} \right\} \times \mathcal{R} \left\{ \mathcal{A} \right\} & \text{is not unique, e.g., if} \\ & S_{sp} \left\{ \mathcal{A} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} = \mathcal{X} \,, & \text{then} & \mathcal{A}_r : \mathcal{X} \to \mathcal{X}, \quad \mathcal{A}_r x = \alpha x & \text{and} \\ & \mathcal{A}_r^{-1} : \mathcal{X} \to \mathcal{X}, \quad \mathcal{A}_r^{-1} x = \alpha^{-1} x \,. \end{array}$
- $\mathcal{D}\{\mathcal{A}\} = \mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\} \oplus \mathcal{N}\{\mathcal{A}\} \text{ , and } \mathcal{A}_r : \mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\} \to \mathcal{R}\{\mathcal{A}\} \text{ is one-to-one and onto. Thus, } \dim\left\{\mathcal{R}\{\mathcal{A}\}\right\} = \dim\left\{\mathcal{D}\{\mathcal{A}\}/\mathcal{N}\{\mathcal{A}\}\right\} = 1 \text{ and } \\ \dim\left\{\mathcal{R}\{\mathcal{A}\}\right\} = \dim\left\{\mathcal{N}\{\mathcal{A}\}\right\} = \dim\left\{\mathcal{D}\{\mathcal{A}\}\right\}$